/usr/lib/python2.7/dist-packages/ffc/evaluatebasisderivatives.py is in python-ffc 2016.2.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 | # -*- coding: utf-8 -*-
# Copyright (C) 2007-2016 Kristian B. Oelgaard
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg 2013
# Modified by Lizao Li 2015, 2016
"""Code generation for evaluation of derivatives of finite element
basis values. This module generates code which is more or less a C++
representation of the code found in FIAT_NEW."""
# Python modules
import math
import numpy
from six import string_types
# FFC modules
from ffc.log import error
from ffc.evaluatebasis import _compute_basisvalues, _tabulate_coefficients
from ffc.cpp import remove_unused, indent, format
def _evaluate_basis_derivatives_all(data):
"""Like evaluate_basis, but return the values of all basis
functions (dofs)."""
if isinstance(data, string_types):
return format["exception"]("evaluate_basis_derivatives_all: %s" % data)
# Prefetch formats.
f_r, f_s = format["free indices"][:2]
f_assign = format["assign"]
f_loop = format["generate loop"]
f_array = format["dynamic array"]
f_dof_vals = format["dof values"]
f_comment = format["comment"]
f_derivs = format["call basis_derivatives"]
f_values = format["argument values"]
f_int = format["int"]
f_num_derivs = format["num derivatives"]
f_double = format["float declaration"]
f_component = format["component"]
f_mul = format["mul"]
f_float = format["floating point"]
f_index = format["matrix index"]
f_del_array = format["delete dynamic array"]
# Initialise return code
code = []
# FIXME: KBO: Figure out which return format to use, either:
# [dN0[0]/dx, dN0[0]/dy, dN0[1]/dx, dN0[1]/dy, dN1[0]/dx,
# dN1[0]/dy, dN1[1]/dx, dN1[1]/dy, ...]
# or
# [dN0[0]/dx, dN1[0]/dx, ..., dN0[1]/dx, dN1[1]/dx, ...,
# dN0[0]/dy, dN1[0]/dy, ..., dN0[1]/dy, dN1[1]/dy, ...]
# or
# [dN0[0]/dx, dN0[1]/dx, ..., dN1[0]/dx, dN1[1]/dx, ...,
# dN0[0]/dy, dN0[1]/dy, ..., dN1[0]/dy, dN1[1]/dy, ...]
# for vector (tensor elements), currently returning option 1.
# FIXME: KBO: For now, just call evaluate_basis_derivatives and
# map values accordingly, this will keep the amount of code at a
# minimum. If it turns out that speed is an issue (overhead from
# calling evaluate_basis), we can easily generate all the code.
# Get total value shape and space dimension for entire element
# (possibly mixed).
physical_value_size = data["physical_value_size"]
space_dimension = data["space_dimension"]
max_degree = data["max_degree"]
# Special case where space dimension is one (constant elements).
if space_dimension == 1:
code += [f_comment("Element is constant, calling evaluate_basis_derivatives.")]
code += [f_derivs(f_int(0), f_values)]
return "\n".join(code)
# Compute number of derivatives.
if data["topological_dimension"] == data["geometric_dimension"]:
_g = ""
else:
_g = "_g"
# If n == 0, call evaluate_basis.
code += [format["comment"]("Call evaluate_basis_all if order of derivatives is equal to zero.")]
cond = format["argument derivative order"] + format["is equal"] + format["int"](0)
val = [format["call basis_all"]]
val += [format["return"]("")]
code += [format["if"](cond, indent("\n".join(val), 2))]
code += _compute_num_derivatives(data["geometric_dimension"], _g)
if (physical_value_size == 1):
num_vals = f_num_derivs(_g)
else:
num_vals = f_mul([f_int(physical_value_size), f_num_derivs(_g)])
# Reset values.
code += ["", f_comment("Set values equal to zero.")]
name = f_component(f_values, f_index(f_r, f_s, num_vals))
lines_s = [f_assign(name, f_float(0.0))]
loop_s = [(f_s, 0, num_vals)]
lines_r = f_loop(lines_s, loop_s)
loop_r = [(f_r, 0, space_dimension)]
code += f_loop(lines_r, loop_r)
# If n > max_degree, return zeros.
code += ["", format["comment"]("If order of derivatives is greater than the maximum polynomial degree, return zeros.")]
cond = format["argument derivative order"] + format["greater than"] + f_int(max_degree)
val = format["return"]("")
code += [format["if"](cond, indent(val, 2))]
# Declare helper value to hold single dof values and reset.
code += [f_comment("Helper variable to hold values of a single dof.")]
nds = data["geometric_dimension"]**max_degree * physical_value_size
code += [format["declaration"](f_double, f_component(f_dof_vals, f_int(nds)))]
line = [f_assign(f_component(f_dof_vals, f_r), f_float(0.0))]
code += f_loop(line, [(f_r, 0, nds)])
# Create loop over dofs that calls evaluate_basis_derivatives for a single dof and
# inserts the values into the global array.
code += ["", f_comment("Loop dofs and call evaluate_basis_derivatives.")]
name = f_component(f_values, f_index(f_r, f_s, num_vals))
value = f_component(f_dof_vals, f_s)
lines_s = [f_assign(name, value)]
loop_s = [(f_s, 0, num_vals)]
lines_r = [f_derivs(f_r, f_dof_vals)]
lines_r += f_loop(lines_s, loop_s)
loop_r = [(f_r, 0, space_dimension)]
code += f_loop(lines_r, loop_r)
# Generate bode (no need to remove unused).
return "\n".join(code)
def _evaluate_basis_derivatives(data):
"""Evaluate the derivatives of an element basisfunction at a point. The values are
computed as in FIAT as the matrix product of the coefficients (computed at compile time),
basisvalues which are dependent on the coordinate and thus have to be computed at
run time and combinations (depending on the order of derivative) of dmats
tables which hold the derivatives of the expansion coefficients."""
if isinstance(data, string_types):
return format["exception"]("evaluate_basis_derivatives: %s" % data)
# Initialise return code.
code = []
# Get the element cell domain, geometric and topological dimension.
element_cellname = data["cellname"]
gdim = data["geometric_dimension"]
tdim = data["topological_dimension"]
max_degree = data["max_degree"]
# Compute number of derivatives that has to be computed, and
# declare an array to hold the values of the derivatives on the
# reference element.
code += [""]
if tdim == gdim:
_t = ""
_g = ""
code += _compute_num_derivatives(tdim, "")
# Reset all values.
code += _reset_values(data, _g)
# Handle values of argument 'n'.
code += _handle_degree(max_degree)
# If max_degree is zero, return code (to avoid declarations such as
# combinations[1][0]) and because there's nothing to compute.)
if max_degree == 0:
return remove_unused("\n".join(code))
# Generate geo code.
code += _geometry_related_code(data, tdim, gdim, element_cellname)
# Generate all possible combinations of derivatives.
code += _generate_combinations(tdim, "", max_degree)
else:
_t = "_t"
_g = "_g"
code += _compute_num_derivatives(tdim, _t)
code += [""]
code += _compute_num_derivatives(gdim, _g)
# Reset all values.
code += _reset_values(data, _g)
# Handle values of argument 'n'.
code += _handle_degree(max_degree)
# If max_degree is zero, return code (to avoid declarations such as
# combinations[1][0]) and because there's nothing to compute.)
if max_degree == 0:
return remove_unused("\n".join(code))
# Generate geo code.
code += _geometry_related_code(data, tdim, gdim, element_cellname)
# Generate all possible combinations of derivatives.
code += _generate_combinations(tdim, _t, max_degree)
code += _generate_combinations(gdim, _g, max_degree)
# Generate the transformation matrix.
code += _generate_transform(element_cellname, gdim, tdim, max_degree)
# Create code for all basis values (dofs).
dof_cases = []
for dof_data in data["dofs_data"]:
dof_cases.append(_generate_dof_code(data, dof_data))
code += [format["switch"](format["argument basis num"], dof_cases)]
code = remove_unused("\n".join(code))
# code = "\n".join(code)
return code
def _handle_degree(max_degree):
"""Check value of argument 'n' against the maximum polynomial degree of the
finite element. If user ask for n>max_degree return an appropriate number
of zeros in the 'values' array. If n==0, simply direct call to
evaluate_basis."""
code = []
# If n == 0, call evaluate_basis.
code += [format["comment"]("Call evaluate_basis if order of derivatives is equal to zero.")]
cond = format["argument derivative order"] + format["is equal"] + format["int"](0)
val = [format["call basis"](format["argument dof num"], format["argument values"])]
val += [format["return"]("")]
code += [format["if"](cond, indent("\n".join(val), 2))]
# If n > max_degree, derivatives are always zero. Since the appropriate number of
# zeros have already been inserted into the 'values' array simply return.
code += [format["comment"]("If order of derivatives is greater than the maximum polynomial degree, return zeros.")]
cond = format["argument derivative order"] + format["greater than"] + format["int"](max_degree)
val = format["return"]("")
code += [format["if"](cond, val)]
return code
def _geometry_related_code(data, tdim, gdim, element_cellname):
code = []
# Get code snippets for Jacobian, inverse of Jacobian and mapping of
# coordinates from physical element to the FIAT reference element.
code += [format["compute_jacobian"](tdim, gdim)]
code += [format["compute_jacobian_inverse"](tdim, gdim)]
if data["needs_oriented"]:
code += [format["orientation"](tdim, gdim)]
code += ["", format["fiat coordinate map"](element_cellname, gdim)]
return code
def _compute_num_derivatives(dimension, suffix=""):
"""Computes the number of derivatives of order 'n' as dimension()^n.
Dimension will be the element topological dimension for the number
of derivatives in local coordinates, and the geometric dimension
for the number of derivatives in phyisical coordinates.
"""
# Prefetch formats.
f_int = format["int"]
f_num_derivs = format["num derivatives"](suffix)
# Use loop to compute power since using std::pow() result in an
# ambiguous call.
code = [format["comment"]("Compute number of derivatives.")]
code.append(format["declaration"](format["uint declaration"],
f_num_derivs, f_int(1)))
loop_vars = [(format["free indices"][0], 0,
format["argument derivative order"])]
lines = [format["imul"](f_num_derivs, f_int(dimension))]
code += format["generate loop"](lines, loop_vars)
return code
def _generate_combinations(dimension, suffix, max_degree):
"Generate all possible combinations of derivatives of order 'n'."
nds = dimension**max_degree
# Use code from format.
code = ["", format["combinations"]
% {"combinations": format["derivative combinations"](suffix),
"dimension-1": dimension - 1,
"num_derivatives": format["num derivatives"](suffix),
"n": format["argument derivative order"],
"max_num_derivatives":format["int"](nds),
"max_degree":format["int"](max_degree)}]
return code
def _generate_transform(element_cellname, gdim, tdim, max_degree):
"""Generate the transformation matrix, which is used to transform
derivatives from reference element back to the physical element."""
max_g_d = gdim**max_degree
max_t_d = tdim**max_degree
# Generate code to construct the inverse of the Jacobian
if (element_cellname in ["interval", "triangle", "tetrahedron"]):
code = ["", format["transform snippet"][element_cellname][gdim]
% {"transform": format["transform matrix"],
"num_derivatives": format["num derivatives"](""),
"n": format["argument derivative order"],
"combinations": format["derivative combinations"](""),
"K":format["transform Jinv"],
"max_g_deriv":max_g_d, "max_t_deriv":max_t_d}]
else:
error("Cannot generate transform for shape: %s" % element_cellname)
return code
def _reset_values(data, suffix):
"Reset all components of the 'values' array as it is a pointer to an array."
# Prefetch formats.
f_assign = format["assign"]
f_r = format["free indices"][0]
code = ["", format["comment"]("Reset values. Assuming that values is always an array.")]
# Get value shape and reset values. This should also work for TensorElement,
# scalar are empty tuples, therefore (1,) in which case value_shape = 1.
physical_value_size = data["physical_value_size"]
# Only multiply by value shape if different from 1.
if physical_value_size == 1:
num_vals = format["num derivatives"](suffix)
else:
num_vals = format["mul"]([format["int"](physical_value_size), format["num derivatives"](suffix)])
name = format["component"](format["argument values"], f_r)
loop_vars = [(f_r, 0, num_vals)]
lines = [f_assign(name, format["floating point"](0))]
code += format["generate loop"](lines, loop_vars)
return code + [""]
def _generate_dof_code(data, dof_data):
"Generate code for a basis."
code = []
# Compute basisvalues, from evaluatebasis.py.
code += _compute_basisvalues(data, dof_data)
# Tabulate coefficients.
code += _tabulate_coefficients(dof_data)
# Tabulate coefficients for derivatives.
code += _tabulate_dmats(dof_data)
# Compute the derivatives of the basisfunctions on the reference (FIAT) element,
# as the dot product of the new coefficients and basisvalues.
code += _compute_reference_derivatives(data, dof_data)
# Transform derivatives to physical element by multiplication with the transformation matrix.
code += _transform_derivatives(data, dof_data)
code = remove_unused("\n".join(code))
return code
def _tabulate_dmats(dof_data):
"Tabulate the derivatives of the polynomial base"
code = []
# Prefetch formats to speed up code generation.
f_table = format["static const float declaration"]
f_dmats = format["dmats"]
f_component = format["component"]
f_decl = format["declaration"]
f_tensor = format["tabulate tensor"]
f_new_line = format["new line"]
# Get derivative matrices (coefficients) of basis functions, computed by FIAT at compile time.
derivative_matrices = dof_data["dmats"]
code += [format["comment"]("Tables of derivatives of the polynomial base (transpose).")]
# Generate tables for each spatial direction.
for i, dmat in enumerate(derivative_matrices):
# Extract derivatives for current direction (take transpose, FIAT_NEW PolynomialSet.tabulate()).
matrix = numpy.transpose(dmat)
# Get shape and check dimension (This is probably not needed).
shape = numpy.shape(matrix)
if not (shape[0] == shape[1] == dof_data["num_expansion_members"]):
error("Something is wrong with the shape of dmats.")
# Declare varable name for coefficients.
name = f_component(f_dmats(i), [shape[0], shape[1]])
code += [f_decl(f_table, name, f_new_line + f_tensor(matrix)), ""]
return code
def _reset_dmats(shape_dmats, indices):
"Set values in dmats equal to the identity matrix."
f_assign = format["assign"]
f_float = format["floating point"]
i, j = indices
code = [format["comment"]("Resetting dmats values to compute next derivative.")]
dmats_old = format["component"](format["dmats"](""), [i, j])
lines = [f_assign(dmats_old, f_float(0.0))]
lines += [format["if"](i + format["is equal"] + j,
f_assign(dmats_old, f_float(1.0)))]
loop_vars = [(i, 0, shape_dmats[0]), (j, 0, shape_dmats[1])]
code += format["generate loop"](lines, loop_vars)
return code
def _update_dmats(shape_dmats, indices):
"Update values in dmats_old with values in dmats and set values in dmats to zero."
f_assign = format["assign"]
f_component = format["component"]
i, j = indices
code = [format["comment"]("Updating dmats_old with new values and resetting dmats.")]
dmats = f_component(format["dmats"](""), [i, j])
dmats_old = f_component(format["dmats old"], [i, j])
lines = [f_assign(dmats_old, dmats), f_assign(dmats, format["floating point"](0.0))]
loop_vars = [(i, 0, shape_dmats[0]), (j, 0, shape_dmats[1])]
code += format["generate loop"](lines, loop_vars)
return code
def _compute_dmats(num_dmats, shape_dmats, available_indices, deriv_index, _t):
"Compute values of dmats as a matrix product."
f_comment = format["comment"]
s, t, u = available_indices
# Reset dmats_old
code = _reset_dmats(shape_dmats, [t, u])
code += ["", f_comment("Looping derivative order to generate dmats.")]
# Set dmats matrix equal to dmats_old
lines = _update_dmats(shape_dmats, [t, u])
lines += ["", f_comment("Update dmats using an inner product.")]
# Create dmats matrix by multiplication
comb = format["component"](format["derivative combinations"](_t), [deriv_index, s])
for i in range(num_dmats):
lines += _dmats_product(shape_dmats, comb, i, [t, u])
loop_vars = [(s, 0, format["argument derivative order"])]
code += format["generate loop"](lines, loop_vars)
return code
def _dmats_product(shape_dmats, index, i, indices):
"Create product to update dmats."
f_loop = format["generate loop"]
f_component = format["component"]
t, u = indices
tu = t + u
dmats = f_component(format["dmats"](""), [t, u])
dmats_old = f_component(format["dmats old"], [tu, u])
value = format["multiply"]([f_component(format["dmats"](i), [t, tu]), dmats_old])
name = format["iadd"](dmats, value)
lines = f_loop([name], [(tu, 0, shape_dmats[0])])
loop_vars = [(t, 0, shape_dmats[0]), (u, 0, shape_dmats[1])]
code = [format["if"](index + format["is equal"] + str(i),
"\n".join(f_loop(lines, loop_vars)))]
return code
def _compute_reference_derivatives(data, dof_data):
"""Compute derivatives on the reference element by recursively multiply coefficients with
the relevant derivatives of the polynomial base until the requested order of derivatives
has been reached. After this take the dot product with the basisvalues."""
# Prefetch formats to speed up code generation
f_comment = format["comment"]
f_num_derivs = format["num derivatives"]
f_mul = format["mul"]
f_int = format["int"]
f_matrix_index = format["matrix index"]
f_coefficients = format["coefficients"]
# f_dof = format["local dof"]
f_basisvalues = format["basisvalues"]
f_const_double = format["const float declaration"]
f_group = format["grouping"]
f_transform = format["transform"]
f_double = format["float declaration"]
f_component = format["component"]
f_tmp = format["tmp ref value"]
f_dmats = format["dmats"]
f_dmats_old = format["dmats old"]
f_assign = format["assign"]
f_decl = format["declaration"]
f_iadd = format["iadd"]
f_add = format["add"]
f_tensor = format["tabulate tensor"]
f_new_line = format["new line"]
f_loop = format["generate loop"]
f_derivatives = format["reference derivatives"]
f_array = format["dynamic array"]
f_float = format["floating point"]
f_inv = format["inverse"]
f_detJ = format["det(J)"]
f_inner = format["inner product"]
f_r, f_s, f_t, f_u = format["free indices"]
tdim = data["topological_dimension"]
gdim = data["geometric_dimension"]
max_degree = data["max_degree"]
if tdim == gdim:
_t = ""
_g = ""
else:
_t = "_t"
_g = "_g"
# Get number of components.
num_components = dof_data["num_components"]
# Get shape of derivative matrix (they should all have the same shape) and
# verify that it is a square matrix.
shape_dmats = numpy.shape(dof_data["dmats"][0])
if shape_dmats[0] != shape_dmats[1]:
error("Something is wrong with the dmats:\n%s" % str(dof_data["dmats"]))
code = [f_comment("Compute reference derivatives.")]
# Declare pointer to array that holds derivatives on the FIAT element
code += [f_comment("Declare array of derivatives on FIAT element.")]
# The size of the array of reference derivatives is equal to the number of derivatives
# times the number of components of the basis element
if (num_components == 1):
num_vals = f_num_derivs(_t)
else:
num_vals = f_mul([f_int(num_components), f_num_derivs(_t)])
nds = tdim**max_degree * num_components
code += [format["declaration"](f_double, f_component(f_derivatives, f_int(nds)))]
line = [f_assign(f_component(f_derivatives, f_r), f_float(0.0))]
code += f_loop(line, [(f_r, 0, nds)])
code += [""]
mapping = dof_data["mapping"]
if "piola" in mapping:
# In either of the Piola cases, the value space of the derivatives is the geometric dimension rather than the topological dimension.
code += [f_comment("Declare array of reference derivatives on physical element.")]
_p = "_p"
num_components_p = gdim
nds = tdim**max_degree * gdim
code += [format["declaration"](f_double, f_component(f_derivatives + _p, f_int(nds)))]
line = [f_assign(f_component(f_derivatives + _p, f_r), f_float(0.0))]
code += f_loop(line, [(f_r, 0, nds)])
code += [""]
else:
_p = ""
num_components_p = num_components
# Declare matrix of dmats (which will hold the matrix product of all combinations)
# and dmats_old which is needed in order to perform the matrix product.
value = f_tensor(numpy.eye(shape_dmats[0]))
code += [f_comment("Declare derivative matrix (of polynomial basis).")]
name = f_component(f_dmats(""), [shape_dmats[0], shape_dmats[1]])
code += [f_decl(f_double, name, f_new_line + value), ""]
code += [f_comment("Declare (auxiliary) derivative matrix (of polynomial basis).")]
name = f_component(f_dmats_old, [shape_dmats[0], shape_dmats[1]])
code += [f_decl(f_double, name, f_new_line + value), ""]
# Compute dmats as a recursive matrix product
lines = _compute_dmats(len(dof_data["dmats"]), shape_dmats, [f_s, f_t, f_u], f_r, _t)
# Compute derivatives for all components
lines_c = []
for i in range(num_components):
name = f_component(f_derivatives, f_matrix_index(i, f_r, f_num_derivs(_t)))
coeffs = f_component(f_coefficients(i), f_s)
dmats = f_component(f_dmats(""), [f_s, f_t])
basis = f_component(f_basisvalues, f_t)
lines_c.append(f_iadd(name, f_mul([coeffs, dmats, basis])))
loop_vars_c = [(f_s, 0, shape_dmats[0]), (f_t, 0, shape_dmats[1])]
lines += f_loop(lines_c, loop_vars_c)
# Apply transformation if applicable.
if mapping == "affine":
pass
elif mapping == "contravariant piola":
lines += ["", f_comment
("Using contravariant Piola transform to map values back to the physical element.")]
# Get temporary values before mapping.
lines += [f_const_double(f_tmp(i),
f_component(f_derivatives, f_matrix_index(i, f_r, f_num_derivs(_t)))) for i in range(num_components)]
# Create names for inner product.
basis_col = [f_tmp(j) for j in range(tdim)]
for i in range(num_components_p):
# Create Jacobian.
jacobian_row = [f_transform("J", i, j, gdim, tdim, None) for j in range(tdim)]
# Create inner product and multiply by inverse of Jacobian.
inner = [f_mul([jacobian_row[j], basis_col[j]]) for j in range(tdim)]
sum_ = f_group(f_add(inner))
value = f_mul([f_inv(f_detJ(None)), sum_])
name = f_component(f_derivatives + _p, f_matrix_index(i, f_r, f_num_derivs(_t)))
lines += [f_assign(name, value)]
elif mapping == "covariant piola":
lines += ["", f_comment
("Using covariant Piola transform to map values back to the physical element")]
# Get temporary values before mapping.
lines += [f_const_double(f_tmp(i),
f_component(f_derivatives, f_matrix_index(i, f_r, f_num_derivs(_t)))) for i in range(num_components)]
# Create names for inner product.
basis_col = [f_tmp(j) for j in range(tdim)]
for i in range(num_components_p):
# Create inverse of Jacobian.
inv_jacobian_column = [f_transform("JINV", j, i, tdim, gdim, None) for j in range(tdim)]
# Create inner product of basis and inverse of Jacobian.
inner = [f_mul([inv_jacobian_column[j], basis_col[j]]) for j in range(tdim)]
value = f_group(f_add(inner))
name = f_component(f_derivatives + _p, f_matrix_index(i, f_r, f_num_derivs(_t)))
lines += [f_assign(name, value)]
elif mapping == "double covariant piola":
code += ["", f_comment("Using double covariant Piola transform to map values back to the physical element")]
lines += [f_const_double(f_tmp(i),
f_component(f_derivatives,
f_matrix_index(i, f_r, f_num_derivs(_t))))
for i in range(num_components)]
basis_col = [f_tmp(j) for j in range(num_components)]
for p in range(num_components):
# unflatten the indices
i = p // tdim
l = p % tdim
# g_il = K_ji G_jk K_kl
value = f_group(f_inner(
[f_inner([f_transform("JINV", j, i, tdim, gdim, None)
for j in range(tdim)],
[basis_col[j * tdim + k] for j in range(tdim)])
for k in range(tdim)],
[f_transform("JINV", k, l, tdim, gdim, None)
for k in range(tdim)]))
name = f_component(f_derivatives + _p, f_matrix_index(p, f_r, f_num_derivs(_t)))
lines += [f_assign(name, value)]
elif mapping == "double contravariant piola":
code += ["", f_comment("Using double contravariant Piola transform to map values back to the physical element.")]
lines += [f_const_double(
f_tmp(i),
f_component(f_derivatives,
f_matrix_index(i, f_r, f_num_derivs(_t))))
for i in range(num_components)]
basis_col = [f_tmp(j) for j in range(num_components)]
for p in range(num_components):
# unflatten the indices
i = p // tdim
l = p % tdim
# g_il = (det J)^(-2) Jij G_jk Jlk
value = f_group(f_inner(
[f_inner([f_transform("J", i, j, tdim, gdim, None)
for j in range(tdim)],
[basis_col[j * tdim + k] for j in range(tdim)])
for k in range(tdim)],
[f_transform("J", l, k, tdim, gdim, None)
for k in range(tdim)]))
value = f_mul([f_inv(f_detJ(None)), f_inv(f_detJ(None)), value])
name = f_component(f_derivatives+_p,
f_matrix_index(p, f_r, f_num_derivs(_t)))
lines += [f_assign(name, value)]
else:
error("Unknown mapping: %s" % mapping)
# Generate loop over number of derivatives.
# Loop all derivatives and compute value of the derivative as:
# deriv_on_ref[r] = coeff[dof][s]*dmat[s][t]*basis[t]
code += [f_comment("Loop possible derivatives.")]
loop_vars = [(f_r, 0, f_num_derivs(_t))]
code += f_loop(lines, loop_vars)
return code + [""]
def _transform_derivatives(data, dof_data):
"""Transform derivatives back to the physical element by applying the
transformation matrix."""
# Prefetch formats to speed up code generation.
f_loop = format["generate loop"]
f_num_derivs = format["num derivatives"]
f_derivatives = format["reference derivatives"]
f_values = format["argument values"]
f_mul = format["mul"]
f_iadd = format["iadd"]
f_component = format["component"]
f_transform = format["transform matrix"]
f_r, f_s = format["free indices"][:2]
f_index = format["matrix index"]
if data["topological_dimension"] == data["geometric_dimension"]:
_t = ""
_g = ""
else:
_t = "_t"
_g = "_g"
# Get number of components and offset.
num_components = dof_data["num_components"]
reference_offset = dof_data["reference_offset"]
physical_offset = dof_data["physical_offset"]
offset = reference_offset # physical_offset # FIXME: Should be physical offset but that breaks tests
mapping = dof_data["mapping"]
if "piola" in mapping:
# In either of the Piola cases, the value space of the derivatives is the geometric dimension rather than the topological dimension.
_p = "_p"
num_components_p = data["geometric_dimension"]
else:
_p = ""
num_components_p = num_components
code = [format["comment"]("Transform derivatives back to physical element")]
lines = []
for i in range(num_components_p):
access_name = f_index(offset + i, f_r, f_num_derivs(_g))
name = f_component(f_values, access_name)
access_val = f_index(i, f_s, f_num_derivs(_t))
value = f_mul([f_component(f_transform, [f_r, f_s]), f_component(f_derivatives + _p, access_val)])
lines += [f_iadd(name, value)]
loop_vars = [(f_r, 0, f_num_derivs(_g)), (f_s, 0, f_num_derivs(_t))]
code += f_loop(lines, loop_vars)
return code
|