This file is indexed.

/usr/lib/python2.7/dist-packages/ase/quaternions.py is in python-ase 3.12.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import numpy as np
from ase.atoms import Atoms


class Quaternions(Atoms):
    def __init__(self, *args, **kwargs):
        quaternions = None
        if 'quaternions' in kwargs:
            quaternions = np.array(kwargs['quaternions'])
            del kwargs['quaternions']
        Atoms.__init__(self, *args, **kwargs)
        if quaternions is not None:
            self.set_array('quaternions', quaternions, shape=(4,))
            # set default shapes
            self.set_shapes(np.array([[3, 2, 1]] * len(self)))

    def set_shapes(self, shapes):
        self.set_array('shapes', shapes, shape=(3,))

    def set_quaternions(self, quaternions):
        self.set_array('quaternions', quaternions, quaternion=(4,))

    def get_shapes(self):
        return self.get_array('shapes')

    def get_quaternions(self):
        return self.get_array('quaternions').copy()

        
class Quaternion:
    def __init__(self, qin=[1, 0, 0, 0]):
        assert(len(qin) == 4)
        self.q = np.array(qin)

    def __str__(self):
        return self.q.__str__()

    def __mul__(self, other):
        sw, sx, sy, sz = self.q[0], self.q[1], self.q[2], self.q[3]
        ow, ox, oy, oz = other.q[0], other.q[1], other.q[2], other.q[3]
        return Quaternion([sw * ow - sx * ox - sy * oy - sz * oz,
                           sw * ox + sx * ow + sy * oz - sz * oy,
                           sw * oy + sy * ow + sz * ox - sx * oz,
                           sw * oz + sz * ow + sx * oy - sy * ox])

    def conjugate(self):
        return Quaternion(-self.q * np.array([-1., 1., 1., 1.]))

    def rotate(self, vector):
        """Apply the rotation matrix to a vector."""
        qw, qx, qy, qz = self.q[0], self.q[1], self.q[2], self.q[3]
        x, y, z = vector[0], vector[1], vector[2]
        
        ww = qw * qw
        xx = qx * qx
        yy = qy * qy
        zz = qz * qz
        wx = qw * qx
        wy = qw * qy
        wz = qw * qz
        xy = qx * qy
        xz = qx * qz
        yz = qy * qz
        
        return np.array(
            [(ww + xx - yy - zz) * x + 2 * ((xy - wz) * y + (xz + wy) * z),
             (ww - xx + yy - zz) * y + 2 * ((xy + wz) * x + (yz - wx) * z),
             (ww - xx - yy + zz) * z + 2 * ((xz - wy) * x + (yz + wx) * y)])

    def rotation_matrix(self):

        qw, qx, qy, qz = self.q[0], self.q[1], self.q[2], self.q[3]
        
        ww = qw * qw
        xx = qx * qx
        yy = qy * qy
        zz = qz * qz
        wx = qw * qx
        wy = qw * qy
        wz = qw * qz
        xy = qx * qy
        xz = qx * qz
        yz = qy * qz

        return np.array([[ww + xx - yy - zz, 2 * (xy + wz), 2 * (xz - wy)],
                         [2 * (xy - wz), ww - xx + yy - zz, 2 * (yz + wx)],
                         [2 * (xz + wy), 2 * (yz - wx), ww - xx - yy + zz]])

    def arc_distance(self, other):
        """Gives a metric of the distance between two quaternions,
        expressed as 1-|q1.q2|"""

        return 1.0 - np.abs(np.dot(self.q, other.q))

    @staticmethod
    def rotate_byq(q, vector):
        """Apply the rotation matrix to a vector."""
        qw, qx, qy, qz = q[0], q[1], q[2], q[3]
        x, y, z = vector[0], vector[1], vector[2]
        
        ww = qw * qw
        xx = qx * qx
        yy = qy * qy
        zz = qz * qz
        wx = qw * qx
        wy = qw * qy
        wz = qw * qz
        xy = qx * qy
        xz = qx * qz
        yz = qy * qz
        
        return np.array(
            [(ww + xx - yy - zz) * x + 2 * ((xy - wz) * y + (xz + wy) * z),
             (ww - xx + yy - zz) * y + 2 * ((xy + wz) * x + (yz - wx) * z),
             (ww - xx - yy + zz) * z + 2 * ((xz - wy) * x + (yz + wx) * y)])
    
    @staticmethod
    def from_matrix(matrix):
        """Build quaternion from rotation matrix."""
        m = np.array(matrix)
        assert m.shape == (3, 3)

        # Now we need to find out the whole quaternion
        # This method takes into account the possibility of qw being nearly
        # zero, so it picks the stablest solution

        if m[2, 2] < 0:
            if (m[0, 0] > m[1, 1]):
                # Use x-form
                qx = np.sqrt(1 + m[0, 0] - m[1, 1] - m[2, 2]) / 2.0
                fac = 1.0 / (4 * qx)
                qw = (m[2, 1] - m[1, 2]) * fac
                qy = (m[0, 1] + m[1, 0]) * fac
                qz = (m[0, 2] + m[2, 0]) * fac
            else:
                # Use y-form
                qy = np.sqrt(1 - m[0, 0] + m[1, 1] - m[2, 2]) / 2.0
                fac = 1.0 / (4 * qy)
                qw = (m[0, 2] - m[2, 0]) * fac
                qx = (m[0, 1] + m[1, 0]) * fac
                qz = (m[1, 2] + m[2, 1]) * fac
        else:
            if (m[0, 0] < -m[1, 1]):
                # Use z-form
                qz = np.sqrt(1 - m[0, 0] - m[1, 1] + m[2, 2]) / 2.0
                fac = 1.0 / (4 * qz)
                qw = (m[1, 0] - m[0, 1]) * fac
                qx = (m[2, 0] + m[0, 2]) * fac
                qy = (m[1, 2] + m[2, 1]) * fac
            else:
                # Use w-form
                qw = np.sqrt(1 + m[0, 0] + m[1, 1] + m[2, 2]) / 2.0
                fac = 1.0 / (4 * qw)
                qx = (m[2, 1] - m[1, 2]) * fac
                qy = (m[0, 2] - m[2, 0]) * fac
                qz = (m[1, 0] - m[0, 1]) * fac

        return Quaternion(np.array([qw, qx, qy, qz]))