/usr/lib/python2.7/dist-packages/FIAT/hdivcurl.py is in python-fiat 2016.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | # Copyright (C) 2013 Andrew T. T. McRae (Imperial College London)
#
# This file is part of FIAT.
#
# FIAT is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FIAT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FIAT. If not, see <http://www.gnu.org/licenses/>.
from __future__ import absolute_import, print_function, division
import numpy
import types
from FIAT.tensor_product import TensorProductElement
from FIAT import functional
def Hdiv(element):
if not isinstance(element, TensorProductElement):
raise NotImplementedError
if element.A.get_formdegree() is None or element.B.get_formdegree() is None:
raise ValueError("form degree of sub-element was None (not set during initialisation), Hdiv cannot be done without this information")
formdegree = element.A.get_formdegree() + element.B.get_formdegree()
if formdegree != element.get_reference_element().get_spatial_dimension() - 1:
raise ValueError("Tried to use Hdiv on a non-(n-1)-form element")
newelement = TensorProductElement(element.A, element.B) # make a copy to return
# redefine value_shape()
def value_shape(self):
"Return the value shape of the finite element functions."
return (self.get_reference_element().get_spatial_dimension(),)
newelement.value_shape = types.MethodType(value_shape, newelement)
# store old _mapping
newelement._oldmapping = newelement._mapping
# redefine _mapping
newelement._mapping = "contravariant piola"
# store formdegree
newelement.formdegree = formdegree
# redefine tabulate
newelement.old_tabulate = newelement.tabulate
def tabulate(self, order, points, entity=None):
"""Return tabulated values of derivatives up to given order of
basis functions at given points."""
# don't duplicate what the old function does fine...
old_result = self.old_tabulate(order, points, entity)
new_result = {}
sd = self.get_reference_element().get_spatial_dimension()
for alpha in old_result.keys():
temp_old = old_result[alpha]
if self._oldmapping == "affine":
temp = numpy.zeros((temp_old.shape[0], sd, temp_old.shape[1]), dtype=temp_old.dtype)
# both constituents affine, i.e., they were 0 forms or n-forms.
# to sum to n-1, we must have "0-form on an interval" crossed
# with something discontinuous.
# look for the (continuous) 0-form, and put the value there
if self.A.get_formdegree() == 0:
# first element, so (-x, 0, ...)
# Sign flip to ensure that a positive value of the node
# means a vector field having a direction "to the left"
# relative to direction in which the nodes are placed on an
# edge in case of higher-order schemes.
# This is required for unstructured quadrilateral meshes.
temp[:, 0, :] = -temp_old[:, :]
elif self.B.get_formdegree() == 0:
# second element, so (..., 0, x)
temp[:, -1, :] = temp_old[:, :]
else:
raise Exception("Hdiv affine/affine form degrees broke")
elif self._oldmapping == "contravariant piola":
temp = numpy.zeros((temp_old.shape[0], sd, temp_old.shape[2]), dtype=temp_old.dtype)
Asd = self.A.get_reference_element().get_spatial_dimension()
# one component is affine, one is contravariant piola
# the affine one must be an n-form, hence discontinuous
# this component/these components get zeroed out
if element.A.mapping()[0] == "contravariant piola":
# first element, so (x1, ..., xn, 0, ...)
temp[:, :Asd, :] = temp_old[:, :, :]
elif element.B.mapping()[0] == "contravariant piola":
# second element, so (..., 0, x1, ..., xn)
temp[:, Asd:, :] = temp_old[:, :, :]
else:
raise ValueError("Hdiv contravariant piola couldn't find an existing ConPi subelement")
elif self._oldmapping == "covariant piola":
temp = numpy.zeros((temp_old.shape[0], sd, temp_old.shape[2]), dtype=temp_old.dtype)
# one component is affine, one is covariant piola
# the affine one must be an n-form, hence discontinuous
# this component/these components get zeroed out
# the remaining part gets perped
if element.A.mapping()[0] == "covariant piola":
Asd = self.A.get_reference_element().get_spatial_dimension()
if not Asd == 2:
raise ValueError("Must be 2d shape to automatically convert covariant to contravariant")
temp_perp = numpy.zeros(temp_old.shape, dtype=temp_old.dtype)
# first element, so (x2, -x1, 0, ...)
temp_perp[:, 0, :] = temp_old[:, 1, :]
temp_perp[:, 1, :] = -temp_old[:, 0, :]
temp[:, :Asd, :] = temp_perp[:, :, :]
elif element.B.mapping()[0] == "covariant piola":
Bsd = self.B.get_reference_element().get_spatial_dimension()
if not Bsd == 2:
raise ValueError("Must be 2d shape to automatically convert covariant to contravariant")
temp_perp = numpy.zeros(temp_old.shape, dtype=temp_old.dtype)
# second element, so (..., 0, x2, -x1)
temp_perp[:, 0, :] = temp_old[:, 1, :]
temp_perp[:, 1, :] = -temp_old[:, 0, :]
temp[:, Asd:, :] = temp_old[:, :, :]
else:
raise ValueError("Hdiv covariant piola couldn't find an existing CovPi subelement")
new_result[alpha] = temp
return new_result
newelement.tabulate = types.MethodType(tabulate, newelement)
# splat any PointEvaluation functionals.
# they become a nasty mix of internal and external component DOFs
if newelement._oldmapping == "affine":
oldnodes = newelement.dual.nodes
newnodes = []
for node in oldnodes:
if isinstance(node, functional.PointEvaluation):
newnodes.append(functional.Functional(None, None, None, {}, "Undefined"))
else:
newnodes.append(node)
newelement.dual.nodes = newnodes
return newelement
def Hcurl(element):
if not isinstance(element, TensorProductElement):
raise NotImplementedError
if element.A.get_formdegree() is None or element.B.get_formdegree() is None:
raise ValueError("form degree of sub-element was None (not set during initialisation), Hcurl cannot be done without this information")
formdegree = element.A.get_formdegree() + element.B.get_formdegree()
if not (formdegree == 1):
raise ValueError("Tried to use Hcurl on a non-1-form element")
newelement = TensorProductElement(element.A, element.B) # make a copy to return
# redefine value_shape()
def value_shape(self):
"Return the value shape of the finite element functions."
return (self.get_reference_element().get_spatial_dimension(),)
newelement.value_shape = types.MethodType(value_shape, newelement)
# store old _mapping
newelement._oldmapping = newelement._mapping
# redefine _mapping
newelement._mapping = "covariant piola"
# store formdegree
newelement.formdegree = formdegree
# redefine tabulate
newelement.old_tabulate = newelement.tabulate
def tabulate(self, order, points, entity=None):
"""Return tabulated values of derivatives up to given order of
basis functions at given points."""
# don't duplicate what the old function does fine...
old_result = self.old_tabulate(order, points, entity)
new_result = {}
sd = self.get_reference_element().get_spatial_dimension()
for alpha in old_result.keys():
temp_old = old_result[alpha]
if self._oldmapping == "affine":
temp = numpy.zeros((temp_old.shape[0], sd, temp_old.shape[1]), dtype=temp_old.dtype)
# both constituents affine, i.e., they were 0 forms or n-forms.
# to sum to 1, we must have "1-form on an interval" crossed with
# a bunch of 0-forms (continuous).
# look for the 1-form, and put the value in the other place
if self.A.get_formdegree() == 1:
# first element, so (x, 0, ...)
# No sign flip here, nor at the other branch, to ensure that
# a positive value of the node means a vector field having
# the same direction as the direction in which the nodes are
# placed on an edge in case of higher-order schemes.
# This is required for unstructured quadrilateral meshes.
temp[:, 0, :] = temp_old[:, :]
elif self.B.get_formdegree() == 1:
# second element, so (..., 0, x)
temp[:, -1, :] = temp_old[:, :]
else:
raise Exception("Hcurl affine/affine form degrees broke")
elif self._oldmapping == "covariant piola":
temp = numpy.zeros((temp_old.shape[0], sd, temp_old.shape[2]), dtype=temp_old.dtype)
Asd = self.A.get_reference_element().get_spatial_dimension()
# one component is affine, one is covariant piola
# the affine one must be an 0-form, hence continuous
# this component/these components get zeroed out
if element.A.mapping()[0] == "covariant piola":
# first element, so (x1, ..., xn, 0, ...)
temp[:, :Asd, :] = temp_old[:, :, :]
elif element.B.mapping()[0] == "covariant piola":
# second element, so (..., 0, x1, ..., xn)
temp[:, Asd:, :] = temp_old[:, :, :]
else:
raise ValueError("Hdiv contravariant piola couldn't find an existing ConPi subelement")
elif self._oldmapping == "contravariant piola":
temp = numpy.zeros((temp_old.shape[0], sd, temp_old.shape[2]), dtype=temp_old.dtype)
# one component is affine, one is contravariant piola
# the affine one must be an 0-form, hence continuous
# this component/these components get zeroed out
# the remaining part gets perped
if element.A.mapping()[0] == "contravariant piola":
Asd = self.A.get_reference_element().get_spatial_dimension()
if not Asd == 2:
raise ValueError("Must be 2d shape to automatically convert contravariant to covariant")
temp_perp = numpy.zeros(temp_old.shape, dtype=temp_old.dtype)
# first element, so (-x2, x1, 0, ...)
temp_perp[:, 0, :] = -temp_old[:, 1, :]
temp_perp[:, 1, :] = temp_old[:, 0, :]
temp[:, :Asd, :] = temp_perp[:, :, :]
elif element.B.mapping()[0] == "contravariant piola":
Bsd = self.B.get_reference_element().get_spatial_dimension()
if not Bsd == 2:
raise ValueError("Must be 2d shape to automatically convert contravariant to covariant")
temp_perp = numpy.zeros(temp_old.shape, dtype=temp_old.dtype)
# second element, so (..., 0, -x2, x1)
temp_perp[:, 0, :] = -temp_old[:, 1, :]
temp_perp[:, 1, :] = temp_old[:, 0, :]
temp[:, Asd:, :] = temp_old[:, :, :]
else:
raise ValueError("Hcurl contravariant piola couldn't find an existing CovPi subelement")
new_result[alpha] = temp
return new_result
newelement.tabulate = types.MethodType(tabulate, newelement)
# splat any PointEvaluation functionals.
# they become a nasty mix of internal and external component DOFs
if newelement._oldmapping == "affine":
oldnodes = newelement.dual.nodes
newnodes = []
for node in oldnodes:
if isinstance(node, functional.PointEvaluation):
newnodes.append(functional.Functional(None, None, None, {}, "Undefined"))
else:
newnodes.append(node)
newelement.dual.nodes = newnodes
return newelement
|