This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/representation.py is in python-ffc 2016.2.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
# -*- coding: utf-8 -*-
"""
Compiler stage 2: Code representation
-------------------------------------

This module computes intermediate representations of forms,
elements and dofmaps. For each UFC function, we extract the
data needed for code generation at a later stage.

The representation should conform strictly to the naming and
order of functions in UFC. Thus, for code generation of the
function "foo", one should only need to use the data stored
in the intermediate representation under the key "foo".
"""

# Copyright (C) 2009-2016 Anders Logg, Martin Sandve Alnæs, Marie E. Rognes,
# Kristian B. Oelgaard, and others
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.

# Python modules
from itertools import chain
import numpy

# Import UFL
import ufl

# FFC modules
from ffc.utils import compute_permutations, product
from ffc.log import info, error, begin, end, debug_ir, warning
from ffc.fiatinterface import create_element, reference_cell
from ffc.mixedelement import MixedElement
from ffc.enrichedelement import EnrichedElement, SpaceOfReals
from ffc.fiatinterface import HDivTrace
from ffc.quadratureelement import QuadratureElement
from ffc.cpp import set_float_formatting
from ffc.cpp import make_classname, make_integral_classname


# List of supported integral types
ufc_integral_types = ("cell",
                      "exterior_facet",
                      "interior_facet",
                      "vertex",
                      "custom",
                      "cutcell",
                      "interface",
                      "overlap")


def pick_representation(representation):
    "Return one of the specialized code generation modules from a representation string."
    if representation == "quadrature":
        from ffc import quadrature as r
    elif representation == "tensor":
        from ffc import tensor as r
    elif representation == "uflacs":
        from ffc import uflacs as r
    else:
        error("Unknown representation: %s" % str(representation))
    return r


def make_finite_element_jit_classname(ufl_element, parameters):
    from ffc.jitcompiler import compute_jit_prefix  # FIXME circular file dependency
    kind, prefix = compute_jit_prefix(ufl_element, parameters)
    return make_classname(prefix, "finite_element", "main")


def make_dofmap_jit_classname(ufl_element, parameters):
    from ffc.jitcompiler import compute_jit_prefix  # FIXME circular file dependency
    kind, prefix = compute_jit_prefix(ufl_element, parameters)
    return make_classname(prefix, "dofmap", "main")


def make_coordinate_mapping_jit_classname(ufl_mesh, parameters):
    from ffc.jitcompiler import compute_jit_prefix  # FIXME circular file dependency
    kind, prefix = compute_jit_prefix(ufl_mesh, parameters, kind="coordinate_mapping")
    return make_classname(prefix, "coordinate_mapping", "main")


def make_all_element_classnames(prefix, elements, coordinate_elements,
                                element_numbers, parameters, jit):
    if jit:
        # Make unique classnames to match separately jit-compiled
        # module
        classnames = {
            "finite_element": {
                e: make_finite_element_jit_classname(e, parameters)
                for e in elements },
            "dofmap": {
                e: make_dofmap_jit_classname(e, parameters)
                for e in elements },
            "coordinate_mapping": {
                e: make_coordinate_mapping_jit_classname(e, parameters)
                for e in coordinate_elements },
            }
    else:
        # Make unique classnames only within this module (using a
        # shared prefix and element numbers that are only unique
        # within this module)
        classnames = {
            "finite_element": {
                e: make_classname(prefix, "finite_element", element_numbers[e])
                for e in elements },
            "dofmap": {
                e: make_classname(prefix, "dofmap", element_numbers[e])
                for e in elements },
            "coordinate_mapping": {
                e: make_classname(prefix, "coordinate_mapping", element_numbers[e])
                for e in coordinate_elements },
            }
    return classnames


def compute_ir(analysis, prefix, parameters, jit=False):
    "Compute intermediate representation."

    begin("Compiler stage 2: Computing intermediate representation")

    # Set code generation parameters (this is not actually a 'formatting'
    # parameter, used for table value clamping as well)
    set_float_formatting(int(parameters["precision"]))

    # Extract data from analysis
    form_datas, elements, element_numbers, coordinate_elements = analysis

    # Construct classnames for all element objects and coordinate mappings
    classnames = make_all_element_classnames(prefix, elements,
                                             coordinate_elements,
                                             element_numbers,
                                             parameters, jit)

    # Skip processing elements if jitting forms
    # NB! it's important that this happens _after_ the element numbers and classnames
    # above have been created.
    if jit and form_datas:
        # While we may get multiple forms during command line action,
        # not so during jit
        assert len(form_datas) == 1, "Expecting only one form data instance during jit."
        # Drop some processing
        elements = []
        coordinate_elements = []
    elif jit and coordinate_elements:
        # While we may get multiple coordinate elements during command
        # line action, or during form jit, not so during coordinate
        # mapping jit
        assert len(coordinate_elements) == 1, "Expecting only one form data instance during jit."
        # Drop some processing
        elements = []
    elif jit and elements:
        # Assuming a topological sorting of the elements,
        # only process the last (main) element from here on
        elements = [elements[-1]]

    # Compute representation of elements
    info("Computing representation of %d elements" % len(elements))
    ir_elements = [_compute_element_ir(e, element_numbers, classnames, jit)
                   for e in elements]

    # Compute representation of dofmaps
    info("Computing representation of %d dofmaps" % len(elements))
    ir_dofmaps = [_compute_dofmap_ir(e, element_numbers, classnames, jit)
                  for e in elements]

    # Compute representation of coordinate mappings
    info("Computing representation of %d coordinate mappings" % len(coordinate_elements))
    ir_coordinate_mappings = [_compute_coordinate_mapping_ir(e, element_numbers, classnames, jit)
                              for e in coordinate_elements]

    # Compute and flatten representation of integrals
    info("Computing representation of integrals")
    irs = [_compute_integral_ir(fd, form_id, prefix, element_numbers, classnames, parameters, jit)
           for (form_id, fd) in enumerate(form_datas)]
    ir_integrals = [ir for ir in chain(*irs) if ir is not None]

    # Compute representation of forms
    info("Computing representation of forms")
    ir_forms = [_compute_form_ir(fd, form_id, prefix, element_numbers, classnames, parameters, jit)
                for (form_id, fd) in enumerate(form_datas)]

    end()

    return ir_elements, ir_dofmaps, ir_coordinate_mappings, ir_integrals, ir_forms


def _compute_element_ir(ufl_element, element_numbers, classnames, jit):
    "Compute intermediate representation of element."

    # Create FIAT element
    fiat_element = create_element(ufl_element)
    cell = ufl_element.cell()
    cellname = cell.cellname()

    # Store id
    ir = {"id": element_numbers[ufl_element]}
    ir["classname"] = classnames["finite_element"][ufl_element]

    # Remember jit status
    ir["jit"] = jit

    # Compute data for each function
    ir["signature"] = repr(ufl_element)
    ir["cell_shape"] = cellname
    ir["topological_dimension"] = cell.topological_dimension()
    ir["geometric_dimension"] = cell.geometric_dimension()
    ir["space_dimension"] = fiat_element.space_dimension()
    ir["value_shape"] = ufl_element.value_shape()
    ir["reference_value_shape"] = ufl_element.reference_value_shape()

    ir["degree"] = ufl_element.degree()
    ir["family"] = ufl_element.family()

    ir["evaluate_basis"] = _evaluate_basis(ufl_element, fiat_element)
    ir["evaluate_dof"] = _evaluate_dof(ufl_element, fiat_element)
    ir["interpolate_vertex_values"] = _interpolate_vertex_values(ufl_element,
                                                                 fiat_element)
    ir["tabulate_dof_coordinates"] = _tabulate_dof_coordinates(ufl_element,
                                                               fiat_element)
    ir["num_sub_elements"] = ufl_element.num_sub_elements()
    ir["create_sub_element"] = [classnames["finite_element"][e]
                                for e in ufl_element.sub_elements()]

    # debug_ir(ir, "finite_element")

    return ir


def _compute_dofmap_ir(ufl_element, element_numbers, classnames, jit=False):
    "Compute intermediate representation of dofmap."

    # Create FIAT element
    fiat_element = create_element(ufl_element)
    cell = ufl_element.cell()
    cellname = cell.cellname()

    # Precompute repeatedly used items
    num_dofs_per_entity = _num_dofs_per_entity(fiat_element)
    entity_dofs = fiat_element.entity_dofs()
    facet_dofs = _tabulate_facet_dofs(fiat_element, cell)
    entity_closure_dofs, num_dofs_per_entity_closure = \
        _tabulate_entity_closure_dofs(fiat_element, cell)
    
    
    # Store id
    ir = {"id": element_numbers[ufl_element]}
    ir["classname"] = classnames["dofmap"][ufl_element]

    # Remember jit status
    ir["jit"] = jit

    # Compute data for each function
    ir["signature"] = "FFC dofmap for " + repr(ufl_element)
    ir["needs_mesh_entities"] = _needs_mesh_entities(fiat_element)
    ir["topological_dimension"] = cell.topological_dimension()
    ir["geometric_dimension"] = cell.geometric_dimension()
    ir["global_dimension"] = _global_dimension(fiat_element)
    ir["num_element_dofs"] = fiat_element.space_dimension()
    ir["num_facet_dofs"] = len(facet_dofs[0])
    ir["num_entity_dofs"] = num_dofs_per_entity
    ir["num_entity_closure_dofs"] = num_dofs_per_entity_closure
    ir["tabulate_dofs"] = _tabulate_dofs(fiat_element, cell)
    ir["tabulate_facet_dofs"] = facet_dofs
    ir["tabulate_entity_dofs"] = (entity_dofs, num_dofs_per_entity)
    ir["tabulate_entity_closure_dofs"] = (entity_closure_dofs, entity_dofs, num_dofs_per_entity)
    ir["num_sub_dofmaps"] = ufl_element.num_sub_elements()
    ir["create_sub_dofmap"] = [classnames["dofmap"][e]
                               for e in ufl_element.sub_elements()]

    return ir


_midpoints = {
    "interval": (0.5,),
    "triangle": (1.0 / 3.0, 1.0 / 3.0),
    "tetrahedron": (0.25, 0.25, 0.25),
    "quadrilateral": (0.5, 0.5),
    "hexahedron": (0.5, 0.5, 0.5),
}


def cell_midpoint(cell):
    # TODO: Is this defined somewhere more central where we can get it from?
    return _midpoints[cell.cellname()]


def _tabulate_coordinate_mapping_basis(ufl_element):
    # TODO: Move this function to a table generation module?

    # Get scalar element, assuming coordinates are represented
    # with a VectorElement of scalar subelements
    selement = ufl_element.sub_elements()[0]

    fiat_element = create_element(selement)
    cell = selement.cell()
    tdim = cell.topological_dimension()

    tables = {}

    # Get points
    origo = (0.0,) * tdim
    midpoint = cell_midpoint(cell)

    # Tabulate basis
    t0 = fiat_element.tabulate(1, [origo])
    tm = fiat_element.tabulate(1, [midpoint])

    # Get basis values at cell origo
    tables["x0"] = t0[(0,) * tdim][:, 0]

    # Get basis values at cell midpoint
    tables["xm"] = tm[(0,) * tdim][:, 0]

    # Single direction derivatives, e.g. [(1,0), (0,1)] in 2d
    derivatives = [(0,) * i + (1,) + (0,) * (tdim - 1 - i) for i in range(tdim)]

    # Get basis derivative values at cell origo
    tables["J0"] = numpy.asarray([t0[d][:, 0] for d in derivatives])

    # Get basis derivative values at cell midpoint
    tables["Jm"] = numpy.asarray([tm[d][:, 0] for d in derivatives])

    return tables


def _compute_coordinate_mapping_ir(ufl_coordinate_element, element_numbers,
                                   classnames, jit=False):
    "Compute intermediate representation of coordinate mapping."

    cell = ufl_coordinate_element.cell()
    cellname = cell.cellname()

    assert ufl_coordinate_element.value_shape() == (cell.geometric_dimension(),)

    # Compute element values via fiat element
    tables = _tabulate_coordinate_mapping_basis(ufl_coordinate_element)

    # Store id
    ir = {"id": element_numbers[ufl_coordinate_element]}
    ir["classname"] = classnames["coordinate_mapping"][ufl_coordinate_element]

    # Remember jit status
    ir["jit"] = jit

    # Compute data for each function
    ir["signature"] = "FFC coordinate_mapping from " + repr(ufl_coordinate_element)
    ir["cell_shape"] = cellname
    ir["topological_dimension"] = cell.topological_dimension()
    ir["geometric_dimension"] = ufl_coordinate_element.value_size()

    ir["create_coordinate_finite_element"] = \
        classnames["finite_element"][ufl_coordinate_element]
    ir["create_coordinate_dofmap"] = \
        classnames["dofmap"][ufl_coordinate_element]

    ir["compute_physical_coordinates"] = None  # currently unused, corresponds to function name
    ir["compute_reference_coordinates"] = None  # currently unused, corresponds to function name
    ir["compute_jacobians"] = None  # currently unused, corresponds to function name
    ir["compute_jacobian_determinants"] = None  # currently unused, corresponds to function name
    ir["compute_jacobian_inverses"] = None  # currently unused, corresponds to function name
    ir["compute_geometry"] = None  # currently unused, corresponds to function name

    # NB! The entries below breaks the pattern of using ir keywords == code keywords,
    # which I personally don't find very useful anyway (martinal).

    # Store tables and other coordinate element data
    ir["tables"] = tables
    ir["coordinate_element_degree"] = ufl_coordinate_element.degree()
    ir["num_scalar_coordinate_element_dofs"] = tables["x0"].shape[0]

    # Get classnames for coordinate element and its scalar subelement:
    ir["coordinate_finite_element_classname"] = \
        classnames["finite_element"][ufl_coordinate_element]
    ir["scalar_coordinate_finite_element_classname"] = \
        classnames["finite_element"][ufl_coordinate_element.sub_elements()[0]]

    return ir


def _global_dimension(fiat_element):
    "Compute intermediate representation for global_dimension."

    if not isinstance(fiat_element, MixedElement):
        if isinstance(fiat_element, SpaceOfReals):
            return ([], 1)
        return (_num_dofs_per_entity(fiat_element), 0)

    elements = []
    reals = []
    num_reals = 0
    for (i, e) in enumerate(fiat_element.elements()):
        if not isinstance(e, SpaceOfReals):
            elements += [e]
        else:
            num_reals += 1
    fiat_element = MixedElement(elements)
    return (_num_dofs_per_entity(fiat_element), num_reals)


def _needs_mesh_entities(fiat_element):
    "Compute intermediate representation for needs_mesh_entities."

    # Note: The dof map for Real elements does not depend on the mesh

    num_dofs_per_entity = _num_dofs_per_entity(fiat_element)
    if isinstance(fiat_element, SpaceOfReals):
        return [False for d in num_dofs_per_entity]
    else:
        return [d > 0 for d in num_dofs_per_entity]


def _compute_integral_ir(form_data, form_id, prefix, element_numbers, classnames,
                         parameters, jit):
    "Compute intermediate represention for form integrals."

    # For consistency, all jit objects now have classnames with postfix "main"
    if jit:
        assert form_id == 0
        form_id = "main"

    irs = []

    # Iterate over integrals
    for itg_data in form_data.integral_data:

        # Select representation
        # TODO: Is it possible to detach this metadata from
        # IntegralData? It's a bit strange from the ufl side.
        r = pick_representation(itg_data.metadata["representation"])

        # Compute representation
        ir = r.compute_integral_ir(itg_data,
                                   form_data,
                                   form_id,     # FIXME: Can we remove this?
                                   element_numbers,
                                   classnames,
                                   parameters)

        # Build classname
        ir["classname"] = make_integral_classname(prefix, itg_data.integral_type,
                                                  form_id, itg_data.subdomain_id)

        ir["classnames"] = classnames  # FIXME XXX: Use this everywhere needed?

        # Storing prefix here for reconstruction of classnames on code
        # generation side
        ir["prefix"] = prefix  # FIXME: Drop this?

        # Store metadata for later reference (eg. printing as comment)
        # NOTE: We make a commitment not to modify it!
        ir["integrals_metadata"] = itg_data.metadata
        ir["integral_metadata"] = [integral.metadata()
                                   for integral in itg_data.integrals]

        # Append representation
        irs.append(ir)

    return irs


def _compute_form_ir(form_data, form_id, prefix, element_numbers,
                     classnames, parameters, jit=False):
    "Compute intermediate representation of form."

    # For consistency, all jit objects now have classnames with postfix "main"
    if jit:
        assert form_id == 0
        form_id = "main"

    # Store id
    ir = {"id": form_id}

    # Storing prefix here for reconstruction of classnames on code
    # generation side
    ir["prefix"] = prefix

    # Remember jit status
    ir["jit"] = jit

    # Compute common data
    ir["classname"] = make_classname(prefix, "form", form_id)

    # ir["members"] = None # unused
    # ir["constructor"] = None # unused
    # ir["destructor"] = None # unused
    ir["signature"] = form_data.original_form.signature()

    ir["rank"] = len(form_data.original_form.arguments())
    ir["num_coefficients"] = len(form_data.reduced_coefficients)
    ir["original_coefficient_position"] = form_data.original_coefficient_positions

    # TODO: Remove create_coordinate_{finite_element,dofmap} and
    # access through coordinate_mapping instead in dolfin, when that's
    # in place
    ir["create_coordinate_finite_element"] = [
        classnames["finite_element"][e]
        for e in form_data.coordinate_elements
        ]
    ir["create_coordinate_dofmap"] = [
        classnames["dofmap"][e]
        for e in form_data.coordinate_elements
        ]
    ir["create_coordinate_mapping"] = [
        classnames["coordinate_mapping"][e]
        for e in form_data.coordinate_elements
        ]
    ir["create_finite_element"] = [
        classnames["finite_element"][e]
        for e in form_data.argument_elements + form_data.coefficient_elements
        ]
    ir["create_dofmap"] = [
        classnames["dofmap"][e]
        for e in form_data.argument_elements + form_data.coefficient_elements
        ]

    # Create integral ids and names using form prefix
    # (integrals are always generated as part of form so don't get
    # their own prefix)
    for integral_type in ufc_integral_types:
        ir["max_%s_subdomain_id" % integral_type] = \
            form_data.max_subdomain_ids.get(integral_type, 0)
        ir["has_%s_integrals" % integral_type] = \
            _has_foo_integrals(prefix, form_id, integral_type, form_data)
        ir["create_%s_integral" % integral_type] = \
            _create_foo_integral(prefix, form_id, integral_type, form_data)
        ir["create_default_%s_integral" % integral_type] = \
            _create_default_foo_integral(prefix, form_id, integral_type, form_data)

    return ir


# --- Computation of intermediate representation for non-trivial functions ---

def _generate_reference_offsets(fiat_element, offset=0):
    """Generate offsets: i.e value offset for each basis function
    relative to a reference element representation."""

    if isinstance(fiat_element, MixedElement):
        offsets = []
        for e in fiat_element.elements():
            offsets += _generate_reference_offsets(e, offset)
            # NB! This is the fiat element and therefore value_shape
            # means reference_value_shape
            offset += product(e.value_shape())
        return offsets

    elif isinstance(fiat_element, EnrichedElement):
        offsets = []
        for e in fiat_element.elements():
            offsets += _generate_reference_offsets(e, offset)
        return offsets

    else:
        return [offset] * fiat_element.space_dimension()


def _generate_physical_offsets(ufl_element, offset=0):
    """Generate offsets: i.e value offset for each basis function
    relative to a physical element representation."""
    cell = ufl_element.cell()
    gdim = cell.geometric_dimension()
    tdim = cell.topological_dimension()

    # Refer to reference if gdim == tdim. This is a hack to support
    # more stuff (in particular restricted elements)
    if gdim == tdim:
        return _generate_reference_offsets(create_element(ufl_element))

    if isinstance(ufl_element, ufl.MixedElement):
        offsets = []
        for e in ufl_element.sub_elements():
            offsets += _generate_physical_offsets(e, offset)
            # e is a ufl element, so value_size means the physical value size
            offset += e.value_size()
        return offsets

    elif isinstance(ufl_element, ufl.EnrichedElement):
        offsets = []
        for e in ufl_element._elements:  # TODO: Avoid private member access
            offsets += _generate_physical_offsets(e, offset)
        return offsets

    elif isinstance(ufl_element, ufl.FiniteElement):
        fiat_element = create_element(ufl_element)
        return [offset] * fiat_element.space_dimension()

    else:
        raise NotImplementedError("This element combination is not implemented")


def _generate_offsets(ufl_element, reference_offset=0, physical_offset=0):
    """Generate offsets: i.e value offset for each basis function
    relative to a physical element representation."""
    cell = ufl_element.cell()
    gdim = cell.geometric_dimension()
    tdim = cell.topological_dimension()

    if isinstance(ufl_element, ufl.MixedElement):
        offsets = []
        for e in ufl_element.sub_elements():
            offsets += _generate_offsets(e, reference_offset, physical_offset)
            # e is a ufl element, so value_size means the physical value size
            reference_offset += e.reference_value_size()
            physical_offset += e.value_size()
        return offsets

    elif isinstance(ufl_element, ufl.EnrichedElement):
        offsets = []
        for e in ufl_element._elements:  # TODO: Avoid private member access
            offsets += _generate_offsets(e, reference_offset, physical_offset)
        return offsets

    elif isinstance(ufl_element, ufl.FiniteElement):
        fiat_element = create_element(ufl_element)
        return [(reference_offset, physical_offset)] * fiat_element.space_dimension()

    else:
        # TODO: Support RestrictedElement, QuadratureElement,
        #       TensorProductElement, etc.!  and replace
        #       _generate_{physical|reference}_offsets with this
        #       function.
        raise NotImplementedError("This element combination is not implemented")


def _evaluate_dof(ufl_element, fiat_element):
    "Compute intermediate representation of evaluate_dof."
    cell = ufl_element.cell()
    return {"mappings": fiat_element.mapping(),
            "reference_value_size": ufl_element.reference_value_size(),
            "physical_value_size": ufl_element.value_size(),
            "geometric_dimension": cell.geometric_dimension(),
            "topological_dimension": cell.topological_dimension(),
            "dofs": [L.pt_dict if L else None for L in fiat_element.dual_basis()],
            "physical_offsets": _generate_physical_offsets(ufl_element)}


def _extract_elements(fiat_element):
    new_elements = []
    if isinstance(fiat_element, (MixedElement, EnrichedElement)):
        for e in fiat_element.elements():
            new_elements += _extract_elements(e)
    else:
        new_elements.append(fiat_element)
    return new_elements


def _evaluate_basis(ufl_element, fiat_element):
    "Compute intermediate representation for evaluate_basis."
    cell = ufl_element.cell()
    cellname = cell.cellname()

    # Handle Mixed and EnrichedElements by extracting 'sub' elements.
    elements = _extract_elements(fiat_element)
    physical_offsets = _generate_physical_offsets(ufl_element)
    reference_offsets = _generate_reference_offsets(fiat_element)
    mappings = fiat_element.mapping()

    # This function is evidently not implemented for TensorElements
    for e in elements:
        if (len(e.value_shape()) > 1) and (e.num_sub_elements() != 1):
            return "Function not supported/implemented for TensorElements."

    # Handle QuadratureElement, not supported because the basis is
    # only defined at the dof coordinates where the value is 1, so not
    # very interesting.
    for e in elements:
        if isinstance(e, QuadratureElement):
            return "Function not supported/implemented for QuadratureElement."
        if isinstance(e, HDivTrace):
            return "Function not supported for Trace elements"

    # Initialise data with 'global' values.
    data = {"reference_value_size": ufl_element.reference_value_size(),
            "physical_value_size": ufl_element.value_size(),
            "cellname": cellname,
            "topological_dimension": cell.topological_dimension(),
            "geometric_dimension": cell.geometric_dimension(),
            "space_dimension": fiat_element.space_dimension(),
            "needs_oriented": needs_oriented_jacobian(fiat_element),
            "max_degree": max([e.degree() for e in elements])
            }

    # Loop element and space dimensions to generate dof data.
    dof = 0
    dofs_data = []
    for e in elements:
        num_components = product(e.value_shape())
        coeffs = e.get_coeffs()
        num_expansion_members = e.get_num_members(e.degree())
        dmats = e.dmats()

        # Extracted parts of dd below that are common for the element
        # here.  These dict entries are added to each dof_data dict
        # for each dof, because that's what the code generation
        # implementation expects.  If the code generation needs this
        # structure to be optimized in the future, we can store this
        # data for each subelement instead of for each dof.
        subelement_data = {
            "embedded_degree": e.degree(),
            "num_components": num_components,
            "dmats": dmats,
            "num_expansion_members": num_expansion_members,
        }
        value_rank = len(e.value_shape())

        for i in range(e.space_dimension()):
            if num_components == 1:
                coefficients = [coeffs[i]]
            elif value_rank == 1:
                # Handle coefficients for vector valued basis elements
                # [Raviart-Thomas, Brezzi-Douglas-Marini (BDM)].
                coefficients = [coeffs[i][c]
                                for c in range(num_components)]
            elif value_rank == 2:
                # Handle coefficients for tensor valued basis elements.
                # [Regge]
                coefficients = [coeffs[i][p][q]
                                for p in range(e.value_shape()[0])
                                for q in range(e.value_shape()[1])]
            else:
                error("Unknown situation with num_components > 1")

            dof_data = {
                "coeffs": coefficients,
                "mapping": mappings[dof],
                "physical_offset": physical_offsets[dof],
                "reference_offset": reference_offsets[dof],
            }
            # Still storing element data in dd to avoid rewriting dependent code
            dof_data.update(subelement_data)

            # This list will hold one dd dict for each dof
            dofs_data.append(dof_data)
            dof += 1

    data["dofs_data"] = dofs_data

    return data


def _tabulate_dof_coordinates(ufl_element, element):
    "Compute intermediate representation of tabulate_dof_coordinates."

    if uses_integral_moments(element) or not element.dual_basis()[0]:
        return {}

    cell = ufl_element.cell()

    data = {}
    data["tdim"] = cell.topological_dimension()
    data["gdim"] = cell.geometric_dimension()
    data["points"] = [sorted(L.pt_dict.keys())[0] for L in element.dual_basis()]
    return data


def _tabulate_dofs(element, cell):
    "Compute intermediate representation of tabulate_dofs."

    if isinstance(element, SpaceOfReals):
        return None

    # Extract number of dofs per entity for each element
    elements = all_elements(element)
    num_dofs_per_element = [_num_dofs_per_entity(e) for e in elements]

    # Extract local dof numbers per entity for each element
    all_entity_dofs = [e.entity_dofs() for e in elements]
    dofs_per_element = [[[list(dofs[dim][entity])
                          for entity in sorted(dofs[dim].keys())]
                         for dim in sorted(dofs.keys())]
                        for dofs in all_entity_dofs]

    # Check whether we need offset
    multiple_entities = any([sum(n > 0 for n in num_dofs) - 1
                             for num_dofs in num_dofs_per_element])
    need_offset = len(elements) > 1 or multiple_entities

    num_dofs_per_element = [e.space_dimension() for e in elements]

    # Handle global "elements"
    fakes = [isinstance(e, SpaceOfReals) for e in elements]

    return (dofs_per_element, num_dofs_per_element, need_offset, fakes)


def _tabulate_facet_dofs(element, cell):
    "Compute intermediate representation of tabulate_facet_dofs."

    # Compute incidences
    incidence = __compute_incidence(cell.topological_dimension())

    # Get topological dimension
    D = max([pair[0][0] for pair in incidence])

    # Get the number of facets
    num_facets = cell.num_facets()

    # Find out which entities are incident to each facet
    incident = num_facets * [None]
    for facet in range(num_facets):
        incident[facet] = [pair[1] for pair in incidence
                           if incidence[pair] is True and pair[0] == (D - 1, facet)]

    # Make list of dofs
    facet_dofs = []
    entity_dofs = element.entity_dofs()

    for facet in range(num_facets):
        facet_dofs += [[]]
        for dim in entity_dofs:
            for entity in entity_dofs[dim]:
                if (dim, entity) in incident[facet]:
                    facet_dofs[facet] += entity_dofs[dim][entity]
        facet_dofs[facet].sort()
    return facet_dofs


def _tabulate_entity_closure_dofs(element, cell):
    "Compute intermediate representation of tabulate_entity_closure_dofs."

    # Compute incidences
    incidence = __compute_incidence(cell.topological_dimension())

    # Get topological dimension
    D = max([pair[0][0] for pair in incidence])

    entity_dofs = element.entity_dofs()

    entity_closure_dofs = {}
    for d0 in range(D + 1):
        # Find out which entities are incident to each entity of dim d0
        incident = {}
        for e0 in entity_dofs[d0]:
            incident[(d0, e0)] = [pair[1] for pair in incidence
                                  if incidence[pair] is True and pair[0] == (d0, e0)]

        # Make list of dofs
        for e0 in entity_dofs[d0]:
            dofs = []
            for d1 in entity_dofs:
                for e1 in entity_dofs[d1]:
                    if (d1, e1) in incident[(d0, e0)]:
                        dofs += entity_dofs[d1][e1]
            entity_closure_dofs[(d0, e0)] = sorted(dofs)

    num_entity_closure_dofs = [max(len(dofs)
                               for (d, e), dofs in entity_closure_dofs.items()
                               if d == dim)
                           for dim in range(D + 1)]

    return entity_closure_dofs, num_entity_closure_dofs


def _interpolate_vertex_values(ufl_element, fiat_element):
    "Compute intermediate representation of interpolate_vertex_values."

    # Check for QuadratureElement
    for e in all_elements(fiat_element):
        if isinstance(e, QuadratureElement):
            return "Function is not supported/implemented for QuadratureElement."
        if isinstance(e, HDivTrace):
            return "Function is not implemented for HDivTrace."

    cell = ufl_element.cell()
    cellname = cell.cellname()
    tdim = cell.topological_dimension()
    gdim = cell.geometric_dimension()

    ir = {}
    ir["geometric_dimension"] = gdim
    ir["topological_dimension"] = tdim

    # Check whether computing the Jacobian is necessary
    mappings = fiat_element.mapping()
    ir["needs_jacobian"] = any("piola" in m for m in mappings)
    ir["needs_oriented"] = needs_oriented_jacobian(fiat_element)

    # See note in _evaluate_dofs
    ir["reference_value_size"] = ufl_element.reference_value_size()
    ir["physical_value_size"] = ufl_element.value_size()

    # Get vertices of reference cell
    fiat_cell = reference_cell(cellname)
    vertices = fiat_cell.get_vertices()

    # Compute data for each constituent element
    all_fiat_elm = all_elements(fiat_element)
    ir["element_data"] = [
        {
            # NB! value_shape of fiat element e means reference_value_shape
           "reference_value_size": product(e.value_shape()),

           # FIXME: THIS IS A BUG:
           "physical_value_size": product(e.value_shape()),  # FIXME: Get from corresponding ufl element?

           "basis_values": e.tabulate(0, vertices)[(0,) * tdim].transpose(),
           "mapping": e.mapping()[0],
           "space_dim": e.space_dimension(),
        }
        for e in all_fiat_elm]

    # FIXME: Temporary hack!
    if len(ir["element_data"]) == 1:
        ir["element_data"][0]["physical_value_size"] = ir["physical_value_size"]

    # Consistency check, related to note in _evaluate_dofs
    # This will fail for e.g. (RT1 x DG0) on a manifold because of the above bug
    if sum(data["physical_value_size"] for data in ir["element_data"]) != ir["physical_value_size"]:
        ir = "Failed to set physical value size correctly for subelements."
    elif sum(data["reference_value_size"] for data in ir["element_data"]) != ir["reference_value_size"]:
        ir = "Failed to set reference value size correctly for subelements."

    return ir


def _has_foo_integrals(prefix, form_id, integral_type, form_data):
    "Compute intermediate representation of has_foo_integrals."
    v = (form_data.max_subdomain_ids.get(integral_type, 0) > 0
         or _create_default_foo_integral(prefix, form_id, integral_type, form_data) is not None)
    return bool(v)


def _create_foo_integral(prefix, form_id, integral_type, form_data):
    "Compute intermediate representation of create_foo_integral."
    subdomain_ids = [itg_data.subdomain_id
                     for itg_data in form_data.integral_data
                     if (itg_data.integral_type == integral_type
                         and isinstance(itg_data.subdomain_id, int))]
    classnames = [make_integral_classname(prefix, integral_type, form_id, subdomain_id)
                  for subdomain_id in subdomain_ids]
    return subdomain_ids, classnames


def _create_default_foo_integral(prefix, form_id, integral_type, form_data):
    "Compute intermediate representation of create_default_foo_integral."
    itg_data = [itg_data for itg_data in form_data.integral_data
                if (itg_data.integral_type == integral_type and
                    itg_data.subdomain_id == "otherwise")]
    if len(itg_data) > 1:
        error("Expecting at most one default integral of each type.")
    if itg_data:
        classname = make_integral_classname(prefix, integral_type, form_id, "otherwise")
        return classname
    else:
        return None


#--- Utility functions ---


def all_elements(fiat_element):
    if isinstance(fiat_element, MixedElement):
        return fiat_element.elements()
    return [fiat_element]


def _num_dofs_per_entity(fiat_element):
    """
    Compute list of integers representing the number of dofs
    associated with a single mesh entity.

    Example: Lagrange of degree 3 on triangle: [1, 2, 1]
    """
    entity_dofs = fiat_element.entity_dofs()
    return [len(entity_dofs[e][0]) for e in range(len(entity_dofs.keys()))]

# These two are copied from old ffc


def __compute_incidence(D):
    "Compute which entities are incident with which"

    # Compute the incident vertices for each entity
    sub_simplices = []
    for dim in range(D + 1):
        sub_simplices += [__compute_sub_simplices(D, dim)]

    # Check which entities are incident, d0 --> d1 for d0 >= d1
    incidence = {}
    for d0 in range(0, D + 1):
        for i0 in range(len(sub_simplices[d0])):
            for d1 in range(d0 + 1):
                for i1 in range(len(sub_simplices[d1])):
                    incidence[((d0, i0), (d1, i1))] = all(v in sub_simplices[d0][i0]
                                                          for v in sub_simplices[d1][i1])
    return incidence


def __compute_sub_simplices(D, d):
    """Compute vertices for all sub simplices of dimension d (code
    taken from Exterior)."""

    # Number of vertices
    num_vertices = D + 1

    # Special cases: d = 0 and d = D
    if d == 0:
        return [[i] for i in range(num_vertices)]
    elif d == D:
        return [list(range(num_vertices))]

    # Compute all permutations of num_vertices - (d + 1)
    permutations = compute_permutations(num_vertices - d - 1, num_vertices)

    # Iterate over sub simplices
    sub_simplices = []
    for i in range(len(permutations)):

        # Pick tuple i among permutations (non-incident vertices)
        remove = permutations[i]

        # Remove vertices, keeping d + 1 vertices
        vertices = [v for v in range(num_vertices) if v not in remove]
        sub_simplices += [vertices]

    return sub_simplices


def uses_integral_moments(fiat_element):
    "True if element uses integral moments for its degrees of freedom."
    integrals = set(["IntegralMoment", "FrobeniusIntegralMoment"])
    tags = set([L.get_type_tag() for L in fiat_element.dual_basis() if L])
    return len(integrals & tags) > 0


def needs_oriented_jacobian(fiat_element):
    # Check whether this element needs an oriented jacobian
    # (only contravariant piolas seem to need it)
    return "contravariant piola" in fiat_element.mapping()