/usr/share/pyshared/mrjob/hadoop.py is in python-mrjob 0.3.3.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 | # Copyright 2009-2012 Yelp and Contributors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import getpass
import logging
import os
import posixpath
import re
from subprocess import Popen
from subprocess import PIPE
from subprocess import CalledProcessError
try:
from cStringIO import StringIO
StringIO # quiet "redefinition of unused ..." warning from pyflakes
except ImportError:
from StringIO import StringIO
from mrjob import compat
from mrjob.conf import combine_cmds
from mrjob.conf import combine_dicts
from mrjob.conf import combine_paths
from mrjob.logparsers import TASK_ATTEMPTS_LOG_URI_RE
from mrjob.logparsers import STEP_LOG_URI_RE
from mrjob.logparsers import HADOOP_JOB_LOG_URI_RE
from mrjob.logparsers import scan_for_counters_in_files
from mrjob.logparsers import scan_logs_in_order
from mrjob.parse import HADOOP_STREAMING_JAR_RE
from mrjob.parse import is_uri
from mrjob.parse import urlparse
from mrjob.runner import MRJobRunner
from mrjob.util import cmd_line
from mrjob.util import read_file
log = logging.getLogger('mrjob.hadoop')
# to filter out the log4j stuff that hadoop streaming prints out
HADOOP_STREAMING_OUTPUT_RE = re.compile(r'^(\S+ \S+ \S+ \S+: )?(.*)$')
# used by mkdir()
HADOOP_FILE_EXISTS_RE = re.compile(r'.*File exists.*')
# used by ls()
HADOOP_LSR_NO_SUCH_FILE = re.compile(
r'^lsr: Cannot access .*: No such file or directory.')
# used by rm() (see below)
HADOOP_RMR_NO_SUCH_FILE = re.compile(r'^rmr: hdfs://.*$')
# used to extract the job timestamp from stderr
HADOOP_JOB_TIMESTAMP_RE = re.compile(
r'(INFO: )?Running job: job_(?P<timestamp>\d+)_(?P<step_num>\d+)')
# find version string in "Hadoop 0.20.203" etc.
HADOOP_VERSION_RE = re.compile(r'^.*?(?P<version>(\d|\.)+).*?$')
def find_hadoop_streaming_jar(path):
"""Return the path of the hadoop streaming jar inside the given
directory tree, or None if we can't find it."""
for (dirpath, _, filenames) in os.walk(path):
for filename in filenames:
if HADOOP_STREAMING_JAR_RE.match(filename):
return os.path.join(dirpath, filename)
else:
return None
def fully_qualify_hdfs_path(path):
"""If path isn't an ``hdfs://`` URL, turn it into one."""
if path.startswith('hdfs://') or path.startswith('s3n:/'):
return path
elif path.startswith('/'):
return 'hdfs://' + path
else:
return 'hdfs:///user/%s/%s' % (getpass.getuser(), path)
def hadoop_log_dir():
"""Return the path where Hadoop stores logs"""
try:
return os.environ['HADOOP_LOG_DIR']
except KeyError:
# Defaults to $HADOOP_HOME/logs
# http://wiki.apache.org/hadoop/HowToConfigure
return os.path.join(os.environ['HADOOP_HOME'], 'logs')
class HadoopJobRunner(MRJobRunner):
"""Runs an :py:class:`~mrjob.job.MRJob` on your Hadoop cluster.
Input and support files can be either local or on HDFS; use ``hdfs://...``
URLs to refer to files on HDFS.
It's rare to need to instantiate this class directly (see
:py:meth:`~HadoopJobRunner.__init__` for details).
"""
alias = 'hadoop'
def __init__(self, **kwargs):
""":py:class:`~mrjob.hadoop.HadoopJobRunner` takes the same arguments
as :py:class:`~mrjob.runner.MRJobRunner`, plus some additional options
which can be defaulted in :ref:`mrjob.conf <mrjob.conf>`.
*output_dir* and *hdfs_scratch_dir* need not be fully qualified
``hdfs://`` URIs because it's understood that they have to be on
HDFS (e.g. ``tmp/mrjob/`` would be okay)
Additional options:
:type hadoop_bin: str or list
:param hadoop_bin: name/path of your hadoop program (may include
arguments). Defaults to *hadoop_home* plus
``bin/hadoop``.
:type hadoop_home: str
:param hadoop_home: alternative to setting the :envvar:`HADOOP_HOME`
environment variable
:type hdfs_scratch_dir: str
:param hdfs_scratch_dir: temp directory on HDFS. Default is
``tmp/mrjob``.
*hadoop_streaming_jar* is optional; by default, we'll search for it
inside :envvar:`HADOOP_HOME`
"""
super(HadoopJobRunner, self).__init__(**kwargs)
# fix hadoop_home
if not self._opts['hadoop_home']:
raise Exception(
'you must set $HADOOP_HOME, or pass in hadoop_home explicitly')
self._opts['hadoop_home'] = os.path.abspath(self._opts['hadoop_home'])
# fix hadoop_bin
if not self._opts['hadoop_bin']:
self._opts['hadoop_bin'] = [
os.path.join(self._opts['hadoop_home'], 'bin/hadoop')]
# fix hadoop_streaming_jar
if not self._opts['hadoop_streaming_jar']:
log.debug('Looking for hadoop streaming jar in %s' %
self._opts['hadoop_home'])
self._opts['hadoop_streaming_jar'] = find_hadoop_streaming_jar(
self._opts['hadoop_home'])
if not self._opts['hadoop_streaming_jar']:
raise Exception(
"Couldn't find streaming jar in %s, bailing out" %
self._opts['hadoop_home'])
log.debug('Hadoop streaming jar is %s' %
self._opts['hadoop_streaming_jar'])
self._hdfs_tmp_dir = fully_qualify_hdfs_path(
posixpath.join(
self._opts['hdfs_scratch_dir'], self._job_name))
# Set output dir if it wasn't set explicitly
self._output_dir = fully_qualify_hdfs_path(
self._output_dir or
posixpath.join(self._hdfs_tmp_dir, 'output'))
# we'll set this up later
self._hdfs_input_files = None
# temp dir for input
self._hdfs_input_dir = None
self._hadoop_log_dir = hadoop_log_dir()
# Running jobs via hadoop assigns a new timestamp to each job.
# Running jobs via mrjob only adds steps.
# Store both of these values to enable log parsing.
self._job_timestamp = None
self._start_step_num = None
# init hadoop version cache
self._hadoop_version = None
@classmethod
def _allowed_opts(cls):
"""A list of which keyword args we can pass to __init__()"""
return super(HadoopJobRunner, cls)._allowed_opts() + [
'hadoop_bin',
'hadoop_home',
'hdfs_scratch_dir',
]
@classmethod
def _default_opts(cls):
"""A dictionary giving the default value of options."""
return combine_dicts(super(HadoopJobRunner, cls)._default_opts(), {
'hadoop_home': os.environ.get('HADOOP_HOME'),
'hdfs_scratch_dir': 'tmp/mrjob',
})
@classmethod
def _opts_combiners(cls):
"""Map from option name to a combine_*() function used to combine
values for that option. This allows us to specify that some options
are lists, or contain environment variables, or whatever."""
return combine_dicts(super(HadoopJobRunner, cls)._opts_combiners(), {
'hadoop_bin': combine_cmds,
'hadoop_home': combine_paths,
'hdfs_scratch_dir': combine_paths,
})
def get_hadoop_version(self):
"""Invoke the hadoop executable to determine its version"""
if not self._hadoop_version:
stdout = self._invoke_hadoop(['version'], return_stdout=True)
if stdout:
first_line = stdout.split('\n')[0]
m = HADOOP_VERSION_RE.match(first_line)
if m:
self._hadoop_version = m.group('version')
log.info("Using Hadoop version %s" % self._hadoop_version)
return self._hadoop_version
self._hadoop_version = '0.20.203'
log.info("Unable to determine Hadoop version. Assuming 0.20.203.")
return self._hadoop_version
def _run(self):
if self._opts['bootstrap_mrjob']:
self._add_python_archive(self._create_mrjob_tar_gz() + '#')
self._setup_input()
self._upload_non_input_files()
self._run_job_in_hadoop()
def _setup_input(self):
"""Copy local input files (if any) to a special directory on HDFS.
Set self._hdfs_input_files
"""
# winnow out HDFS files from local ones
self._hdfs_input_files = []
local_input_files = []
for path in self._input_paths:
if is_uri(path):
# Don't even bother running the job if the input isn't there.
if not self.ls(path):
raise AssertionError(
'Input path %s does not exist!' % (path,))
self._hdfs_input_files.append(path)
else:
local_input_files.append(path)
# copy local files into an input directory, with names like
# 00000-actual_name.ext
if local_input_files:
hdfs_input_dir = posixpath.join(self._hdfs_tmp_dir, 'input')
log.info('Uploading input to %s' % hdfs_input_dir)
self._mkdir_on_hdfs(hdfs_input_dir)
for i, path in enumerate(local_input_files):
if path == '-':
path = self._dump_stdin_to_local_file()
target = '%s/%05i-%s' % (
hdfs_input_dir, i, os.path.basename(path))
self._upload_to_hdfs(path, target)
self._hdfs_input_files.append(hdfs_input_dir)
def _pick_hdfs_uris_for_files(self):
"""Decide where each file will be uploaded on S3.
Okay to call this multiple times.
"""
hdfs_files_dir = posixpath.join(self._hdfs_tmp_dir, 'files', '')
self._assign_unique_names_to_files(
'hdfs_uri', prefix=hdfs_files_dir, match=is_uri)
def _upload_non_input_files(self):
"""Copy files to HDFS, and set the 'hdfs_uri' field for each file.
"""
self._pick_hdfs_uris_for_files()
hdfs_files_dir = posixpath.join(self._hdfs_tmp_dir, 'files', '')
self._mkdir_on_hdfs(hdfs_files_dir)
log.info('Copying non-input files into %s' % hdfs_files_dir)
for file_dict in self._files:
path = file_dict['path']
# don't bother with files already in HDFS
if is_uri(path):
continue
self._upload_to_hdfs(path, file_dict['hdfs_uri'])
def _mkdir_on_hdfs(self, path):
log.debug('Making directory %s on HDFS' % path)
self._invoke_hadoop(['fs', '-mkdir', path])
def _upload_to_hdfs(self, path, target):
log.debug('Uploading %s -> %s on HDFS' % (path, target))
self._invoke_hadoop(['fs', '-put', path, target])
def _dump_stdin_to_local_file(self):
"""Dump sys.stdin to a local file, and return the path to it."""
stdin_path = os.path.join(self._get_local_tmp_dir(), 'STDIN')
# prompt user, so they don't think the process has stalled
log.info('reading from STDIN')
log.debug('dumping stdin to local file %s' % stdin_path)
stdin_file = open(stdin_path, 'w')
for line in self._stdin:
stdin_file.write(line)
return stdin_path
def _run_job_in_hadoop(self):
# figure out local names for our files
self._name_files()
# send script and wrapper script (if any) to working dir
assert self._script # shouldn't be able to run if no script
self._script['upload'] = 'file'
if self._wrapper_script:
self._wrapper_script['upload'] = 'file'
self._counters = []
steps = self._get_steps()
version = self.get_hadoop_version()
for step_num, step in enumerate(steps):
log.debug('running step %d of %d' % (step_num + 1, len(steps)))
streaming_args = (self._opts['hadoop_bin'] +
['jar', self._opts['hadoop_streaming_jar']])
# -files/-archives (generic options, new-style)
if compat.supports_new_distributed_cache_options(version):
# set up uploading from HDFS to the working dir
streaming_args.extend(self._upload_args())
# Add extra hadoop args first as hadoop args could be a hadoop
# specific argument (e.g. -libjar) which must come before job
# specific args.
streaming_args.extend(
self._hadoop_conf_args(step_num, len(steps)))
# set up input
for input_uri in self._hdfs_step_input_files(step_num):
streaming_args.extend(['-input', input_uri])
# set up output
streaming_args.append('-output')
streaming_args.append(self._hdfs_step_output_dir(step_num))
# -cacheFile/-cacheArchive (streaming options, old-style)
if not compat.supports_new_distributed_cache_options(version):
# set up uploading from HDFS to the working dir
streaming_args.extend(self._upload_args())
# set up mapper and reducer
if 'M' not in step:
mapper = 'cat'
else:
mapper = cmd_line(self._mapper_args(step_num))
if 'C' in step:
combiner_cmd = cmd_line(self._combiner_args(step_num))
version = self.get_hadoop_version()
if compat.supports_combiners_in_hadoop_streaming(version):
combiner = combiner_cmd
else:
mapper = ("bash -c '%s | sort | %s'" %
(mapper, combiner_cmd))
combiner = None
else:
combiner = None
streaming_args.append('-mapper')
streaming_args.append(mapper)
if combiner:
streaming_args.append('-combiner')
streaming_args.append(combiner)
if 'R' in step:
streaming_args.append('-reducer')
streaming_args.append(cmd_line(self._reducer_args(step_num)))
else:
streaming_args.extend(['-jobconf', 'mapred.reduce.tasks=0'])
log.debug('> %s' % cmd_line(streaming_args))
step_proc = Popen(streaming_args, stdout=PIPE, stderr=PIPE)
# TODO: use a pty or something so that the hadoop binary
# won't buffer the status messages
self._process_stderr_from_streaming(step_proc.stderr)
# there shouldn't be much output to STDOUT
for line in step_proc.stdout:
log.error('STDOUT: ' + line.strip('\n'))
returncode = step_proc.wait()
if returncode == 0:
# parsing needs step number for whole job
self._fetch_counters([step_num + self._start_step_num])
# printing needs step number relevant to this run of mrjob
self.print_counters([step_num + 1])
else:
msg = ('Job failed with return code %d: %s' %
(step_proc.returncode, streaming_args))
log.error(msg)
# look for a Python traceback
cause = self._find_probable_cause_of_failure(
[step_num + self._start_step_num])
if cause:
# log cause, and put it in exception
cause_msg = [] # lines to log and put in exception
cause_msg.append('Probable cause of failure (from %s):' %
cause['log_file_uri'])
cause_msg.extend(line.strip('\n')
for line in cause['lines'])
if cause['input_uri']:
cause_msg.append('(while reading from %s)' %
cause['input_uri'])
for line in cause_msg:
log.error(line)
# add cause_msg to exception message
msg += '\n' + '\n'.join(cause_msg) + '\n'
raise Exception(msg)
raise CalledProcessError(step_proc.returncode, streaming_args)
def _process_stderr_from_streaming(self, stderr):
for line in stderr:
line = HADOOP_STREAMING_OUTPUT_RE.match(line).group(2)
log.info('HADOOP: ' + line)
if 'Streaming Job Failed!' in line:
raise Exception(line)
# The job identifier is printed to stderr. We only want to parse it
# once because we know how many steps we have and just want to know
# what Hadoop thinks the first step's number is.
m = HADOOP_JOB_TIMESTAMP_RE.match(line)
if m and self._job_timestamp is None:
self._job_timestamp = m.group('timestamp')
self._start_step_num = int(m.group('step_num'))
def _hdfs_step_input_files(self, step_num):
"""Get the hdfs:// URI for input for the given step."""
if step_num == 0:
return self._hdfs_input_files
else:
return [posixpath.join(
self._hdfs_tmp_dir, 'step-output', str(step_num))]
def _hdfs_step_output_dir(self, step_num):
if step_num == len(self._get_steps()) - 1:
return self._output_dir
else:
return posixpath.join(
self._hdfs_tmp_dir, 'step-output', str(step_num + 1))
def _script_args(self):
"""How to invoke the script inside Hadoop"""
assert self._script # shouldn't be able to run if no script
args = self._opts['python_bin'] + [self._script['name']]
if self._wrapper_script:
args = (self._opts['python_bin'] +
[self._wrapper_script['name']]
+ args)
return args
def _mapper_args(self, step_num):
return (self._script_args() +
['--step-num=%d' % step_num, '--mapper'] +
self._mr_job_extra_args())
def _combiner_args(self, step_num):
return (self._script_args() +
['--step-num=%d' % step_num, '--combiner'] +
self._mr_job_extra_args())
def _reducer_args(self, step_num):
return (self._script_args() +
['--step-num=%d' % step_num, '--reducer'] +
self._mr_job_extra_args())
def _upload_args(self):
"""Args to upload files from HDFS to the hadoop nodes."""
args = []
version = self.get_hadoop_version()
if compat.supports_new_distributed_cache_options(version):
# return list of strings ready for comma-joining for passing to the
# hadoop binary
def escaped_paths(file_dicts):
return ["%s#%s" % (fd['hdfs_uri'], fd['name'])
for fd in file_dicts]
# index by type
all_files = {}
for fd in self._files:
all_files.setdefault(fd.get('upload'), []).append(fd)
if 'file' in all_files:
args.append('-files')
args.append(','.join(escaped_paths(all_files['file'])))
if 'archive' in all_files:
args.append('-archives')
args.append(','.join(escaped_paths(all_files['archive'])))
else:
for file_dict in self._files:
if file_dict.get('upload') == 'file':
args.append('-cacheFile')
args.append(
'%s#%s' % (file_dict['hdfs_uri'], file_dict['name']))
elif file_dict.get('upload') == 'archive':
args.append('-cacheArchive')
args.append(
'%s#%s' % (file_dict['hdfs_uri'], file_dict['name']))
return args
def _invoke_hadoop(self, args, ok_returncodes=None, ok_stderr=None,
return_stdout=False):
"""Run the given hadoop command, raising an exception on non-zero
return code. This only works for commands whose output we don't
care about.
Args:
ok_returncodes -- a list/tuple/set of return codes we expect to
get back from hadoop (e.g. [0,1]). By default, we only expect 0.
If we get an unexpected return code, we raise a CalledProcessError.
ok_stderr -- don't log STDERR or raise CalledProcessError if stderr
matches a regex in this list (even if the returncode is bad)
return_stdout -- return the stdout from the hadoop command rather
than logging it. If this is False, we return the returncode
instead.
"""
args = self._opts['hadoop_bin'] + args
log.debug('> %s' % cmd_line(args))
proc = Popen(args, stdout=PIPE, stderr=PIPE)
stdout, stderr = proc.communicate()
log_func = log.debug if proc.returncode == 0 else log.error
if not return_stdout:
for line in StringIO(stdout):
log_func('STDOUT: ' + line.rstrip('\r\n'))
# check if STDERR is okay
stderr_is_ok = False
if ok_stderr:
for stderr_re in ok_stderr:
if stderr_re.match(stderr):
stderr_is_ok = True
break
if not stderr_is_ok:
for line in StringIO(stderr):
log_func('STDERR: ' + line.rstrip('\r\n'))
ok_returncodes = ok_returncodes or [0]
if not stderr_is_ok and proc.returncode not in ok_returncodes:
raise CalledProcessError(proc.returncode, args)
if return_stdout:
return stdout
else:
return proc.returncode
def _cleanup_local_scratch(self):
super(HadoopJobRunner, self)._cleanup_local_scratch()
if self._hdfs_tmp_dir:
log.info('deleting %s from HDFS' % self._hdfs_tmp_dir)
try:
self._invoke_hadoop(['fs', '-rmr', self._hdfs_tmp_dir])
except Exception, e:
log.exception(e)
### LOG FETCHING/PARSING ###
def _enforce_path_regexp(self, paths, regexp, step_nums):
"""Helper for log fetching functions to filter out unwanted
logs. Keyword arguments are checked against their corresponding
regex groups.
"""
for path in paths:
m = regexp.match(path)
if (m
and (step_nums is None or
int(m.group('step_num')) in step_nums)
and (self._job_timestamp is None or
m.group('timestamp') == self._job_timestamp)):
yield path
def _ls_logs(self, relative_path):
"""List logs on the local filesystem by path relative to log root
directory
"""
return self.ls(os.path.join(self._hadoop_log_dir, relative_path))
def _fetch_counters(self, step_nums, skip_s3_wait=False):
"""Read Hadoop counters from local logs.
Args:
step_nums -- the steps belonging to us, so that we can ignore errors
from other jobs run with the same timestamp
"""
job_logs = self._enforce_path_regexp(self._ls_logs('history/'),
HADOOP_JOB_LOG_URI_RE,
step_nums)
uris = list(job_logs)
new_counters = scan_for_counters_in_files(uris, self,
self.get_hadoop_version())
# only include steps relevant to the current job
for step_num in step_nums:
self._counters.append(new_counters.get(step_num, {}))
def counters(self):
return self._counters
def _find_probable_cause_of_failure(self, step_nums):
all_task_attempt_logs = []
try:
all_task_attempt_logs.extend(self._ls_logs('userlogs/'))
except IOError:
# sometimes the master doesn't have these
pass
# TODO: get these logs from slaves if possible
task_attempt_logs = self._enforce_path_regexp(all_task_attempt_logs,
TASK_ATTEMPTS_LOG_URI_RE,
step_nums)
step_logs = self._enforce_path_regexp(self._ls_logs('steps/'),
STEP_LOG_URI_RE,
step_nums)
job_logs = self._enforce_path_regexp(self._ls_logs('history/'),
HADOOP_JOB_LOG_URI_RE,
step_nums)
log.info('Scanning logs for probable cause of failure')
return scan_logs_in_order(task_attempt_logs=task_attempt_logs,
step_logs=step_logs,
job_logs=job_logs,
runner=self)
### FILESYSTEM STUFF ###
def du(self, path_glob):
"""Get the size of a file, or None if it's not a file or doesn't
exist."""
if not is_uri(path_glob):
return super(HadoopJobRunner, self).du(path_glob)
stdout = self._invoke_hadoop(['fs', '-dus', path_glob],
return_stdout=True)
try:
return sum(int(line.split()[1])
for line in stdout.split('\n')
if line.strip())
except (ValueError, TypeError, IndexError):
raise Exception(
'Unexpected output from hadoop fs -du: %r' % stdout)
def ls(self, path_glob):
if not is_uri(path_glob):
for path in super(HadoopJobRunner, self).ls(path_glob):
yield path
return
components = urlparse(path_glob)
hdfs_prefix = '%s://%s' % (components.scheme, components.netloc)
stdout = self._invoke_hadoop(
['fs', '-lsr', path_glob],
return_stdout=True,
ok_stderr=[HADOOP_LSR_NO_SUCH_FILE])
for line in StringIO(stdout):
fields = line.rstrip('\r\n').split()
# expect lines like:
# -rw-r--r-- 3 dave users 3276 2010-01-13 14:00 /foo/bar
if len(fields) < 8:
raise Exception('unexpected ls line from hadoop: %r' % line)
# ignore directories
if fields[0].startswith('d'):
continue
# not sure if you can have spaces in filenames; just to be safe
path = ' '.join(fields[7:])
yield hdfs_prefix + path
def _cat_file(self, filename):
if is_uri(filename):
# stream from HDFS
cat_args = self._opts['hadoop_bin'] + ['fs', '-cat', filename]
log.debug('> %s' % cmd_line(cat_args))
cat_proc = Popen(cat_args, stdout=PIPE, stderr=PIPE)
def stream():
for line in cat_proc.stdout:
yield line
# there shouldn't be any stderr
for line in cat_proc.stderr:
log.error('STDERR: ' + line)
returncode = cat_proc.wait()
if returncode != 0:
raise CalledProcessError(returncode, cat_args)
return read_file(filename, stream())
else:
# read from local filesystem
return super(HadoopJobRunner, self)._cat_file(filename)
def mkdir(self, path):
self._invoke_hadoop(
['fs', '-mkdir', path], ok_stderr=[HADOOP_FILE_EXISTS_RE])
def path_exists(self, path_glob):
"""Does the given path exist?
If dest is a directory (ends with a "/"), we check if there are
any files starting with that path.
"""
if not is_uri(path_glob):
return super(HadoopJobRunner, self).path_exists(path_glob)
return bool(self._invoke_hadoop(['fs', '-test', '-e', path_glob],
ok_returncodes=(0, 1)))
def path_join(self, dirname, filename):
if is_uri(dirname):
return posixpath.join(dirname, filename)
else:
return os.path.join(dirname, filename)
def rm(self, path_glob):
if not is_uri(path_glob):
super(HadoopJobRunner, self).rm(path_glob)
if self.path_exists(path_glob):
# hadoop fs -rmr will print something like:
# Moved to trash: hdfs://hdnamenode:54310/user/dave/asdf
# to STDOUT, which we don't care about.
#
# if we ask to delete a path that doesn't exist, it prints
# to STDERR something like:
# rmr: <path>
# which we can safely ignore
self._invoke_hadoop(
['fs', '-rmr', path_glob],
return_stdout=True, ok_stderr=[HADOOP_RMR_NO_SUCH_FILE])
def touchz(self, dest):
if not is_uri(dest):
super(HadoopJobRunner, self).touchz(dest)
self._invoke_hadoop(['fs', '-touchz', dest])
|