This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/codegeneration.py is in python-ffc 2016.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
# -*- coding: utf-8 -*-
"""
Compiler stage 4: Code generation
---------------------------------

This module implements the generation of C++ code for the body of each
UFC function from an (optimized) intermediate representation (OIR).
"""

# Copyright (C) 2009-2016 Anders Logg, Martin Sandve Alnæs, Marie E. Rognes,
# Kristian B. Oelgaard, and others
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.

from itertools import chain
from ufl import product

# FFC modules
from ffc.log import info, begin, end, debug_code, dstr
from ffc.cpp import format, indent
from ffc.cpp import set_exception_handling, set_float_formatting

# FFC code generation modules
from ffc.evaluatebasis import _evaluate_basis, _evaluate_basis_all
from ffc.evaluatebasisderivatives import _evaluate_basis_derivatives
from ffc.evaluatebasisderivatives import _evaluate_basis_derivatives_all
from ffc.evaluatedof import evaluate_dof_and_dofs, affine_weights
from ffc.interpolatevertexvalues import interpolate_vertex_values
from ffc.representation import pick_representation, ufc_integral_types


# Errors issued for non-implemented functions
def _not_implemented(function_name, return_null=False):
    body = format["exception"]("%s not yet implemented." % function_name)
    if return_null:
        body += "\n" + format["return"](0)
    return body


def generate_code(ir, parameters):
    "Generate code from intermediate representation."

    begin("Compiler stage 4: Generating code")

    # FIXME: This has global side effects
    # Set code generation parameters
    set_float_formatting(int(parameters["precision"]))
    set_exception_handling(parameters["convert_exceptions_to_warnings"])

    # Extract representations
    ir_elements, ir_dofmaps, ir_coordinate_mappings, ir_integrals, ir_forms = ir

    # Generate code for elements
    info("Generating code for %d element(s)" % len(ir_elements))
    code_elements = [_generate_element_code(ir, parameters)
                     for ir in ir_elements]

    # Generate code for dofmaps
    info("Generating code for %d dofmap(s)" % len(ir_dofmaps))
    code_dofmaps = [_generate_dofmap_code(ir, parameters)
                    for ir in ir_dofmaps]

    # Generate code for coordinate_mappings
    info("Generating code for %d coordinate_mapping(s)" % len(ir_coordinate_mappings))
    code_coordinate_mappings = [_generate_coordinate_mapping_code(ir, parameters)
                                for ir in ir_coordinate_mappings]
    # FIXME: This disables output of generated coordinate_mapping class, until implemented properly
    code_coordinate_mappings = []

    # Generate code for integrals
    info("Generating code for integrals")
    code_integrals = [_generate_integral_code(ir, parameters)
                      for ir in ir_integrals]

    # Generate code for forms
    info("Generating code for forms")
    code_forms = [_generate_form_code(ir, parameters)
                  for ir in ir_forms]

    end()

    return code_elements, code_dofmaps, code_coordinate_mappings, code_integrals, code_forms


def _generate_element_code(ir, parameters):
    "Generate code for finite element from intermediate representation."

    # Skip code generation if ir is None
    if ir is None:
        return None

    # Prefetch formatting to speedup code generation
    ret = format["return"]
    do_nothing = format["do nothing"]
    create = format["create foo"]

    # Codes generated together
    (evaluate_dof_code, evaluate_dofs_code) \
        = evaluate_dof_and_dofs(ir["evaluate_dof"])

    #element_number = ir["id"]

    # Generate code
    code = {}
    code["classname"] = ir["classname"]
    code["members"] = ""
    code["constructor"] = do_nothing
    code["constructor_arguments"] = ""
    code["initializer_list"] = ""
    code["destructor"] = do_nothing

    code["signature"] = ret('"%s"' % ir["signature"])
    code["cell_shape"] = ret(format["cell"](ir["cell_shape"]))
    code["topological_dimension"] = ret(ir["topological_dimension"])
    code["geometric_dimension"] = ret(ir["geometric_dimension"])
    code["space_dimension"] = ret(ir["space_dimension"])

    code["value_rank"] = ret(len(ir["value_shape"]))
    code["value_dimension"] = _value_dimension(ir["value_shape"])
    code["value_size"] = ret(product(ir["value_shape"]))
    code["reference_value_rank"] = ret(len(ir["reference_value_shape"]))
    code["reference_value_dimension"] = _value_dimension(ir["reference_value_shape"])
    code["reference_value_size"] = ret(product(ir["reference_value_shape"]))

    code["degree"] = ret(ir["degree"])
    code["family"] = ret('"%s"' % (ir["family"],))

    code["evaluate_basis"] = _evaluate_basis(ir["evaluate_basis"])
    code["evaluate_basis_all"] = _evaluate_basis_all(ir["evaluate_basis"])
    code["evaluate_basis_derivatives"] \
        = _evaluate_basis_derivatives(ir["evaluate_basis"])
    code["evaluate_basis_derivatives_all"] \
        = _evaluate_basis_derivatives_all(ir["evaluate_basis"])

    code["evaluate_dof"] = evaluate_dof_code
    code["evaluate_dofs"] = evaluate_dofs_code
    code["interpolate_vertex_values"] \
        = interpolate_vertex_values(ir["interpolate_vertex_values"])
    code["tabulate_dof_coordinates"] \
        = _tabulate_dof_coordinates(ir["tabulate_dof_coordinates"])
    code["num_sub_elements"] = ret(ir["num_sub_elements"])
    code["create_sub_element"] = _create_sub_element(ir)
    code["create"] = ret(create(code["classname"]))
    code["additional_includes_set"] = _additional_includes_finite_element(ir)

    # Postprocess code
    _postprocess_code(code, parameters)

    return code


def _generate_dofmap_code(ir, parameters):
    "Generate code for dofmap from intermediate representation."

    # Skip code generation if ir is None
    if ir is None:
        return None

    # Prefetch formatting to speedup code generation
    ret = format["return"]
    declare = format["declaration"]
    assign = format["assign"]
    do_nothing = format["do nothing"]
    switch = format["switch"]
    f_int = format["int"]
    f_d = format["argument dimension"]
    create = format["create foo"]

    #element_number = ir["id"]

    # Generate code
    code = {}
    code["classname"] = ir["classname"]
    code["members"] = ""
    code["constructor"] = do_nothing
    code["constructor_arguments"] = ""
    code["initializer_list"] = ""
    code["destructor"] = do_nothing
    code["signature"] = ret('"%s"' % ir["signature"])
    code["needs_mesh_entities"] \
        = _needs_mesh_entities(ir["needs_mesh_entities"])
    code["topological_dimension"] = ret(ir["topological_dimension"])
    code["global_dimension"] = _global_dimension(ir["global_dimension"])
    code["num_element_dofs"] = ret(ir["num_element_dofs"])
    code["num_facet_dofs"] = ret(ir["num_facet_dofs"])
    code["num_entity_dofs"] \
        = switch(f_d, [ret(num) for num in ir["num_entity_dofs"]],
                 ret(f_int(0)))
    code["num_entity_closure_dofs"] \
        = switch(f_d, [ret(num) for num in ir["num_entity_closure_dofs"]],
                 ret(f_int(0)))
    code["tabulate_dofs"] = _tabulate_dofs(ir["tabulate_dofs"])
    code["tabulate_facet_dofs"] \
        = _tabulate_facet_dofs(ir["tabulate_facet_dofs"])
    code["tabulate_entity_dofs"] \
        = _tabulate_entity_dofs(ir["tabulate_entity_dofs"])
    code["tabulate_entity_closure_dofs"] \
        = _tabulate_entity_closure_dofs(ir["tabulate_entity_closure_dofs"])
    code["num_sub_dofmaps"] = ret(ir["num_sub_dofmaps"])
    code["create_sub_dofmap"] = _create_sub_dofmap(ir)
    code["create"] = ret(create(code["classname"]))
    code["additional_includes_set"] = _additional_includes_dofmap(ir)

    # Postprocess code
    _postprocess_code(code, parameters)

    return code


def _additional_includes_dofmap(ir):
    if not ir["jit"]:
        return set()
    dofmap_classnames = ir["create_sub_dofmap"]
    jit_includes = [classname.split("_dofmap")[0] + ".h"
                    for classname in dofmap_classnames]
    return set("#include <%s>" % inc for inc in jit_includes)


def _additional_includes_finite_element(ir):
    if not ir["jit"]:
        return set()
    finite_element_classnames = ir["create_sub_element"]
    jit_includes = [classname.split("_finite_element")[0] + ".h"
                    for classname in finite_element_classnames]
    return set("#include <%s>" % inc for inc in jit_includes)


def _additional_includes_coordinate_mapping(ir):
    if not ir["jit"]:
        return set()
    finite_element_classnames = [
        ir["coordinate_finite_element_classname"],
        ir["scalar_coordinate_finite_element_classname"]
        ]
    jit_includes = [classname.split("_finite_element")[0] + ".h"
                    for classname in finite_element_classnames]
    return set("#include <%s>" % inc for inc in jit_includes)


def _additional_includes_form(ir):
    if not ir["jit"]:
        return set()
    # Gather all header names for classes that are separately compiled
    # For finite_element and dofmap the module and header name is the prefix,
    # extracted here with .split, and equal for both classes so we skip dofmap here:
    finite_element_classnames = list(chain(
        ir["create_finite_element"],
        ir["create_coordinate_finite_element"]
        ))
    jit_includes = set(classname.split("_finite_element")[0] + ".h"
                       for classname in finite_element_classnames)
    # FIXME: Enable when coordinate_mapping is fully generated:
    #jit_includes.update(classname + ".h" for classname in ir["create_coordinate_mapping"])
    return set("#include <%s>" % inc for inc in jit_includes)


def _generate_coordinate_mapping_code(ir, parameters):
    "Generate code for coordinate_mapping from intermediate representation."

    # Skip code generation if ir is None
    if ir is None:
        return None

    coordinate_mapping_number = ir["id"]

    # FIXME: Get code dict from current work in uflacs

    # Generate code
    code = {}
    code["classname"] = ir["classname"]

    code["members"] = ""
    code["constructor"] = ""
    code["constructor_arguments"] = ""
    code["initializer_list"] = ""
    code["destructor"] = ""
    code["create"] = "return nullptr;"

    code["signature"] = 'return "fixme";'
    code["cell_shape"] = "return ufc::shape::triangle;"
    code["topological_dimension"] = "return 2;"
    code["geometric_dimension"] = "return 3;"

    code["create_coordinate_finite_element"] = "return nullptr;"
    code["create_coordinate_dofmap"] = "return nullptr;"

    code["compute_physical_coordinates"] = ""
    code["compute_reference_coordinates"] = ""
    code["compute_jacobians"] = ""
    code["compute_jacobian_determinants"] = ""
    code["compute_jacobian_inverses"] = ""
    code["compute_geometry"] = ""

    code["additional_includes_set"] = _additional_includes_coordinate_mapping(ir)

    return code


def _generate_integral_code(ir, parameters):
    "Generate code for integrals from intermediate representation."

    # Skip code generation if ir is None
    if ir is None:
        return None

    # Select representation
    r = pick_representation(ir["representation"])

    # Generate code
    # TODO: Drop prefix argument and get from ir:
    code = r.generate_integral_code(ir, ir["prefix"], parameters)

    # Generate comment
    code["tabulate_tensor_comment"] = _generate_tabulate_tensor_comment(ir, parameters)

    # Indent code (unused variables should already be removed)
    # FIXME: Remove this quick hack
    if ir["representation"] != "uflacs":
        _indent_code(code)
    else:
        code["tabulate_tensor_comment"] = indent(code["tabulate_tensor_comment"], 4)

    return code


def _generate_tabulate_tensor_comment(ir, parameters):
    "Generate comment for tabulate_tensor."

    r = ir["representation"]
    integrals_metadata = ir["integrals_metadata"]
    integral_metadata = ir["integral_metadata"]

    comment  = format["comment"]("This function was generated using '%s' representation" % r) + "\n"
    comment += format["comment"]("with the following integrals metadata:") + "\n"
    comment += format["comment"]("") + "\n"
    comment += "\n".join([format["comment"]("  " + l) for l in dstr(integrals_metadata).split("\n")][:-1])
    comment += "\n"
    for i, metadata in enumerate(integral_metadata):
        comment += format["comment"]("") + "\n"
        comment += format["comment"]("and the following integral %d metadata:" % i) + "\n"
        comment += format["comment"]("") + "\n"
        comment += "\n".join([format["comment"]("  " + l) for l in dstr(metadata).split("\n")][:-1])
        comment += "\n"

    return comment


def _generate_original_coefficient_position(original_coefficient_positions):
    # TODO: I don't know how to implement this using the format dict,
    # this will do for now:
    initializer_list = ", ".join(str(i)
                                 for i in original_coefficient_positions)
    code = '\n'.join([
        "static const std::vector<std::size_t> position({%s});"
        % initializer_list, "return position[i];",
    ])
    return code


def _generate_form_code(ir, parameters):
    "Generate code for form from intermediate representation."

    # Skip code generation if ir is None
    if ir is None:
        return None

    # Prefetch formatting to speedup code generation
    ret = format["return"]
    do_nothing = format["do nothing"]

    # Generate code
    code = {}
    code["classname"] = ir["classname"]
    code["members"] = ""

    code["constructor"] = do_nothing
    code["constructor_arguments"] = ""
    code["initializer_list"] = ""
    code["destructor"] = do_nothing

    code["signature"] = ret('"%s"' % ir["signature"])
    code["original_coefficient_position"] = \
        _generate_original_coefficient_position(ir["original_coefficient_position"])
    code["rank"] = ret(ir["rank"])
    code["num_coefficients"] = ret(ir["num_coefficients"])

    code["create_coordinate_finite_element"] = _create_coordinate_finite_element(ir)
    code["create_coordinate_dofmap"] = _create_coordinate_dofmap(ir)
    code["create_coordinate_mapping"] = _create_coordinate_mapping(ir)

    code["create_finite_element"] = _create_finite_element(ir)
    code["create_dofmap"] = _create_dofmap(ir)

    code["additional_includes_set"] = _additional_includes_form(ir)

    for integral_type in ufc_integral_types:
        code["max_%s_subdomain_id" % integral_type] = \
            ret(ir["max_%s_subdomain_id" % integral_type])
        code["has_%s_integrals" % integral_type] = \
            _has_foo_integrals(ir, integral_type)
        code["create_%s_integral" % integral_type] = \
            _create_foo_integral(ir, integral_type)
        code["create_default_%s_integral" % integral_type] = \
            _create_default_foo_integral(ir, integral_type)

    # Postprocess code
    _postprocess_code(code, parameters)

    return code

#--- Code generation for non-trivial functions ---


def _value_dimension(ir):
    "Generate code for value_dimension."
    ret = format["return"]
    axis = format["argument axis"]
    f_int = format["int"]

    if ir == ():
        return ret(1)
    return format["switch"](axis, [ret(n) for n in ir], ret(f_int(0)))


def _needs_mesh_entities(ir):
    """
    Generate code for needs_mesh_entities. ir is a list of num dofs
    per entity.
    """
    ret = format["return"]
    boolean = format["bool"]
    dimension = format["argument dimension"]

    return format["switch"](dimension, [ret(boolean(c)) for c in ir],
                            ret(boolean(False)))


def _global_dimension(ir):
    """Generate code for global_dimension. ir[0] is a list of num dofs per
    entity."""

    num_dofs = ir[0]
    component = format["component"]
    entities = format["num entities"]
    dimension = format["inner product"]([format["int"](d) for d in num_dofs],
                                        [component(entities, d)
                                         for d in range(len(num_dofs))])
    # Handle global "elements" if any
    if ir[1]:
        dimension = format["add"]([dimension, format["int"](ir[1])])
        try:
            dimension = format["int"](eval(dimension))
        except:
            pass

    code = format["return"](dimension)

    return code


def _tabulate_facet_dofs(ir):
    "Generate code for tabulate_facet_dofs."

    assign = format["assign"]
    component = format["component"]
    dofs = format["argument dofs"]
    cases = ["\n".join(assign(component(dofs, i), dof)
                       for (i, dof) in enumerate(facet))
             for facet in ir]
    return format["switch"](format["facet"](None), cases)


def _tabulate_dofs(ir):
    "Generate code for tabulate_dofs."

    # Prefetch formats
    add = format["addition"]
    iadd = format["iadd"]
    multiply = format["multiply"]
    assign = format["assign"]
    component = format["component"]
    entity_index = format["entity index"]
    num_entities_format = format["num entities"]
    unsigned_int = format["uint declaration"]
    dofs_variable = format["argument dofs"]

    if ir is None:
        return assign(component(dofs_variable, 0), 0)

    # Extract representation
    (dofs_per_element, num_dofs_per_element, need_offset, fakes) = ir

    # Declare offset if needed
    code = []
    offset_name = "0"
    if need_offset:
        offset_name = "offset"
        code.append(format["declaration"](unsigned_int, offset_name, 0))

    # Generate code for each element
    i = 0
    for (no, num_dofs) in enumerate(dofs_per_element):

        # Handle fakes (Space of reals)
        if fakes[no] and num_dofs_per_element[no] == 1:
            code.append(assign(component(dofs_variable, i), offset_name))
            if offset_name != "0":
                code.append(iadd(offset_name, 1))
            i += 1
            continue

        # Generate code for each degree of freedom for each dimension
        for (dim, num) in enumerate(num_dofs):

            # Ignore if no dofs for this dimension
            if not num[0]:
                continue

            for (k, dofs) in enumerate(num):
                v = multiply([len(num[k]), component(entity_index, (dim, k))])
                for (j, dof) in enumerate(dofs):
                    value = add([offset_name, v, j])
                    code.append(assign(component(dofs_variable, dof + i), value))

            # Update offset corresponding to mesh entity:
            if need_offset:
                addition = multiply([len(num[0]),
                                     component(num_entities_format, dim)])
                code.append(iadd("offset", addition))

        i += num_dofs_per_element[no]

    return "\n".join(code)


def _tabulate_dof_coordinates(ir):
    "Generate code for tabulate_dof_coordinates."

    # Raise error if tabulate_dof_coordinates is ill-defined
    if not ir:
        msg = "tabulate_dof_coordinates is not defined for this element"
        return format["exception"](msg)

    # Extract formats:
    inner_product = format["inner product"]
    component = format["component"]
    precision = format["float"]
    assign = format["assign"]
    f_x = format["coordinate_dofs"]
    coordinates = format["argument coordinates"]

    # Extract coordinates and cell dimension
    gdim = ir["gdim"]
    tdim = ir["tdim"]

    # Aid mapping points from reference to physical element
    coefficients = affine_weights(tdim)

    # Generate code for each point and each component
    code = []
    for (i, coordinate) in enumerate(ir["points"]):

        w = coefficients(coordinate)
        for j in range(gdim):
            # Compute physical coordinate
            coords = [component(f_x(), (k * gdim + j,)) for k in range(tdim + 1)]
            value = inner_product(w, coords)

            # Assign coordinate
            code.append(assign(component(coordinates, (i * gdim + j)), value))

    return "\n".join(code)


def _tabulate_entity_dofs(ir):
    "Generate code for tabulate_entity_dofs."

    # Extract variables from ir
    entity_dofs, num_dofs_per_entity = ir

    # Prefetch formats
    assign = format["assign"]
    component = format["component"]
    f_d = format["argument dimension"]
    f_i = format["argument entity"]
    dofs = format["argument dofs"]

    # Add check that dimension and number of mesh entities is valid
    dim = len(num_dofs_per_entity)
    excpt = format["exception"]("%s is larger than dimension (%d)"
                                % (f_d, dim - 1))
    code = [format["if"]("%s > %d" % (f_d, dim - 1), excpt)]

    # Generate cases for each dimension:
    all_cases = ["" for d in range(dim)]
    for d in range(dim):

        # Ignore if no entities for this dimension
        if num_dofs_per_entity[d] == 0:
            continue

        # Add check that given entity is valid:
        num_entities = len(entity_dofs[d].keys())
        excpt = format["exception"]("%s is larger than number of entities (%d)"
                                    % (f_i, num_entities - 1))
        check = format["if"]("%s > %d" % (f_i, num_entities - 1), excpt)

        # Generate cases for each mesh entity
        cases = ["\n".join(assign(component(dofs, j), dof)
                           for (j, dof) in enumerate(entity_dofs[d][entity]))
                 for entity in range(num_entities)]

        # Generate inner switch with preceding check
        all_cases[d] = "\n".join([check, format["switch"](f_i, cases)])

    # Generate outer switch
    code.append(format["switch"](f_d, all_cases))

    return "\n".join(code)


def _tabulate_entity_closure_dofs(ir):
    "Generate code for tabulate_entity_closure_dofs."

    # Extract variables from ir
    entity_closure_dofs, entity_dofs, num_dofs_per_entity = ir

    # Prefetch formats
    assign = format["assign"]
    component = format["component"]
    f_d = format["argument dimension"]
    f_i = format["argument entity"]
    dofs = format["argument dofs"]

    # Add check that dimension and number of mesh entities is valid
    dim = len(num_dofs_per_entity)
    excpt = format["exception"]("%s is larger than dimension (%d)"
                                % (f_d, dim - 1))
    code = [format["if"]("%s > %d" % (f_d, dim - 1), excpt)]

    # Generate cases for each dimension:
    all_cases = ["" for d in range(dim)]
    for d in range(dim):
        num_entities = len(entity_dofs[d])

        # Add check that given entity is valid:
        excpt = format["exception"]("%s is larger than number of entities (%d)"
                                    % (f_i, num_entities - 1))
        check = format["if"]("%s > %d" % (f_i, num_entities - 1), excpt)

        # Generate cases for each mesh entity
        cases = []
        for entity in range(num_entities):
            assignments = [assign(component(dofs, j), dof)
                           for (j, dof) in enumerate(entity_closure_dofs[(d, entity)])]
            cases.append("\n".join(assignments))

        # Generate inner switch with preceding check
        all_cases[d] = "\n".join([check, format["switch"](f_i, cases)])

    # Generate outer switch
    code.append(format["switch"](f_d, all_cases))

    return "\n".join(code)


#--- Utility functions ---

def _create_switch(arg, classnames, factory=False):
    "Generate code for create_<bar>(arg) returning new <classnames[arg]>."
    ret = format["return"]
    if factory:
        create = format["create factory"]
    else:
        create = format["create foo"]
    numbers = list(range(len(classnames)))
    cases = [ret(create(name)) for name in classnames]
    default = ret(0)
    return format["switch"](arg, cases, default=default, numbers=numbers)


def _create_coordinate_finite_element(ir):
    ret = format["return"]
    if ir["jit"]:
        create = format["create factory"]
    else:
        create = format["create foo"]
    classnames = ir["create_coordinate_finite_element"]
    assert len(classnames) == 1  # list of length 1 until we support multiple domains
    return ret(create(classnames[0]))


def _create_coordinate_dofmap(ir):
    ret = format["return"]
    if ir["jit"]:
        create = format["create factory"]
    else:
        create = format["create foo"]
    classnames = ir["create_coordinate_dofmap"]
    assert len(classnames) == 1  # list of length 1 until we support multiple domains
    return ret(create(classnames[0]))


def _create_coordinate_mapping(ir):
    ret = format["return"]
    if ir["jit"]:
        create = format["create factory"]
    else:
        create = format["create foo"]
    classnames = ir["create_coordinate_mapping"]
    assert len(classnames) == 1  # list of length 1 until we support multiple domains
    # return ret(create(classnames[0]))
    return ret("nullptr")  # FIXME: Disabled until we generate a functional class (work in progress)


def _create_finite_element(ir):
    f_i = format["argument sub"]
    classnames = ir["create_finite_element"]
    return _create_switch(f_i, classnames, ir["jit"])


def _create_dofmap(ir):
    f_i = format["argument sub"]
    classnames = ir["create_dofmap"]
    return _create_switch(f_i, classnames, ir["jit"])


def _create_sub_element(ir):
    f_i = format["argument sub"]
    classnames = ir["create_sub_element"]
    return _create_switch(f_i, classnames, ir["jit"])


def _create_sub_dofmap(ir):
    f_i = format["argument sub"]
    classnames = ir["create_sub_dofmap"]
    return _create_switch(f_i, classnames, ir["jit"])


def _has_foo_integrals(ir, integral_type):
    ret = format["return"]
    b = format["bool"]
    i = ir["has_%s_integrals" % integral_type]
    return ret(b(i))


def _create_foo_integral(ir, integral_type):
    "Generate code for create_<foo>_integral."
    ret = format["return"]
    create = format["create foo"]
    f_i = format["argument subdomain"]
    subdomain_ids, classnames = ir["create_%s_integral" % integral_type]
    cases = [ret(create(name)) for name in classnames]
    default = ret(0)
    return format["switch"](f_i, cases, default=default, numbers=subdomain_ids)


def _create_default_foo_integral(ir, integral_type):
    "Generate code for create_default_<foo>_integral."
    ret = format["return"]
    classname = ir["create_default_%s_integral" % integral_type]
    if classname is None:
        return ret(0)
    else:
        create = format["create foo"]
        return ret(create(classname))


def _postprocess_code(code, parameters):
    "Postprocess generated code."
    _indent_code(code)
    _remove_code(code, parameters)


def _indent_code(code):
    "Indent code that should be indented."
    for key in code:
        if key not in ("classname", "members", "constructor_arguments",
                       "initializer_list", "additional_includes_set",
                       "class_type"):
            code[key] = indent(code[key], 4)


def _remove_code(code, parameters):
    "Remove code that should not be generated."
    for key in code:
        flag = "no-" + key
        if flag in parameters and parameters[flag]:
            msg = "// Function %s not generated (compiled with -f%s)" \
                  % (key, flag)
            code[key] = format["exception"](msg)