This file is indexed.

/usr/lib/python2.7/dist-packages/astroML/lumfunc.py is in python-astroml 0.3-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np


def _sorted_interpolate(x, y, x_eval):
    """utility function for binned_Cminus"""
    # note that x should be sorted
    N = len(x)
    ind = x.searchsorted(x_eval)
    ind[ind == N] = N - 1

    y_eval = np.zeros(x_eval.shape)

    # find perfect matches
    match = (x[ind] == x_eval) | (x_eval > x[-1]) | (x_eval < x[0])
    y_eval[match] = y[ind[match]]

    ind = ind[~match]

    # take care of extrapolation
    ind[ind == 0] = 1

    x_lo = x[ind - 1]
    x_up = x[ind]

    y_lo = y[ind - 1]
    y_up = y[ind]

    # take care of places where x_lo = x_up

    y_eval[~match] = (y_lo + (x_eval[~match] - x_lo)
                      * (y_up - y_lo) / (x_up - x_lo))

    return y_eval


def Cminus(x, y, xmax, ymax):
    """Lynden-Bell's C-minus method

    Parameters
    ----------
    x : array_like
        array of x values
    y : array_like
        array of y values
    xmax : array_like
        array of maximum x values for each y value
    ymax : array_like
        array of maximum y values for each x value

    Returns
    -------
    Nx, Ny, cuml_x, cuml_y: ndarrays
        Nx and cuml_x are in the order of the sorted x array
        Ny and cuml_y are in the order of the sorted y array
    """
    # make copies of input
    x, y, xmax, ymax = map(np.array, (x, y, xmax, ymax))

    Nall = len(x)

    cuml_x = np.zeros(x.shape)
    cuml_y = np.zeros(y.shape)
    Nx = np.zeros(x.shape)
    Ny = np.zeros(y.shape)

    # first the y direction.
    i_sort = np.argsort(y)
    x = x[i_sort]
    y = y[i_sort]
    xmax = xmax[i_sort]
    ymax = ymax[i_sort]

    for j in range(1, Nall):
        Ny[j] = np.sum(x[:j] < xmax[j])
    Ny[0] = np.inf
    cuml_y = np.cumprod(1. + 1. / Ny)
    Ny[0] = 0

    # renormalize
    cuml_y *= Nall / cuml_y[-1]

    #now the x direction
    i_sort = np.argsort(x)
    x = x[i_sort]
    y = y[i_sort]
    xmax = xmax[i_sort]
    ymax = ymax[i_sort]

    for i in range(1, Nall):
        Nx[i] = np.sum(y[:i] < ymax[i])
    Nx[0] = np.inf
    cuml_x = np.cumprod(1. + 1. / Nx)
    Nx[0] = 0

    # renormalize
    cuml_x *= Nall / cuml_x[-1]

    return Nx, Ny, cuml_x, cuml_y


def binned_Cminus(x, y, xmax, ymax, xbins, ybins, normalize=False):
    """Compute the binned distributions using the Cminus method

    Parameters
    ----------
    x : array_like
        array of x values
    y : array_like
        array of y values
    xmax : array_like
        array of maximum x values for each y value
    ymax : array_like
        array of maximum y values for each x value
    xbins : array_like
        array of bin edges for the x function: size=Nbins_x + 1
    ybins : array_like
        array of bin edges for the y function: size=Nbins_y + 1
    normalize : boolean
        if true, then returned distributions are normalized.  Default
        is False.

    Returns
    -------
    dist_x, dist_y : ndarrays
        distributions of size Nbins_x and Nbins_y
    """
    Nx, Ny, cuml_x, cuml_y = Cminus(x, y, xmax, ymax)

    # simple linear interpolation using a binary search
    # interpolate the cumulative distributions
    x_sort = np.sort(x)
    y_sort = np.sort(y)

    Ix_edges = _sorted_interpolate(x_sort, cuml_x, xbins)
    Iy_edges = _sorted_interpolate(y_sort, cuml_y, ybins)

    if xbins[0] < x_sort[0]:
        Ix_edges[0] = cuml_x[0]
    if xbins[-1] > x_sort[-1]:
        Ix_edges[-1] = cuml_x[-1]

    if ybins[0] < y_sort[0]:
        Iy_edges[0] = cuml_y[0]
    if ybins[-1] > y_sort[-1]:
        Iy_edges[-1] = cuml_y[-1]

    x_dist = np.diff(Ix_edges) / np.diff(xbins)
    y_dist = np.diff(Iy_edges) / np.diff(ybins)

    if normalize:
        x_dist /= len(x)
        y_dist /= len(y)

    return x_dist, y_dist


def bootstrap_Cminus(x, y, xmax, ymax, xbins, ybins,
                     Nbootstraps=10, normalize=False):
    """
    Compute the binned distributions using the Cminus method, with
    bootstrapped estimates of the errors

    Parameters
    ----------
    x : array_like
        array of x values
    y : array_like
        array of y values
    xmax : array_like
        array of maximum x values for each y value
    ymax : array_like
        array of maximum y values for each x value
    xbins : array_like
        array of bin edges for the x function: size=Nbins_x + 1
    ybins : array_like
        array of bin edges for the y function: size=Nbins_y + 1
    Nbootstraps : int
        number of bootstrap resamplings to perform
    normalize : boolean
        if true, then returned distributions are normalized.  Default
        is False.

    Returns
    -------
    dist_x, err_x, dist_y, err_y : ndarrays
        distributions of size Nbins_x and Nbins_y
    """
    x, y, xmax, ymax = map(np.asarray, (x, y, xmax, ymax))

    x_dist = np.zeros((Nbootstraps, len(xbins) - 1))
    y_dist = np.zeros((Nbootstraps, len(ybins) - 1))

    for i in range(Nbootstraps):
        ind = np.random.randint(0, len(x), len(x))
        x_dist[i], y_dist[i] = binned_Cminus(x[ind], y[ind],
                                             xmax[ind], ymax[ind],
                                             xbins, ybins,
                                             normalize=normalize)

    return (x_dist.mean(0), x_dist.std(0, ddof=1),
            y_dist.mean(0), y_dist.std(0, ddof=1))