This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/evaluatebasisderivatives.py is in python-ffc 2016.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
# -*- coding: utf-8 -*-

# Copyright (C) 2007-2016 Kristian B. Oelgaard
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg 2013
# Modified by Lizao Li 2015, 2016

"""Code generation for evaluation of derivatives of finite element
basis values.  This module generates code which is more or less a C++
representation of the code found in FIAT_NEW."""

# Python modules
import math
import numpy
from six import string_types

# FFC modules
from ffc.log import error
from ffc.evaluatebasis import _compute_basisvalues, _tabulate_coefficients
from ffc.cpp import remove_unused, indent, format


def _evaluate_basis_derivatives_all(data):
    """Like evaluate_basis, but return the values of all basis
    functions (dofs)."""

    if isinstance(data, string_types):
        return format["exception"]("evaluate_basis_derivatives_all: %s" % data)

    # Prefetch formats.
    f_r, f_s = format["free indices"][:2]
    f_assign = format["assign"]
    f_loop = format["generate loop"]
    f_array = format["dynamic array"]
    f_dof_vals = format["dof values"]
    f_comment = format["comment"]
    f_derivs = format["call basis_derivatives"]
    f_values = format["argument values"]
    f_int = format["int"]
    f_num_derivs = format["num derivatives"]
    f_double = format["float declaration"]
    f_component = format["component"]
    f_mul = format["mul"]
    f_float = format["floating point"]
    f_index = format["matrix index"]
    f_del_array = format["delete dynamic array"]

    # Initialise return code
    code = []

    # FIXME: KBO: Figure out which return format to use, either:
    # [dN0[0]/dx, dN0[0]/dy, dN0[1]/dx, dN0[1]/dy, dN1[0]/dx,
    # dN1[0]/dy, dN1[1]/dx, dN1[1]/dy, ...]
    # or
    # [dN0[0]/dx, dN1[0]/dx, ..., dN0[1]/dx, dN1[1]/dx, ...,
    # dN0[0]/dy, dN1[0]/dy, ..., dN0[1]/dy, dN1[1]/dy, ...]
    # or
    # [dN0[0]/dx, dN0[1]/dx, ..., dN1[0]/dx, dN1[1]/dx, ...,
    # dN0[0]/dy, dN0[1]/dy, ..., dN1[0]/dy, dN1[1]/dy, ...]
    # for vector (tensor elements), currently returning option 1.

    # FIXME: KBO: For now, just call evaluate_basis_derivatives and
    # map values accordingly, this will keep the amount of code at a
    # minimum. If it turns out that speed is an issue (overhead from
    # calling evaluate_basis), we can easily generate all the code.

    # Get total value shape and space dimension for entire element
    # (possibly mixed).
    physical_value_size = data["physical_value_size"]
    space_dimension = data["space_dimension"]
    max_degree = data["max_degree"]

    # Special case where space dimension is one (constant elements).
    if space_dimension == 1:
        code += [f_comment("Element is constant, calling evaluate_basis_derivatives.")]
        code += [f_derivs(f_int(0), f_values)]
        return "\n".join(code)

    # Compute number of derivatives.
    if data["topological_dimension"] == data["geometric_dimension"]:
        _g = ""
    else:
        _g = "_g"

    # If n == 0, call evaluate_basis.
    code += [format["comment"]("Call evaluate_basis_all if order of derivatives is equal to zero.")]
    cond = format["argument derivative order"] + format["is equal"] + format["int"](0)
    val = [format["call basis_all"]]
    val += [format["return"]("")]
    code += [format["if"](cond, indent("\n".join(val), 2))]

    code += _compute_num_derivatives(data["geometric_dimension"], _g)

    if (physical_value_size == 1):
        num_vals = f_num_derivs(_g)
    else:
        num_vals = f_mul([f_int(physical_value_size), f_num_derivs(_g)])

    # Reset values.
    code += ["", f_comment("Set values equal to zero.")]
    name = f_component(f_values, f_index(f_r, f_s, num_vals))
    lines_s = [f_assign(name, f_float(0.0))]
    loop_s = [(f_s, 0, num_vals)]
    lines_r = f_loop(lines_s, loop_s)
    loop_r = [(f_r, 0, space_dimension)]
    code += f_loop(lines_r, loop_r)

    # If n > max_degree, return zeros.
    code += ["", format["comment"]("If order of derivatives is greater than the maximum polynomial degree, return zeros.")]
    cond = format["argument derivative order"] + format["greater than"] + f_int(max_degree)
    val = format["return"]("")
    code += [format["if"](cond, indent(val, 2))]

    # Declare helper value to hold single dof values and reset.
    code += [f_comment("Helper variable to hold values of a single dof.")]
    nds = data["geometric_dimension"]**max_degree * physical_value_size
    code += [format["declaration"](f_double, f_component(f_dof_vals, f_int(nds)))]
    line = [f_assign(f_component(f_dof_vals, f_r), f_float(0.0))]
    code += f_loop(line, [(f_r, 0, nds)])

    # Create loop over dofs that calls evaluate_basis_derivatives for a single dof and
    # inserts the values into the global array.
    code += ["", f_comment("Loop dofs and call evaluate_basis_derivatives.")]
    name = f_component(f_values, f_index(f_r, f_s, num_vals))
    value = f_component(f_dof_vals, f_s)
    lines_s = [f_assign(name, value)]
    loop_s = [(f_s, 0, num_vals)]

    lines_r = [f_derivs(f_r, f_dof_vals)]
    lines_r += f_loop(lines_s, loop_s)
    loop_r = [(f_r, 0, space_dimension)]
    code += f_loop(lines_r, loop_r)

    # Generate bode (no need to remove unused).
    return "\n".join(code)


def _evaluate_basis_derivatives(data):
    """Evaluate the derivatives of an element basisfunction at a point. The values are
    computed as in FIAT as the matrix product of the coefficients (computed at compile time),
    basisvalues which are dependent on the coordinate and thus have to be computed at
    run time and combinations (depending on the order of derivative) of dmats
    tables which hold the derivatives of the expansion coefficients."""

    if isinstance(data, string_types):
        return format["exception"]("evaluate_basis_derivatives: %s" % data)

    # Initialise return code.
    code = []

    # Get the element cell domain, geometric and topological dimension.
    element_cellname = data["cellname"]
    gdim = data["geometric_dimension"]
    tdim = data["topological_dimension"]
    max_degree = data["max_degree"]

    # Compute number of derivatives that has to be computed, and
    # declare an array to hold the values of the derivatives on the
    # reference element.
    code += [""]
    if tdim == gdim:
        _t = ""
        _g = ""
        code += _compute_num_derivatives(tdim, "")

        # Reset all values.
        code += _reset_values(data, _g)

        # Handle values of argument 'n'.
        code += _handle_degree(max_degree)

        # If max_degree is zero, return code (to avoid declarations such as
        # combinations[1][0]) and because there's nothing to compute.)
        if max_degree == 0:
            return remove_unused("\n".join(code))

        # Generate geo code.
        code += _geometry_related_code(data, tdim, gdim, element_cellname)

        # Generate all possible combinations of derivatives.
        code += _generate_combinations(tdim, "", max_degree)
    else:
        _t = "_t"
        _g = "_g"
        code += _compute_num_derivatives(tdim, _t)
        code += [""]
        code += _compute_num_derivatives(gdim, _g)

        # Reset all values.
        code += _reset_values(data, _g)

        # Handle values of argument 'n'.
        code += _handle_degree(max_degree)

        # If max_degree is zero, return code (to avoid declarations such as
        # combinations[1][0]) and because there's nothing to compute.)
        if max_degree == 0:
            return remove_unused("\n".join(code))

        # Generate geo code.
        code += _geometry_related_code(data, tdim, gdim, element_cellname)

        # Generate all possible combinations of derivatives.
        code += _generate_combinations(tdim, _t, max_degree)
        code += _generate_combinations(gdim, _g, max_degree)

    # Generate the transformation matrix.
    code += _generate_transform(element_cellname, gdim, tdim, max_degree)

    # Create code for all basis values (dofs).
    dof_cases = []
    for dof_data in data["dofs_data"]:
        dof_cases.append(_generate_dof_code(data, dof_data))
    code += [format["switch"](format["argument basis num"], dof_cases)]
    code = remove_unused("\n".join(code))
    # code = "\n".join(code)
    return code


def _handle_degree(max_degree):
    """Check value of argument 'n' against the maximum polynomial degree of the
    finite element. If user ask for n>max_degree return an appropriate number
    of zeros in the 'values' array. If n==0, simply direct call to
    evaluate_basis."""

    code = []

    # If n == 0, call evaluate_basis.
    code += [format["comment"]("Call evaluate_basis if order of derivatives is equal to zero.")]
    cond = format["argument derivative order"] + format["is equal"] + format["int"](0)
    val = [format["call basis"](format["argument dof num"], format["argument values"])]
    val += [format["return"]("")]
    code += [format["if"](cond, indent("\n".join(val), 2))]

    # If n > max_degree, derivatives are always zero. Since the appropriate number of
    # zeros have already been inserted into the 'values' array simply return.
    code += [format["comment"]("If order of derivatives is greater than the maximum polynomial degree, return zeros.")]
    cond = format["argument derivative order"] + format["greater than"] + format["int"](max_degree)
    val = format["return"]("")
    code += [format["if"](cond, val)]

    return code


def _geometry_related_code(data, tdim, gdim, element_cellname):
    code = []
    # Get code snippets for Jacobian, inverse of Jacobian and mapping of
    # coordinates from physical element to the FIAT reference element.
    code += [format["compute_jacobian"](tdim, gdim)]
    code += [format["compute_jacobian_inverse"](tdim, gdim)]
    if data["needs_oriented"]:
        code += [format["orientation"](tdim, gdim)]
    code += ["", format["fiat coordinate map"](element_cellname, gdim)]
    return code


def _compute_num_derivatives(dimension, suffix=""):
    """Computes the number of derivatives of order 'n' as dimension()^n.

    Dimension will be the element topological dimension for the number
    of derivatives in local coordinates, and the geometric dimension
    for the number of derivatives in phyisical coordinates.
    """
    # Prefetch formats.
    f_int = format["int"]
    f_num_derivs = format["num derivatives"](suffix)

    # Use loop to compute power since using std::pow() result in an
    # ambiguous call.
    code = [format["comment"]("Compute number of derivatives.")]
    code.append(format["declaration"](format["uint declaration"],
                                      f_num_derivs, f_int(1)))
    loop_vars = [(format["free indices"][0], 0,
                  format["argument derivative order"])]
    lines = [format["imul"](f_num_derivs, f_int(dimension))]
    code += format["generate loop"](lines, loop_vars)

    return code


def _generate_combinations(dimension, suffix, max_degree):
    "Generate all possible combinations of derivatives of order 'n'."

    nds = dimension**max_degree

    # Use code from format.
    code = ["", format["combinations"]
            % {"combinations": format["derivative combinations"](suffix),
               "dimension-1": dimension - 1,
               "num_derivatives": format["num derivatives"](suffix),
               "n": format["argument derivative order"],
               "max_num_derivatives":format["int"](nds),
               "max_degree":format["int"](max_degree)}]
    return code


def _generate_transform(element_cellname, gdim, tdim, max_degree):
    """Generate the transformation matrix, which is used to transform
    derivatives from reference element back to the physical element."""

    max_g_d = gdim**max_degree
    max_t_d = tdim**max_degree
    # Generate code to construct the inverse of the Jacobian
    if (element_cellname in ["interval", "triangle", "tetrahedron"]):
        code = ["", format["transform snippet"][element_cellname][gdim]
                % {"transform": format["transform matrix"],
                   "num_derivatives": format["num derivatives"](""),
                   "n": format["argument derivative order"],
                   "combinations": format["derivative combinations"](""),
                   "K":format["transform Jinv"],
                   "max_g_deriv":max_g_d, "max_t_deriv":max_t_d}]
    else:
        error("Cannot generate transform for shape: %s" % element_cellname)

    return code


def _reset_values(data, suffix):
    "Reset all components of the 'values' array as it is a pointer to an array."

    # Prefetch formats.
    f_assign = format["assign"]
    f_r = format["free indices"][0]

    code = ["", format["comment"]("Reset values. Assuming that values is always an array.")]

    # Get value shape and reset values. This should also work for TensorElement,
    # scalar are empty tuples, therefore (1,) in which case value_shape = 1.
    physical_value_size = data["physical_value_size"]

    # Only multiply by value shape if different from 1.
    if physical_value_size == 1:
        num_vals = format["num derivatives"](suffix)
    else:
        num_vals = format["mul"]([format["int"](physical_value_size), format["num derivatives"](suffix)])
    name = format["component"](format["argument values"], f_r)
    loop_vars = [(f_r, 0, num_vals)]
    lines = [f_assign(name, format["floating point"](0))]
    code += format["generate loop"](lines, loop_vars)

    return code + [""]


def _generate_dof_code(data, dof_data):
    "Generate code for a basis."

    code = []

    # Compute basisvalues, from evaluatebasis.py.
    code += _compute_basisvalues(data, dof_data)

    # Tabulate coefficients.
    code += _tabulate_coefficients(dof_data)

    # Tabulate coefficients for derivatives.
    code += _tabulate_dmats(dof_data)

    # Compute the derivatives of the basisfunctions on the reference (FIAT) element,
    # as the dot product of the new coefficients and basisvalues.
    code += _compute_reference_derivatives(data, dof_data)

    # Transform derivatives to physical element by multiplication with the transformation matrix.
    code += _transform_derivatives(data, dof_data)

    code = remove_unused("\n".join(code))

    return code


def _tabulate_dmats(dof_data):
    "Tabulate the derivatives of the polynomial base"

    code = []

    # Prefetch formats to speed up code generation.
    f_table = format["static const float declaration"]
    f_dmats = format["dmats"]
    f_component = format["component"]
    f_decl = format["declaration"]
    f_tensor = format["tabulate tensor"]
    f_new_line = format["new line"]

    # Get derivative matrices (coefficients) of basis functions, computed by FIAT at compile time.
    derivative_matrices = dof_data["dmats"]

    code += [format["comment"]("Tables of derivatives of the polynomial base (transpose).")]

    # Generate tables for each spatial direction.
    for i, dmat in enumerate(derivative_matrices):

        # Extract derivatives for current direction (take transpose, FIAT_NEW PolynomialSet.tabulate()).
        matrix = numpy.transpose(dmat)

        # Get shape and check dimension (This is probably not needed).
        shape = numpy.shape(matrix)
        if not (shape[0] == shape[1] == dof_data["num_expansion_members"]):
            error("Something is wrong with the shape of dmats.")

        # Declare varable name for coefficients.
        name = f_component(f_dmats(i), [shape[0], shape[1]])
        code += [f_decl(f_table, name, f_new_line + f_tensor(matrix)), ""]

    return code


def _reset_dmats(shape_dmats, indices):
    "Set values in dmats equal to the identity matrix."
    f_assign = format["assign"]
    f_float = format["floating point"]
    i, j = indices

    code = [format["comment"]("Resetting dmats values to compute next derivative.")]
    dmats_old = format["component"](format["dmats"](""), [i, j])
    lines = [f_assign(dmats_old, f_float(0.0))]
    lines += [format["if"](i + format["is equal"] + j,
              f_assign(dmats_old, f_float(1.0)))]
    loop_vars = [(i, 0, shape_dmats[0]), (j, 0, shape_dmats[1])]
    code += format["generate loop"](lines, loop_vars)
    return code


def _update_dmats(shape_dmats, indices):
    "Update values in dmats_old with values in dmats and set values in dmats to zero."
    f_assign = format["assign"]
    f_component = format["component"]
    i, j = indices

    code = [format["comment"]("Updating dmats_old with new values and resetting dmats.")]
    dmats = f_component(format["dmats"](""), [i, j])
    dmats_old = f_component(format["dmats old"], [i, j])
    lines = [f_assign(dmats_old, dmats), f_assign(dmats, format["floating point"](0.0))]
    loop_vars = [(i, 0, shape_dmats[0]), (j, 0, shape_dmats[1])]
    code += format["generate loop"](lines, loop_vars)
    return code


def _compute_dmats(num_dmats, shape_dmats, available_indices, deriv_index, _t):
    "Compute values of dmats as a matrix product."
    f_comment = format["comment"]
    s, t, u = available_indices

    # Reset dmats_old
    code = _reset_dmats(shape_dmats, [t, u])
    code += ["", f_comment("Looping derivative order to generate dmats.")]

    # Set dmats matrix equal to dmats_old
    lines = _update_dmats(shape_dmats, [t, u])

    lines += ["", f_comment("Update dmats using an inner product.")]

    # Create dmats matrix by multiplication
    comb = format["component"](format["derivative combinations"](_t), [deriv_index, s])
    for i in range(num_dmats):
        lines += _dmats_product(shape_dmats, comb, i, [t, u])

    loop_vars = [(s, 0, format["argument derivative order"])]
    code += format["generate loop"](lines, loop_vars)

    return code


def _dmats_product(shape_dmats, index, i, indices):
    "Create product to update dmats."
    f_loop = format["generate loop"]
    f_component = format["component"]
    t, u = indices
    tu = t + u

    dmats = f_component(format["dmats"](""), [t, u])
    dmats_old = f_component(format["dmats old"], [tu, u])
    value = format["multiply"]([f_component(format["dmats"](i), [t, tu]), dmats_old])
    name = format["iadd"](dmats, value)
    lines = f_loop([name], [(tu, 0, shape_dmats[0])])
    loop_vars = [(t, 0, shape_dmats[0]), (u, 0, shape_dmats[1])]
    code = [format["if"](index + format["is equal"] + str(i),
            "\n".join(f_loop(lines, loop_vars)))]
    return code


def _compute_reference_derivatives(data, dof_data):
    """Compute derivatives on the reference element by recursively multiply coefficients with
    the relevant derivatives of the polynomial base until the requested order of derivatives
    has been reached. After this take the dot product with the basisvalues."""

    # Prefetch formats to speed up code generation
    f_comment = format["comment"]
    f_num_derivs = format["num derivatives"]
    f_mul = format["mul"]
    f_int = format["int"]
    f_matrix_index = format["matrix index"]
    f_coefficients = format["coefficients"]
#    f_dof           = format["local dof"]
    f_basisvalues = format["basisvalues"]
    f_const_double = format["const float declaration"]
    f_group = format["grouping"]
    f_transform = format["transform"]
    f_double = format["float declaration"]
    f_component = format["component"]
    f_tmp = format["tmp ref value"]
    f_dmats = format["dmats"]
    f_dmats_old = format["dmats old"]
    f_assign = format["assign"]
    f_decl = format["declaration"]
    f_iadd = format["iadd"]
    f_add = format["add"]
    f_tensor = format["tabulate tensor"]
    f_new_line = format["new line"]
    f_loop = format["generate loop"]
    f_derivatives = format["reference derivatives"]
    f_array = format["dynamic array"]
    f_float = format["floating point"]
    f_inv = format["inverse"]
    f_detJ = format["det(J)"]
    f_inner = format["inner product"]

    f_r, f_s, f_t, f_u = format["free indices"]

    tdim = data["topological_dimension"]
    gdim = data["geometric_dimension"]
    max_degree = data["max_degree"]

    if tdim == gdim:
        _t = ""
        _g = ""
    else:
        _t = "_t"
        _g = "_g"

    # Get number of components.
    num_components = dof_data["num_components"]

    # Get shape of derivative matrix (they should all have the same shape) and
    # verify that it is a square matrix.
    shape_dmats = numpy.shape(dof_data["dmats"][0])
    if shape_dmats[0] != shape_dmats[1]:
        error("Something is wrong with the dmats:\n%s" % str(dof_data["dmats"]))

    code = [f_comment("Compute reference derivatives.")]

    # Declare pointer to array that holds derivatives on the FIAT element
    code += [f_comment("Declare array of derivatives on FIAT element.")]
    # The size of the array of reference derivatives is equal to the number of derivatives
    # times the number of components of the basis element
    if (num_components == 1):
        num_vals = f_num_derivs(_t)
    else:
        num_vals = f_mul([f_int(num_components), f_num_derivs(_t)])

    nds = tdim**max_degree * num_components
    code += [format["declaration"](f_double, f_component(f_derivatives, f_int(nds)))]
    line = [f_assign(f_component(f_derivatives, f_r), f_float(0.0))]
    code += f_loop(line, [(f_r, 0, nds)])
    code += [""]

    mapping = dof_data["mapping"]
    if "piola" in mapping:
        # In either of the Piola cases, the value space of the derivatives is the geometric dimension rather than the topological dimension.
        code += [f_comment("Declare array of reference derivatives on physical element.")]

        _p = "_p"
        num_components_p = gdim

        nds = tdim**max_degree * gdim
        code += [format["declaration"](f_double, f_component(f_derivatives + _p, f_int(nds)))]
        line = [f_assign(f_component(f_derivatives + _p, f_r), f_float(0.0))]
        code += f_loop(line, [(f_r, 0, nds)])
        code += [""]
    else:
        _p = ""
        num_components_p = num_components

    # Declare matrix of dmats (which will hold the matrix product of all combinations)
    # and dmats_old which is needed in order to perform the matrix product.
    value = f_tensor(numpy.eye(shape_dmats[0]))
    code += [f_comment("Declare derivative matrix (of polynomial basis).")]
    name = f_component(f_dmats(""), [shape_dmats[0], shape_dmats[1]])
    code += [f_decl(f_double, name, f_new_line + value), ""]
    code += [f_comment("Declare (auxiliary) derivative matrix (of polynomial basis).")]
    name = f_component(f_dmats_old, [shape_dmats[0], shape_dmats[1]])
    code += [f_decl(f_double, name, f_new_line + value), ""]

    # Compute dmats as a recursive matrix product
    lines = _compute_dmats(len(dof_data["dmats"]), shape_dmats, [f_s, f_t, f_u], f_r, _t)

    # Compute derivatives for all components
    lines_c = []
    for i in range(num_components):
        name = f_component(f_derivatives, f_matrix_index(i, f_r, f_num_derivs(_t)))
        coeffs = f_component(f_coefficients(i), f_s)
        dmats = f_component(f_dmats(""), [f_s, f_t])
        basis = f_component(f_basisvalues, f_t)
        lines_c.append(f_iadd(name, f_mul([coeffs, dmats, basis])))
    loop_vars_c = [(f_s, 0, shape_dmats[0]), (f_t, 0, shape_dmats[1])]
    lines += f_loop(lines_c, loop_vars_c)

    # Apply transformation if applicable.
    if mapping == "affine":
        pass
    elif mapping == "contravariant piola":
        lines += ["", f_comment
                  ("Using contravariant Piola transform to map values back to the physical element.")]
        # Get temporary values before mapping.
        lines += [f_const_double(f_tmp(i),
                  f_component(f_derivatives, f_matrix_index(i, f_r, f_num_derivs(_t)))) for i in range(num_components)]

        # Create names for inner product.
        basis_col = [f_tmp(j) for j in range(tdim)]
        for i in range(num_components_p):
            # Create Jacobian.
            jacobian_row = [f_transform("J", i, j, gdim, tdim, None) for j in range(tdim)]

            # Create inner product and multiply by inverse of Jacobian.
            inner = [f_mul([jacobian_row[j], basis_col[j]]) for j in range(tdim)]
            sum_ = f_group(f_add(inner))
            value = f_mul([f_inv(f_detJ(None)), sum_])
            name = f_component(f_derivatives + _p, f_matrix_index(i, f_r, f_num_derivs(_t)))
            lines += [f_assign(name, value)]
    elif mapping == "covariant piola":
        lines += ["", f_comment
                  ("Using covariant Piola transform to map values back to the physical element")]
        # Get temporary values before mapping.
        lines += [f_const_double(f_tmp(i),
                  f_component(f_derivatives, f_matrix_index(i, f_r, f_num_derivs(_t)))) for i in range(num_components)]
        # Create names for inner product.
        basis_col = [f_tmp(j) for j in range(tdim)]
        for i in range(num_components_p):
            # Create inverse of Jacobian.
            inv_jacobian_column = [f_transform("JINV", j, i, tdim, gdim, None) for j in range(tdim)]

            # Create inner product of basis and inverse of Jacobian.
            inner = [f_mul([inv_jacobian_column[j], basis_col[j]]) for j in range(tdim)]
            value = f_group(f_add(inner))
            name = f_component(f_derivatives + _p, f_matrix_index(i, f_r, f_num_derivs(_t)))
            lines += [f_assign(name, value)]
    elif mapping == "double covariant piola":
        code += ["", f_comment("Using double covariant Piola transform to map values back to the physical element")]
        lines += [f_const_double(f_tmp(i),
                                 f_component(f_derivatives,
                                             f_matrix_index(i, f_r, f_num_derivs(_t))))
                  for i in range(num_components)]
        basis_col = [f_tmp(j) for j in range(num_components)]
        for p in range(num_components):
            # unflatten the indices
            i = p // tdim
            l = p % tdim
            # g_il = K_ji G_jk K_kl
            value = f_group(f_inner(
                [f_inner([f_transform("JINV", j, i, tdim, gdim, None)
                          for j in range(tdim)],
                         [basis_col[j * tdim + k] for j in range(tdim)])
                 for k in range(tdim)],
                [f_transform("JINV", k, l, tdim, gdim, None)
                 for k in range(tdim)]))
            name = f_component(f_derivatives + _p, f_matrix_index(p, f_r, f_num_derivs(_t)))
            lines += [f_assign(name, value)]
    elif mapping == "double contravariant piola":
        code += ["", f_comment("Using double contravariant Piola transform to map values back to the physical element.")]
        lines += [f_const_double(
            f_tmp(i),
            f_component(f_derivatives,
                        f_matrix_index(i, f_r, f_num_derivs(_t))))
                  for i in range(num_components)]
        basis_col = [f_tmp(j) for j in range(num_components)]
        for p in range(num_components):
            # unflatten the indices
            i = p // tdim
            l = p % tdim
            # g_il = (det J)^(-2) Jij G_jk Jlk
            value = f_group(f_inner(
                [f_inner([f_transform("J", i, j, tdim, gdim, None)
                          for j in range(tdim)],
                         [basis_col[j * tdim + k] for j in range(tdim)])
                 for k in range(tdim)],
                [f_transform("J", l, k, tdim, gdim, None)
                 for k in range(tdim)]))
            value = f_mul([f_inv(f_detJ(None)), f_inv(f_detJ(None)), value])
            name = f_component(f_derivatives+_p,
                               f_matrix_index(p, f_r, f_num_derivs(_t)))
            lines += [f_assign(name, value)]
    else:
        error("Unknown mapping: %s" % mapping)

    # Generate loop over number of derivatives.
    # Loop all derivatives and compute value of the derivative as:
    # deriv_on_ref[r] = coeff[dof][s]*dmat[s][t]*basis[t]
    code += [f_comment("Loop possible derivatives.")]
    loop_vars = [(f_r, 0, f_num_derivs(_t))]
    code += f_loop(lines, loop_vars)

    return code + [""]


def _transform_derivatives(data, dof_data):
    """Transform derivatives back to the physical element by applying the
    transformation matrix."""

    # Prefetch formats to speed up code generation.
    f_loop = format["generate loop"]
    f_num_derivs = format["num derivatives"]
    f_derivatives = format["reference derivatives"]
    f_values = format["argument values"]
    f_mul = format["mul"]
    f_iadd = format["iadd"]
    f_component = format["component"]
    f_transform = format["transform matrix"]
    f_r, f_s = format["free indices"][:2]
    f_index = format["matrix index"]

    if data["topological_dimension"] == data["geometric_dimension"]:
        _t = ""
        _g = ""
    else:
        _t = "_t"
        _g = "_g"

    # Get number of components and offset.
    num_components = dof_data["num_components"]
    reference_offset = dof_data["reference_offset"]
    physical_offset = dof_data["physical_offset"]
    offset = reference_offset  # physical_offset # FIXME: Should be physical offset but that breaks tests

    mapping = dof_data["mapping"]
    if "piola" in mapping:
        # In either of the Piola cases, the value space of the derivatives is the geometric dimension rather than the topological dimension.
        _p = "_p"
        num_components_p = data["geometric_dimension"]
    else:
        _p = ""
        num_components_p = num_components

    code = [format["comment"]("Transform derivatives back to physical element")]

    lines = []
    for i in range(num_components_p):
        access_name = f_index(offset + i, f_r, f_num_derivs(_g))
        name = f_component(f_values, access_name)
        access_val = f_index(i, f_s, f_num_derivs(_t))
        value = f_mul([f_component(f_transform, [f_r, f_s]), f_component(f_derivatives + _p, access_val)])
        lines += [f_iadd(name, value)]

    loop_vars = [(f_r, 0, f_num_derivs(_g)), (f_s, 0, f_num_derivs(_t))]
    code += f_loop(lines, loop_vars)
    return code