/usr/share/pyshared/mrjob/local.py is in python-mrjob 0.3.3.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 | # Copyright 2009-2012 Yelp and Contributors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run an MRJob locally by forking off a bunch of processes and piping
them together. Useful for testing."""
from __future__ import with_statement
import itertools
import logging
import os
import shutil
import stat
from subprocess import Popen
from subprocess import PIPE
import sys
from mrjob.compat import translate_jobconf
from mrjob.conf import combine_dicts
from mrjob.conf import combine_local_envs
from mrjob.parse import find_python_traceback
from mrjob.parse import parse_mr_job_stderr
from mrjob.runner import MRJobRunner
from mrjob.util import cmd_line
from mrjob.util import read_input
from mrjob.util import unarchive
log = logging.getLogger('mrjob.local')
DEFAULT_MAP_TASKS = 2
DEFAULT_REDUCE_TASKS = 2
class LocalMRJobRunner(MRJobRunner):
"""Runs an :py:class:`~mrjob.job.MRJob` locally, for testing
purposes.
This is the default way of running jobs; we assume you'll spend some
time debugging your job before you're ready to run it on EMR or
Hadoop.
It's rare to need to instantiate this class directly (see
:py:meth:`~LocalMRJobRunner.__init__` for details).
:py:class:`LocalMRJobRunner` simulates the following jobconf variables:
* ``mapreduce.job.cache.archives``
* ``mapreduce.job.cache.files``
* ``mapreduce.job.cache.local.archives``
* ``mapreduce.job.cache.local.files``
* ``mapreduce.job.id``
* ``mapreduce.job.local.dir``
* ``mapreduce.map.input.file``
* ``mapreduce.map.input.length``
* ``mapreduce.map.input.start``
* ``mapreduce.task.attempt.id``
* ``mapreduce.task.id``
* ``mapreduce.task.ismap``
* ``mapreduce.task.output.dir``
* ``mapreduce.task.partition``
:py:class:`LocalMRJobRunner` adds the current working directory to the
subprocesses' :envvar:`PYTHONPATH`, so if you're using it to test an EMR
job locally, be aware that it may see more Python modules than will
actaully be uploaded. This behavior may change in the future.
"""
alias = 'local'
def __init__(self, **kwargs):
"""Arguments to this constructor may also appear in :file:`mrjob.conf`
under ``runners/local``.
:py:class:`~mrjob.local.LocalMRJobRunner`'s constructor takes the
same keyword args as
:py:class:`~mrjob.runner.MRJobRunner`. However, please note:
* *cmdenv* is combined with :py:func:`~mrjob.conf.combine_local_envs`
* *python_bin* defaults to ``sys.executable`` (the current python
interpreter)
* *hadoop_extra_args*, *hadoop_input_format*, *hadoop_output_format*,
*hadoop_streaming_jar*, and *partitioner* are ignored because they
require Java. If you need to test these, consider starting up a
standalone Hadoop instance and running your job with ``-r hadoop``.
"""
super(LocalMRJobRunner, self).__init__(**kwargs)
self._working_dir = None
self._prev_outfiles = []
self._counters = []
self._map_tasks = DEFAULT_MAP_TASKS
self._reduce_tasks = DEFAULT_REDUCE_TASKS
# jobconf variables set by our own job (e.g. files "uploaded")
#
# By convention, we use the Hadoop 0.21 (newer) versions of the
# jobconf variables internally (they get auto-translated before
# running the job)
self._internal_jobconf = {}
@classmethod
def _default_opts(cls):
"""A dictionary giving the default value of options."""
return combine_dicts(super(LocalMRJobRunner, cls)._default_opts(), {
# prefer whatever interpreter we're currently using
'python_bin': [sys.executable or 'python'],
})
@classmethod
def _opts_combiners(cls):
# on windows, PYTHONPATH should use ;, not :
return combine_dicts(
super(LocalMRJobRunner, cls)._opts_combiners(),
{'cmdenv': combine_local_envs})
# options that we ignore because they require real Hadoop
IGNORED_HADOOP_OPTS = [
'hadoop_extra_args',
'hadoop_streaming_jar',
]
# keyword arguments that we ignore that are stored directly in
# self._<kwarg_name> because they aren't configurable from mrjob.conf
# use the version with the underscore to better support grepping our code
IGNORED_HADOOP_ATTRS = [
'_hadoop_input_format',
'_hadoop_output_format',
'_partitioner',
]
def _run(self):
if self._opts['bootstrap_mrjob']:
self._add_python_archive(self._create_mrjob_tar_gz() + '#')
for ignored_opt in self.IGNORED_HADOOP_OPTS:
if self._opts[ignored_opt]:
log.warning('ignoring %s option (requires real Hadoop): %r' %
(ignored_opt, self._opts[ignored_opt]))
for ignored_attr in self.IGNORED_HADOOP_ATTRS:
value = getattr(self, ignored_attr)
if value is not None:
log.warning(
'ignoring %s keyword arg (requires real Hadoop): %r' %
(ignored_attr[1:], value))
self._create_wrapper_script()
self._setup_working_dir()
self._setup_output_dir()
# process jobconf arguments
jobconf = self._opts['jobconf']
self._process_jobconf_args(jobconf)
assert self._script # shouldn't be able to run if no script
wrapper_args = self._opts['python_bin']
if self._wrapper_script:
wrapper_args = (self._opts['python_bin'] +
[self._wrapper_script['name']] +
wrapper_args)
# run mapper, combiner, sort, reducer for each step
for i, step in enumerate(self._get_steps()):
self._counters.append({})
# run the mapper
mapper_args = (wrapper_args + [self._script['name'],
'--step-num=%d' % i, '--mapper'] +
self._mr_job_extra_args())
combiner_args = []
if 'C' in step:
combiner_args = (wrapper_args + [self._script['name'],
'--step-num=%d' % i, '--combiner'] +
self._mr_job_extra_args())
self._invoke_step(mapper_args, 'step-%d-mapper' % i,
step_num=i, step_type='M',
num_tasks=self._map_tasks,
combiner_args=combiner_args)
if 'R' in step:
# sort the output. Treat this as a mini-step for the purpose
# of self._prev_outfiles
sort_output_path = os.path.join(
self._get_local_tmp_dir(), 'step-%d-mapper-sorted' % i)
self._invoke_sort(self._step_input_paths(), sort_output_path)
self._prev_outfiles = [sort_output_path]
# run the reducer
reducer_args = (wrapper_args + [self._script['name'],
'--step-num=%d' % i, '--reducer'] +
self._mr_job_extra_args())
self._invoke_step(reducer_args, 'step-%d-reducer' % i,
step_num=i, step_type='R',
num_tasks=self._reduce_tasks)
# move final output to output directory
for i, outfile in enumerate(self._prev_outfiles):
final_outfile = os.path.join(self._output_dir, 'part-%05d' % i)
log.info('Moving %s -> %s' % (outfile, final_outfile))
shutil.move(outfile, final_outfile)
def _process_jobconf_args(self, jobconf):
if jobconf:
for (conf_arg, value) in jobconf.iteritems():
# Internally, use one canonical Hadoop version
canon_arg = translate_jobconf(conf_arg, '0.21')
if canon_arg == 'mapreduce.job.maps':
self._map_tasks = int(value)
if self._map_tasks < 1:
raise ValueError(
'%s should be at least 1' % conf_arg)
elif canon_arg == 'mapreduce.job.reduces':
self._reduce_tasks = int(value)
if self._reduce_tasks < 1:
raise ValueError('%s should be at least 1' % conf_arg)
elif canon_arg == 'mapreduce.job.local.dir':
# Hadoop supports multiple direcories. Sticking with only
# one here
if not os.path.isdir(value):
raise IOError("Directory %s does not exist" % value)
self._working_dir = value
def _setup_working_dir(self):
"""Make a working directory with symlinks to our script and
external files. Return name of the script"""
# specify that we want to upload our script along with other files
if self._script:
self._script['upload'] = 'file'
if self._wrapper_script:
self._wrapper_script['upload'] = 'file'
# create the working directory
if not self._working_dir:
self._working_dir = os.path.join(
self._get_local_tmp_dir(), 'working_dir')
self.mkdir(self._working_dir)
# give all our files names, and symlink or unarchive them
self._name_files()
for file_dict in self._files:
path = file_dict['path']
name = file_dict['name']
dest = os.path.join(self._working_dir, name)
if file_dict.get('upload') == 'file':
self._symlink_to_file_or_copy(path, dest)
elif file_dict.get('upload') == 'archive':
log.debug('unarchiving %s -> %s' % (path, dest))
unarchive(path, dest)
def _setup_output_dir(self):
if not self._output_dir:
self._output_dir = os.path.join(
self._get_local_tmp_dir(), 'output')
if not os.path.isdir(self._output_dir):
log.debug('Creating output directory %s' % self._output_dir)
self.mkdir(self._output_dir)
def _symlink_to_file_or_copy(self, path, dest):
"""Symlink from *dest* to the absolute version of *path*.
If symlinks aren't available, copy *path* to *dest* instead."""
if hasattr(os, 'symlink'):
path = os.path.abspath(path)
log.debug('creating symlink %s <- %s' % (path, dest))
os.symlink(path, dest)
else:
log.debug('copying %s -> %s' % (path, dest))
shutil.copyfile(path, dest)
def _get_file_splits(self, input_paths, num_splits, keep_sorted=False):
""" Split the input files into (roughly) *num_splits* files. Gzipped
files are not split, but each gzipped file counts as one split.
:param input_paths: Iterable of paths to be split
:param num_splits: Number of splits to target
:param keep_sorted: If True, group lines by key
Returns a dictionary that maps split_file names to a dictionary of
properties:
* *orig_name*: the original name of the file whose data is in
the split
* *start*: where the split starts
* *length*: the length of the split
"""
# sanity check: if keep_sorted is True, we should only have one file
assert(not keep_sorted or len(input_paths) == 1)
file_names = {}
input_paths_to_split = []
for input_path in input_paths:
for path in self.ls(input_path):
if path.endswith('.gz'):
# do not split compressed files
file_names[path] = {
'orig_name': path,
'start': 0,
'length': os.stat(path)[stat.ST_SIZE],
}
# this counts as "one split"
num_splits -= 1
else:
# do split uncompressed files
input_paths_to_split.append(path)
# exit early if no uncompressed files given
if not input_paths_to_split:
return file_names
# account for user giving fewer splits than there are compressed files
num_splits = max(num_splits, 1)
# determine the size of each file split
total_size = 0
for input_path in input_paths_to_split:
for path in self.ls(input_path):
total_size += os.stat(path)[stat.ST_SIZE]
split_size = total_size / num_splits
# we want each file split to be as close to split_size as possible
# we also want different input files to be in different splits
tmp_directory = self._get_local_tmp_dir()
# Helper functions:
def create_outfile(orig_name='', start=''):
# create a new output file and initialize its properties dict
outfile_name = os.path.join(tmp_directory,
'input_part-%05d' % len(file_names))
new_file = {
'orig_name': orig_name,
'start': start,
}
file_names[outfile_name] = new_file
return outfile_name
def line_group_generator(input_path):
# Generate lines from a given input_path, if keep_sorted is True,
# group lines by key; otherwise have one line per group
# concatenate all lines with the same key and yield them
# together
if keep_sorted:
def reducer_key(line):
return line.split('\t')[0]
# assume that input is a collection of key <tab> value pairs
# match all non-tab characters
for _, lines in itertools.groupby(
read_input(input_path), key=reducer_key):
yield lines
else:
for line in read_input(input_path):
yield (line,)
for path in input_paths_to_split:
# create a new split file for each new path
# initialize file and accumulators
outfile_name = create_outfile(path, 0)
bytes_written = 0
total_bytes = 0
outfile = None
try:
outfile = open(outfile_name, 'w')
# write each line to a file as long as we are within the limit
# (split_size)
for line_group in line_group_generator(path):
if bytes_written >= split_size:
# new split file if we exceeded the limit
file_names[outfile_name]['length'] = bytes_written
total_bytes += bytes_written
outfile_name = create_outfile(path, total_bytes)
outfile.close()
outfile = open(outfile_name, 'w')
bytes_written = 0
for line in line_group:
outfile.write(line)
bytes_written += len(line)
file_names[outfile_name]['length'] = bytes_written
finally:
if not outfile is None:
outfile.close()
return file_names
def _step_input_paths(self):
"""Decide where to get input for a step. Dump stdin to a temp file
if need be."""
if self._prev_outfiles:
return self._prev_outfiles
else:
input_paths = []
for path in self._input_paths:
if path == '-':
input_paths.append(self._dump_stdin_to_local_file())
else:
input_paths.append(path)
return input_paths
def _invoke_step(self, args, outfile_name, step_num=0, num_tasks=1,
step_type='M', combiner_args=None):
"""Run the given command, outputting into outfile, and reading
from the previous outfile (or, for the first step, from our
original output files).
outfile is a path relative to our local tmp dir. commands are run
inside self._working_dir
We'll intelligently handle stderr from the process.
:param combiner_args: If this mapper has a combiner, we need to do
some extra shell wrangling, so pass the combiner
arguments in separately.
"""
# get file splits for mappers and reducers
keep_sorted = (step_type == 'R')
file_splits = self._get_file_splits(
self._step_input_paths(), num_tasks, keep_sorted=keep_sorted)
# Start the tasks associated with the step:
# if we need to sort, then just sort all input files into one file
# otherwise, split the files needed for mappers and reducers
# and setup the task environment for each
all_proc_dicts = []
self._prev_outfiles = []
for task_num, file_name in enumerate(file_splits):
# setup environment variables
if step_type == 'M':
env = self._subprocess_env(
step_type, step_num, task_num,
# mappers have extra file split info
input_file=file_splits[file_name]['orig_name'],
input_start=file_splits[file_name]['start'],
input_length=file_splits[file_name]['length'])
else:
env = self._subprocess_env(step_type, step_num, task_num)
task_outfile = outfile_name + '_part-%05d' % task_num
proc_dicts = self._invoke_process(args + [file_name], task_outfile,
env=env,
combiner_args=combiner_args)
all_proc_dicts.extend(proc_dicts)
for proc_dict in all_proc_dicts:
self._wait_for_process(proc_dict, step_num)
self.print_counters([step_num + 1])
def _subprocess_env(self, step_type, step_num, task_num, input_file=None,
input_start=None, input_length=None):
"""Set up environment variables for a subprocess (mapper, etc.)
This combines, in decreasing order of priority:
* environment variables set by the **cmdenv** option
* **jobconf** environment variables set by our job (e.g.
``mapreduce.task.ismap`)
* environment variables from **jobconf** options, translated to
whatever version of Hadoop we're emulating
* the current environment
* PYTHONPATH set to current working directory
We use :py:func:`~mrjob.conf.combine_local_envs`, so ``PATH``
environment variables are handled specially.
"""
version = self.get_hadoop_version()
jobconf_env = dict(
(translate_jobconf(k, version).replace('.', '_'), str(v))
for (k, v) in self._opts['jobconf'].iteritems())
internal_jobconf = self._simulate_jobconf_for_step(
step_type, step_num, task_num, input_file=input_file,
input_start=input_start, input_length=input_length)
internal_jobconf_env = dict(
(translate_jobconf(k, version).replace('.', '_'), str(v))
for (k, v) in internal_jobconf.iteritems())
# keep the current environment because we need PATH to find binaries
# and make PYTHONPATH work
return combine_local_envs({'PYTHONPATH': os.getcwd()},
os.environ,
jobconf_env,
internal_jobconf_env,
self._get_cmdenv())
def _simulate_jobconf_for_step(self, step_type, step_num, task_num,
input_file=None, input_start=None, input_length=None):
"""Simulate jobconf variables set by Hadoop to indicate input
files, files uploaded, working directory, etc. for a particular step.
Returns a dictionary mapping jobconf variable name
(e.g. ``'mapreduce.map.input.file'``) to its value, which is always
a string.
We use the newer (Hadoop 0.21+) jobconf names; these will be
translated to the correct Hadoop version elsewhere.
"""
j = {} # our final results
j['mapreduce.job.id'] = self._job_name
j['mapreduce.job.local.dir'] = self._working_dir
j['mapreduce.task.output.dir'] = self._output_dir
# archives and files for jobconf
cache_archives = []
cache_files = []
cache_local_archives = []
cache_local_files = []
for file_dict in self._files:
path = file_dict['path']
name = file_dict['name']
dest = os.path.join(self._working_dir, name)
if file_dict.get('upload') == 'file':
cache_files.append('%s#%s' % (path, name))
cache_local_files.append(dest)
elif file_dict.get('upload') == 'archive':
cache_archives.append('%s#%s' % (path, name))
cache_local_archives.append(dest)
# could add mtime info here too (e.g.
# mapreduce.job.cache.archives.timestamps) here too, though we should
# probably cache that in self._files
j['mapreduce.job.cache.files'] = (','.join(cache_files))
j['mapreduce.job.cache.local.files'] = (','.join(cache_local_files))
j['mapreduce.job.cache.archives'] = (','.join(cache_archives))
j['mapreduce.job.cache.local.archives'] = (
','.join(cache_local_archives))
# task and attempt IDs
j['mapreduce.task.id'] = 'task_%s_%s_%05d%d' % (
self._job_name, step_type.lower(), step_num, task_num)
# (we only have one attempt)
j['mapreduce.task.attempt.id'] = 'attempt_%s_%s_%05d%d_0' % (
self._job_name, step_type.lower(), step_num, task_num)
# not actually sure what's correct for combiners here. It'll definitely
# be true if we're just using pipes to simulate a combiner though
j['mapreduce.task.ismap'] = str(step_type in ('M', 'C')).lower()
j['mapreduce.task.partition'] = str(task_num)
if input_file is not None:
j['mapreduce.map.input.file'] = input_file
if input_start is not None:
j['mapreduce.map.input.start'] = str(input_start)
if input_length is not None:
j['mapreduce.map.input.length'] = str(input_length)
return j
def _invoke_process(self, args, outfile_name, env, combiner_args=None):
"""invoke the process described by *args* and write to *outfile_name*
:param combiner_args: If this mapper has a combiner, we need to do
some extra shell wrangling, so pass the combiner
arguments in separately.
:return: dict(proc=Popen, args=[process args], write_to=file)
"""
if combiner_args:
log.info('> %s | sort | %s' %
(cmd_line(args), cmd_line(combiner_args)))
else:
log.info('> %s' % cmd_line(args))
# set up outfile
outfile = os.path.join(self._get_local_tmp_dir(), outfile_name)
log.info('writing to %s' % outfile)
self._prev_outfiles.append(outfile)
with open(outfile, 'w') as write_to:
if combiner_args:
# set up a pipeline: mapper | sort | combiner
mapper_proc = Popen(args, stdout=PIPE, stderr=PIPE,
cwd=self._working_dir, env=env)
sort_proc = Popen(['sort'], stdin=mapper_proc.stdout,
stdout=PIPE, stderr=PIPE,
cwd=self._working_dir, env=env)
combiner_proc = Popen(combiner_args, stdin=sort_proc.stdout,
stdout=write_to, stderr=PIPE,
cwd=self._working_dir, env=env)
# this process shouldn't read from the pipes
mapper_proc.stdout.close()
sort_proc.stdout.close()
return [
{'proc': mapper_proc, 'args': args},
{'proc': sort_proc, 'args': ['sort']},
{'proc': combiner_proc, 'args': combiner_args},
]
else:
# just run the mapper process
proc = Popen(args, stdout=write_to, stderr=PIPE,
cwd=self._working_dir, env=env)
return [{'proc': proc, 'args': args}]
def _wait_for_process(self, proc_dict, step_num):
# handle counters, status msgs, and other stuff on stderr
stderr_lines = self._process_stderr_from_script(
proc_dict['proc'].stderr, step_num=step_num)
tb_lines = find_python_traceback(stderr_lines)
returncode = proc_dict['proc'].wait()
if returncode != 0:
self.print_counters([step_num + 1])
# try to throw a useful exception
if tb_lines:
raise Exception(
'Command %r returned non-zero exit status %d:\n%s' %
(proc_dict['args'], returncode, ''.join(tb_lines)))
else:
raise Exception(
'Command %r returned non-zero exit status %d' %
(proc_dict['args'], returncode))
def _process_stderr_from_script(self, stderr, step_num=0):
"""Handle stderr a line at time:
* for counter lines, store counters
* for status message, log the status change
* for all other lines, log an error, and yield the lines
"""
for line in stderr:
# just pass one line at a time to parse_mr_job_stderr(),
# so we can print error and status messages in realtime
parsed = parse_mr_job_stderr(
[line], counters=self._counters[step_num])
# in practice there's only going to be at most one line in
# one of these lists, but the code is cleaner this way
for status in parsed['statuses']:
log.info('status: %s' % status)
for line in parsed['other']:
log.error('STDERR: %s' % line.rstrip('\r\n'))
yield line
def counters(self):
return self._counters
def get_hadoop_version(self):
return self._opts['hadoop_version']
|