This file is indexed.

/usr/lib/python2.7/dist-packages/csb/statistics/maxent.py is in python-csb 1.2.3+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
"""
A Maximum-Entropy model for backbone torsion angles.
Reference: Rowicka and Otwinowski 2004
"""

import numpy

from csb.statistics.pdf import BaseDensity


class MaxentModel(BaseDensity):
    """
    Fourier expansion of a biangular log-probability density
    """
    def __init__(self, n, beta=1.):
        """

        @param n: order of the fourier expansion
        @type n: int

        @param beta: inverse temperature
        @type beta: float
        """
        super(MaxentModel, self).__init__()
        
        self._n = int(n)

        self._cc = numpy.zeros((self._n, self._n))
        self._ss = numpy.zeros((self._n, self._n))
        self._cs = numpy.zeros((self._n, self._n))
        self._sc = numpy.zeros((self._n, self._n))

        self._beta = float(beta)

    @property
    def beta(self):
        """
        Inverse temperature

        @rtype: float
        """
        return self._beta

    @property
    def n(self):
        """
        Order of the fourier expansion

        @rtype: int
        """
        return self._n

    def load_old(self, aa, f_name):
        """
        Load set of expansion coefficients from isd.

        @param aa: Amino acid type
        @param f_name: File containing ramachandran definition
        """

        import os
        params, _energies = eval(open(os.path.expanduser(f_name)).read())
        params = params[self._n - 1]

        for k, l, x, f, g in params[aa]:

            if f == 'cos' and g == 'cos':
                self._cc[k, l] = -x
            elif f == 'cos' and g == 'sin':
                self._cs[k, l] = -x
            elif f == 'sin' and g == 'cos':
                self._sc[k, l] = -x
            elif f == 'sin' and g == 'sin':
                self._ss[k, l] = -x

    def load(self, aa, f_name):
        """
        Load set of expansion coefficients from isd+.

        @param aa: Amino acid type
        @param f_name: File containing ramachandran definition
        """
        import os
        from numpy import reshape, array
        from csb.io import load

        f_name = os.path.expanduser(f_name)
        params, _energies = load(f_name)
        params = params[self._n]

        a, b, c, d = params[aa]
        a, b, c, d = reshape(array(a), (self._n, self._n)).astype('d'), \
                  reshape(array(b), (self._n, self._n)).astype('d'), \
                  reshape(array(c), (self._n, self._n)).astype('d'), \
                  reshape(array(d), (self._n, self._n)).astype('d')
        # Not a typo, I accidently swichted cos*sin and sin*cos
        self._cc, self._cs, self._sc, self._ss = -a, -c, -b, -d

    def _periodicities(self):
        return numpy.arange(self._n)

    def log_prob(self, x, y):
        """
        Return the energy at positions (x,y).

        @param x: x-coordinates for evaluation
        @type x: array-like

        @param y: y-coordinates for evaluation
        @type y: array-like
        """
        return -self.energy(x, y)
    
    def set(self, coef):
        """
        Set the fourier expansion coefficients and calculations the 
        new partation function.

        @param coef: expansion coefficents
        @type coef: array like, with shape (4,n,n)
        """
        self._cc[:, :], self._ss[:, :], self._cs[:, :], self._sc[:, :] = \
                    numpy.reshape(coef, (4, self._n, self._n))
        self.normalize()

    def get(self):
        """
        Return current expansion coefficients.
        """
        return numpy.array([self._cc, self._ss, self._cs, self._sc])

    def energy(self, x, y=None):
        """
        Return the energy at positions (x,y). 

        @param x: x-coordinates for evaluation
        @type x: array-like

        @param y: y-coordinates for evaluation
        @type y: array-like
        """
        from numpy import sin, cos, dot, multiply

        k = self._periodicities()
        cx, sx = cos(multiply.outer(k, x)), sin(multiply.outer(k, x))
        if y is not None:
            cy, sy = cos(multiply.outer(k, y)), sin(multiply.outer(k, y))
        else:
            cy, sy = cx, sx

        return dot(dot(cx.T, self._cc), cy) + \
               dot(dot(cx.T, self._cs), sy) + \
               dot(dot(sx.T, self._sc), cy) + \
               dot(dot(sx.T, self._ss), sy)

    def sample_weights(self):
        """
        Create a random set of expansion coefficients.
        """
        from numpy import add
        from numpy.random import standard_normal

        k = self._periodicities()
        k = add.outer(k ** 2, k ** 2)
        self.set([standard_normal(k.shape) for i in range(4)])   
        self.normalize(True)

    def prob(self, x, y):
        """
        Return the probability of the configurations x cross y.
        """
        from csb.numeric import exp
        return exp(-self.beta * self(x, y))

    def z(self):
        """
        Calculate the partion function .
        """
        from scipy.integrate import dblquad
        from numpy import pi

        return dblquad(self.prob, 0., 2 * pi, lambda x: 0., lambda x: 2 * pi)

    def log_z(self, n=500, integration='simpson'):
        """
        Calculate the log partion function.
        """
        from numpy import pi, linspace, max
        from csb.numeric import log, exp

        if integration == 'simpson':
            from csb.numeric import simpson_2d
            x = linspace(0., 2 * pi, 2 * n + 1)
            dx = x[1] - x[0]

            f = -self.beta * self.energy(x)
            f_max = max(f)
            f -= f_max

            I = simpson_2d(exp(f))
            return log(I) + f_max + 2 * log(dx)

        elif integration == 'trapezoidal':

            from csb.numeric import trapezoidal_2d
            x = linspace(0., 2 * pi, n)
            dx = x[1] - x[0]

            f = -self.beta * self.energy(x)
            f_max = max(f)
            f -= f_max
            I = trapezoidal_2d(exp(f))
            return log(I) + f_max + 2 * log(dx)
        else:
            raise NotImplementedError(
                'Choose from trapezoidal and simpson-rule Integration')
    
    def entropy(self, n=500):
        """
        Calculate the entropy of the model.

        @param n: number of integration points for numerical integration
        @type n: integer
        """
        from csb.numeric import trapezoidal_2d
        from numpy import pi, linspace, max
        from csb.numeric import log, exp

        x = linspace(0., 2 * pi, n)
        dx = x[1] - x[0]

        f = -self.beta * self.energy(x)
        f_max = max(f)

        log_z = log(trapezoidal_2d(exp(f - f_max))) + f_max + 2 * log(dx)
        average_energy = trapezoidal_2d(f * exp(f - f_max))\
                         * exp(f_max + 2 * log(dx) - log_z)

        return -average_energy + log_z

    def calculate_statistics(self, data):
        """
        Calculate the sufficient statistics for the data.
        """
        from numpy import cos, sin, dot, multiply

        k = self._periodicities()
        cx = cos(multiply.outer(k, data[:, 0]))
        sx = sin(multiply.outer(k, data[:, 0]))
        cy = cos(multiply.outer(k, data[:, 1]))
        sy = sin(multiply.outer(k, data[:, 1]))

        return dot(cx, cy.T), dot(sx, sy.T), dot(cx, sy.T), dot(sx, cy.T)

    def normalize(self, normalize_full=True):
        """
        Remove parameter, which do not have any influence on the model
        and compute the partition function.

        @param normalize_full: compute partition function
        @type normalize_full: boolean
        """
        self._cc[0, 0] = 0.
        self._ss[:, 0] = 0.
        self._ss[0, :] = 0.
        self._cs[:, 0] = 0.
        self._sc[0, :] = 0.

        if normalize_full:
            self._cc[0, 0] = self.log_z()


class MaxentPosterior(object):
    """
    Object to hold and calculate the posterior (log)probability
    given an exponential family model and corresponding data.
    """

    def __init__(self, model, data):
        """
        @param model: MaxentModel
        @param data: two dimensonal data
        """
        
        self._model = model
        self._data = numpy.array(data)
        self._stats = self.model.calculate_statistics(self._data)

        self._log_likelihoods = []

    @property
    def model(self):
        return self._model

    @model.setter
    def model(self, value):
        self._model = value
        self._stats = self.model.calculate_statistics(self._data)
        
    @property
    def data(self):
        return self._data

    @data.setter
    def data(self, value):
        self._data = numpy.array(value)
        self._stats = self.model.calculate_statistics(value)

    @property
    def stats(self):
        return self._stats

    def __call__(self, weights=None, n=100):
        """
        Returns the log posterior likelihood

        @param weights: optional expansion coefficients of the model,
                         if none are specified those of the model are used
        @param n: number of integration point for calculating the partition function
        """
        from numpy import sum

        if weights is not None:
            self.model.set(weights)

        a = sum(self._stats[0] * self.model._cc)
        b = sum(self._stats[1] * self.model._ss)
        c = sum(self._stats[2] * self.model._cs)
        d = sum(self._stats[3] * self.model._sc)

        log_z = self.data.shape[0] * self.model.log_z(n=n)

        log_likelihood = -self.model.beta * (a + b + c + d) - log_z

        self._log_likelihoods.append(log_likelihood)

        return log_likelihood