/usr/lib/python2.7/dist-packages/nltk/tgrep.py is in python-nltk 3.2.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Natural Language Toolkit: TGrep search
#
# Copyright (C) 2001-2016 NLTK Project
# Author: Will Roberts <wildwilhelm@gmail.com>
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
'''
============================================
TGrep search implementation for NLTK trees
============================================
This module supports TGrep2 syntax for matching parts of NLTK Trees.
Note that many tgrep operators require the tree passed to be a
``ParentedTree``.
External links:
- `Tgrep tutorial <http://www.stanford.edu/dept/linguistics/corpora/cas-tut-tgrep.html>`_
- `Tgrep2 manual <http://tedlab.mit.edu/~dr/Tgrep2/tgrep2.pdf>`_
- `Tgrep2 source <http://tedlab.mit.edu/~dr/Tgrep2/>`_
Usage
=====
>>> from nltk.tree import ParentedTree
>>> from nltk.tgrep import tgrep_nodes, tgrep_positions
>>> tree = ParentedTree.fromstring('(S (NP (DT the) (JJ big) (NN dog)) (VP bit) (NP (DT a) (NN cat)))')
>>> list(tgrep_nodes('NN', [tree]))
[[ParentedTree('NN', ['dog']), ParentedTree('NN', ['cat'])]]
>>> list(tgrep_positions('NN', [tree]))
[[(0, 2), (2, 1)]]
>>> list(tgrep_nodes('DT', [tree]))
[[ParentedTree('DT', ['the']), ParentedTree('DT', ['a'])]]
>>> list(tgrep_nodes('DT $ JJ', [tree]))
[[ParentedTree('DT', ['the'])]]
This implementation adds syntax to select nodes based on their NLTK
tree position. This syntax is ``N`` plus a Python tuple representing
the tree position. For instance, ``N()``, ``N(0,)``, ``N(0,0)`` are
valid node selectors. Example:
>>> tree = ParentedTree.fromstring('(S (NP (DT the) (JJ big) (NN dog)) (VP bit) (NP (DT a) (NN cat)))')
>>> tree[0,0]
ParentedTree('DT', ['the'])
>>> tree[0,0].treeposition()
(0, 0)
>>> list(tgrep_nodes('N(0,0)', [tree]))
[[ParentedTree('DT', ['the'])]]
Caveats:
========
- Link modifiers: "?" and "=" are not implemented.
- Tgrep compatibility: Using "@" for "!", "{" for "<", "}" for ">" are
not implemented.
- The "=" and "~" links are not implemented.
Known Issues:
=============
- There are some issues with link relations involving leaf nodes
(which are represented as bare strings in NLTK trees). For
instance, consider the tree::
(S (A x))
The search string ``* !>> S`` should select all nodes which are not
dominated in some way by an ``S`` node (i.e., all nodes which are
not descendants of an ``S``). Clearly, in this tree, the only node
which fulfills this criterion is the top node (since it is not
dominated by anything). However, the code here will find both the
top node and the leaf node ``x``. This is because we cannot recover
the parent of the leaf, since it is stored as a bare string.
A possible workaround, when performing this kind of search, would be
to filter out all leaf nodes.
Implementation notes
====================
This implementation is (somewhat awkwardly) based on lambda functions
which are predicates on a node. A predicate is a function which is
either True or False; using a predicate function, we can identify sets
of nodes with particular properties. A predicate function, could, for
instance, return True only if a particular node has a label matching a
particular regular expression, and has a daughter node which has no
sisters. Because tgrep2 search strings can do things statefully (such
as substituting in macros, and binding nodes with node labels), the
actual predicate function is declared with three arguments::
pred = lambda n, m, l: return True # some logic here
``n``
is a node in a tree; this argument must always be given
``m``
contains a dictionary, mapping macro names onto predicate functions
``l``
is a dictionary to map node labels onto nodes in the tree
``m`` and ``l`` are declared to default to ``None``, and so need not be
specified in a call to a predicate. Predicates which call other
predicates must always pass the value of these arguments on. The
top-level predicate (constructed by ``_tgrep_exprs_action``) binds the
macro definitions to ``m`` and initialises ``l`` to an empty dictionary.
'''
from __future__ import absolute_import, print_function, unicode_literals
from nltk.compat import binary_type, text_type
import functools
import nltk.tree
try:
import pyparsing
except ImportError:
print('Warning: nltk.tgrep will not work without the `pyparsing` package')
print('installed.')
import re
class TgrepException(Exception):
'''Tgrep exception type.'''
pass
def ancestors(node):
'''
Returns the list of all nodes dominating the given tree node.
This method will not work with leaf nodes, since there is no way
to recover the parent.
'''
results = []
try:
current = node.parent()
except AttributeError:
# if node is a leaf, we cannot retrieve its parent
return results
while current:
results.append(current)
current = current.parent()
return results
def unique_ancestors(node):
'''
Returns the list of all nodes dominating the given node, where
there is only a single path of descent.
'''
results = []
try:
current = node.parent()
except AttributeError:
# if node is a leaf, we cannot retrieve its parent
return results
while current and len(current) == 1:
results.append(current)
current = current.parent()
return results
def _descendants(node):
'''
Returns the list of all nodes which are descended from the given
tree node in some way.
'''
try:
treepos = node.treepositions()
except AttributeError:
return []
return [node[x] for x in treepos[1:]]
def _leftmost_descendants(node):
'''
Returns the set of all nodes descended in some way through
left branches from this node.
'''
try:
treepos = node.treepositions()
except AttributeError:
return []
return [node[x] for x in treepos[1:] if all(y == 0 for y in x)]
def _rightmost_descendants(node):
'''
Returns the set of all nodes descended in some way through
right branches from this node.
'''
try:
rightmost_leaf = max(node.treepositions())
except AttributeError:
return []
return [node[rightmost_leaf[:i]] for i in range(1, len(rightmost_leaf) + 1)]
def _istree(obj):
'''Predicate to check whether `obj` is a nltk.tree.Tree.'''
return isinstance(obj, nltk.tree.Tree)
def _unique_descendants(node):
'''
Returns the list of all nodes descended from the given node, where
there is only a single path of descent.
'''
results = []
current = node
while current and _istree(current) and len(current) == 1:
current = current[0]
results.append(current)
return results
def _before(node):
'''
Returns the set of all nodes that are before the given node.
'''
try:
pos = node.treeposition()
tree = node.root()
except AttributeError:
return []
return [tree[x] for x in tree.treepositions()
if x[:len(pos)] < pos[:len(x)]]
def _immediately_before(node):
'''
Returns the set of all nodes that are immediately before the given
node.
Tree node A immediately precedes node B if the last terminal
symbol (word) produced by A immediately precedes the first
terminal symbol produced by B.
'''
try:
pos = node.treeposition()
tree = node.root()
except AttributeError:
return []
# go "upwards" from pos until there is a place we can go to the left
idx = len(pos) - 1
while 0 <= idx and pos[idx] == 0:
idx -= 1
if idx < 0:
return []
pos = list(pos[:idx + 1])
pos[-1] -= 1
before = tree[pos]
return [before] + _rightmost_descendants(before)
def _after(node):
'''
Returns the set of all nodes that are after the given node.
'''
try:
pos = node.treeposition()
tree = node.root()
except AttributeError:
return []
return [tree[x] for x in tree.treepositions()
if x[:len(pos)] > pos[:len(x)]]
def _immediately_after(node):
'''
Returns the set of all nodes that are immediately after the given
node.
Tree node A immediately follows node B if the first terminal
symbol (word) produced by A immediately follows the last
terminal symbol produced by B.
'''
try:
pos = node.treeposition()
tree = node.root()
current = node.parent()
except AttributeError:
return []
# go "upwards" from pos until there is a place we can go to the
# right
idx = len(pos) - 1
while 0 <= idx and pos[idx] == len(current) - 1:
idx -= 1
current = current.parent()
if idx < 0:
return []
pos = list(pos[:idx + 1])
pos[-1] += 1
after = tree[pos]
return [after] + _leftmost_descendants(after)
def _tgrep_node_literal_value(node):
'''
Gets the string value of a given parse tree node, for comparison
using the tgrep node literal predicates.
'''
return (node.label() if _istree(node) else text_type(node))
def _tgrep_macro_use_action(_s, _l, tokens):
'''
Builds a lambda function which looks up the macro name used.
'''
assert len(tokens) == 1
assert tokens[0][0] == '@'
macro_name = tokens[0][1:]
def macro_use(n, m=None, l=None):
if m is None or macro_name not in m:
raise TgrepException('macro {0} not defined'.format(macro_name))
return m[macro_name](n, m, l)
return macro_use
def _tgrep_node_action(_s, _l, tokens):
'''
Builds a lambda function representing a predicate on a tree node
depending on the name of its node.
'''
# print 'node tokens: ', tokens
if tokens[0] == "'":
# strip initial apostrophe (tgrep2 print command)
tokens = tokens[1:]
if len(tokens) > 1:
# disjunctive definition of a node name
assert list(set(tokens[1::2])) == ['|']
# recursively call self to interpret each node name definition
tokens = [_tgrep_node_action(None, None, [node])
for node in tokens[::2]]
# capture tokens and return the disjunction
return (lambda t: lambda n, m=None, l=None: any(f(n, m, l) for f in t))(tokens)
else:
if hasattr(tokens[0], '__call__'):
# this is a previously interpreted parenthetical node
# definition (lambda function)
return tokens[0]
elif tokens[0] == '*' or tokens[0] == '__':
return lambda n, m=None, l=None: True
elif tokens[0].startswith('"'):
assert tokens[0].endswith('"')
node_lit = tokens[0][1:-1].replace('\\"', '"').replace('\\\\', '\\')
return (lambda s: lambda n, m=None, l=None: _tgrep_node_literal_value(n) == s)(node_lit)
elif tokens[0].startswith('/'):
assert tokens[0].endswith('/')
node_lit = tokens[0][1:-1]
return (lambda r: lambda n, m=None, l=None:
r.search(_tgrep_node_literal_value(n)))(re.compile(node_lit))
elif tokens[0].startswith('i@'):
node_func = _tgrep_node_action(_s, _l, [tokens[0][2:].lower()])
return (lambda f: lambda n, m=None, l=None:
f(_tgrep_node_literal_value(n).lower()))(node_func)
else:
return (lambda s: lambda n, m=None, l=None:
_tgrep_node_literal_value(n) == s)(tokens[0])
def _tgrep_parens_action(_s, _l, tokens):
'''
Builds a lambda function representing a predicate on a tree node
from a parenthetical notation.
'''
# print 'parenthetical tokens: ', tokens
assert len(tokens) == 3
assert tokens[0] == '('
assert tokens[2] == ')'
return tokens[1]
def _tgrep_nltk_tree_pos_action(_s, _l, tokens):
'''
Builds a lambda function representing a predicate on a tree node
which returns true if the node is located at a specific tree
position.
'''
# recover the tuple from the parsed sting
node_tree_position = tuple(int(x) for x in tokens if x.isdigit())
# capture the node's tree position
return (lambda i: lambda n, m=None, l=None: (hasattr(n, 'treeposition') and
n.treeposition() == i))(node_tree_position)
def _tgrep_relation_action(_s, _l, tokens):
'''
Builds a lambda function representing a predicate on a tree node
depending on its relation to other nodes in the tree.
'''
# print 'relation tokens: ', tokens
# process negation first if needed
negated = False
if tokens[0] == '!':
negated = True
tokens = tokens[1:]
if tokens[0] == '[':
# process square-bracketed relation expressions
assert len(tokens) == 3
assert tokens[2] == ']'
retval = tokens[1]
else:
# process operator-node relation expressions
assert len(tokens) == 2
operator, predicate = tokens
# A < B A is the parent of (immediately dominates) B.
if operator == '<':
retval = lambda n, m=None, l=None: (_istree(n) and
any(predicate(x, m, l) for x in n))
# A > B A is the child of B.
elif operator == '>':
retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
bool(n.parent()) and
predicate(n.parent(), m, l))
# A <, B Synonymous with A <1 B.
elif operator == '<,' or operator == '<1':
retval = lambda n, m=None, l=None: (_istree(n) and
bool(list(n)) and
predicate(n[0], m, l))
# A >, B Synonymous with A >1 B.
elif operator == '>,' or operator == '>1':
retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
bool(n.parent()) and
(n is n.parent()[0]) and
predicate(n.parent(), m, l))
# A <N B B is the Nth child of A (the first child is <1).
elif operator[0] == '<' and operator[1:].isdigit():
idx = int(operator[1:])
# capture the index parameter
retval = (lambda i: lambda n, m=None, l=None: (_istree(n) and
bool(list(n)) and
0 <= i < len(n) and
predicate(n[i], m, l)))(idx - 1)
# A >N B A is the Nth child of B (the first child is >1).
elif operator[0] == '>' and operator[1:].isdigit():
idx = int(operator[1:])
# capture the index parameter
retval = (lambda i: lambda n, m=None, l=None: (hasattr(n, 'parent') and
bool(n.parent()) and
0 <= i < len(n.parent()) and
(n is n.parent()[i]) and
predicate(n.parent(), m, l)))(idx - 1)
# A <' B B is the last child of A (also synonymous with A <-1 B).
# A <- B B is the last child of A (synonymous with A <-1 B).
elif operator == '<\'' or operator == '<-' or operator == '<-1':
retval = lambda n, m=None, l=None: (_istree(n) and bool(list(n))
and predicate(n[-1], m, l))
# A >' B A is the last child of B (also synonymous with A >-1 B).
# A >- B A is the last child of B (synonymous with A >-1 B).
elif operator == '>\'' or operator == '>-' or operator == '>-1':
retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
bool(n.parent()) and
(n is n.parent()[-1]) and
predicate(n.parent(), m, l))
# A <-N B B is the N th-to-last child of A (the last child is <-1).
elif operator[:2] == '<-' and operator[2:].isdigit():
idx = -int(operator[2:])
# capture the index parameter
retval = (lambda i: lambda n, m=None, l=None: (_istree(n) and
bool(list(n)) and
0 <= (i + len(n)) < len(n) and
predicate(n[i + len(n)], m, l)))(idx)
# A >-N B A is the N th-to-last child of B (the last child is >-1).
elif operator[:2] == '>-' and operator[2:].isdigit():
idx = -int(operator[2:])
# capture the index parameter
retval = (lambda i: lambda n, m=None, l=None:
(hasattr(n, 'parent') and
bool(n.parent()) and
0 <= (i + len(n.parent())) < len(n.parent()) and
(n is n.parent()[i + len(n.parent())]) and
predicate(n.parent(), m, l)))(idx)
# A <: B B is the only child of A
elif operator == '<:':
retval = lambda n, m=None, l=None: (_istree(n) and
len(n) == 1 and
predicate(n[0], m, l))
# A >: B A is the only child of B.
elif operator == '>:':
retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
bool(n.parent()) and
len(n.parent()) == 1 and
predicate(n.parent(), m, l))
# A << B A dominates B (A is an ancestor of B).
elif operator == '<<':
retval = lambda n, m=None, l=None: (_istree(n) and
any(predicate(x, m, l) for x in _descendants(n)))
# A >> B A is dominated by B (A is a descendant of B).
elif operator == '>>':
retval = lambda n, m=None, l=None: any(predicate(x, m, l) for x in ancestors(n))
# A <<, B B is a left-most descendant of A.
elif operator == '<<,' or operator == '<<1':
retval = lambda n, m=None, l=None: (_istree(n) and
any(predicate(x, m, l)
for x in _leftmost_descendants(n)))
# A >>, B A is a left-most descendant of B.
elif operator == '>>,':
retval = lambda n, m=None, l=None: any((predicate(x, m, l) and
n in _leftmost_descendants(x))
for x in ancestors(n))
# A <<' B B is a right-most descendant of A.
elif operator == '<<\'':
retval = lambda n, m=None, l=None: (_istree(n) and
any(predicate(x, m, l)
for x in _rightmost_descendants(n)))
# A >>' B A is a right-most descendant of B.
elif operator == '>>\'':
retval = lambda n, m=None, l=None: any((predicate(x, m, l) and
n in _rightmost_descendants(x))
for x in ancestors(n))
# A <<: B There is a single path of descent from A and B is on it.
elif operator == '<<:':
retval = lambda n, m=None, l=None: (_istree(n) and
any(predicate(x, m, l)
for x in _unique_descendants(n)))
# A >>: B There is a single path of descent from B and A is on it.
elif operator == '>>:':
retval = lambda n, m=None, l=None: any(predicate(x, m, l) for x in unique_ancestors(n))
# A . B A immediately precedes B.
elif operator == '.':
retval = lambda n, m=None, l=None: any(predicate(x, m, l)
for x in _immediately_after(n))
# A , B A immediately follows B.
elif operator == ',':
retval = lambda n, m=None, l=None: any(predicate(x, m, l)
for x in _immediately_before(n))
# A .. B A precedes B.
elif operator == '..':
retval = lambda n, m=None, l=None: any(predicate(x, m, l) for x in _after(n))
# A ,, B A follows B.
elif operator == ',,':
retval = lambda n, m=None, l=None: any(predicate(x, m, l) for x in _before(n))
# A $ B A is a sister of B (and A != B).
elif operator == '$' or operator == '%':
retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
bool(n.parent()) and
any(predicate(x, m, l)
for x in n.parent() if x is not n))
# A $. B A is a sister of and immediately precedes B.
elif operator == '$.' or operator == '%.':
retval = lambda n, m=None, l=None: (hasattr(n, 'right_sibling') and
bool(n.right_sibling()) and
predicate(n.right_sibling(), m, l))
# A $, B A is a sister of and immediately follows B.
elif operator == '$,' or operator == '%,':
retval = lambda n, m=None, l=None: (hasattr(n, 'left_sibling') and
bool(n.left_sibling()) and
predicate(n.left_sibling(), m, l))
# A $.. B A is a sister of and precedes B.
elif operator == '$..' or operator == '%..':
retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
hasattr(n, 'parent_index') and
bool(n.parent()) and
any(predicate(x, m, l) for x in
n.parent()[n.parent_index() + 1:]))
# A $,, B A is a sister of and follows B.
elif operator == '$,,' or operator == '%,,':
retval = lambda n, m=None, l=None: (hasattr(n, 'parent') and
hasattr(n, 'parent_index') and
bool(n.parent()) and
any(predicate(x, m, l) for x in
n.parent()[:n.parent_index()]))
else:
raise TgrepException(
'cannot interpret tgrep operator "{0}"'.format(operator))
# now return the built function
if negated:
return (lambda r: (lambda n, m=None, l=None: not r(n, m, l)))(retval)
else:
return retval
def _tgrep_conjunction_action(_s, _l, tokens, join_char = '&'):
'''
Builds a lambda function representing a predicate on a tree node
from the conjunction of several other such lambda functions.
This is prototypically called for expressions like
(`tgrep_rel_conjunction`)::
< NP & < AP < VP
where tokens is a list of predicates representing the relations
(`< NP`, `< AP`, and `< VP`), possibly with the character `&`
included (as in the example here).
This is also called for expressions like (`tgrep_node_expr2`)::
NP < NN
S=s < /NP/=n : s < /VP/=v : n .. v
tokens[0] is a tgrep_expr predicate; tokens[1:] are an (optional)
list of segmented patterns (`tgrep_expr_labeled`, processed by
`_tgrep_segmented_pattern_action`).
'''
# filter out the ampersand
tokens = [x for x in tokens if x != join_char]
# print 'relation conjunction tokens: ', tokens
if len(tokens) == 1:
return tokens[0]
else:
return (lambda ts: lambda n, m=None, l=None: all(predicate(n, m, l)
for predicate in ts))(tokens)
def _tgrep_segmented_pattern_action(_s, _l, tokens):
'''
Builds a lambda function representing a segmented pattern.
Called for expressions like (`tgrep_expr_labeled`)::
=s .. =v < =n
This is a segmented pattern, a tgrep2 expression which begins with
a node label.
The problem is that for segemented_pattern_action (': =v < =s'),
the first element (in this case, =v) is specifically selected by
virtue of matching a particular node in the tree; to retrieve
the node, we need the label, not a lambda function. For node
labels inside a tgrep_node_expr, we need a lambda function which
returns true if the node visited is the same as =v.
We solve this by creating two copies of a node_label_use in the
grammar; the label use inside a tgrep_expr_labeled has a separate
parse action to the pred use inside a node_expr. See
`_tgrep_node_label_use_action` and
`_tgrep_node_label_pred_use_action`.
'''
# tokens[0] is a string containing the node label
node_label = tokens[0]
# tokens[1:] is an (optional) list of predicates which must all
# hold of the bound node
reln_preds = tokens[1:]
def pattern_segment_pred(n, m=None, l=None):
'''This predicate function ignores its node argument.'''
# look up the bound node using its label
if l is None or node_label not in l:
raise TgrepException('node_label ={0} not bound in pattern'.format(
node_label))
node = l[node_label]
# match the relation predicates against the node
return all(pred(node, m, l) for pred in reln_preds)
return pattern_segment_pred
def _tgrep_node_label_use_action(_s, _l, tokens):
'''
Returns the node label used to begin a tgrep_expr_labeled. See
`_tgrep_segmented_pattern_action`.
Called for expressions like (`tgrep_node_label_use`)::
=s
when they appear as the first element of a `tgrep_expr_labeled`
expression (see `_tgrep_segmented_pattern_action`).
It returns the node label.
'''
assert len(tokens) == 1
assert tokens[0].startswith('=')
return tokens[0][1:]
def _tgrep_node_label_pred_use_action(_s, _l, tokens):
'''
Builds a lambda function representing a predicate on a tree node
which describes the use of a previously bound node label.
Called for expressions like (`tgrep_node_label_use_pred`)::
=s
when they appear inside a tgrep_node_expr (for example, inside a
relation). The predicate returns true if and only if its node
argument is identical the the node looked up in the node label
dictionary using the node's label.
'''
assert len(tokens) == 1
assert tokens[0].startswith('=')
node_label = tokens[0][1:]
def node_label_use_pred(n, m=None, l=None):
# look up the bound node using its label
if l is None or node_label not in l:
raise TgrepException('node_label ={0} not bound in pattern'.format(
node_label))
node = l[node_label]
# truth means the given node is this node
return n is node
return node_label_use_pred
def _tgrep_bind_node_label_action(_s, _l, tokens):
'''
Builds a lambda function representing a predicate on a tree node
which can optionally bind a matching node into the tgrep2 string's
label_dict.
Called for expressions like (`tgrep_node_expr2`)::
/NP/
@NP=n
'''
# tokens[0] is a tgrep_node_expr
if len(tokens) == 1:
return tokens[0]
else:
# if present, tokens[1] is the character '=', and tokens[2] is
# a tgrep_node_label, a string value containing the node label
assert len(tokens) == 3
assert tokens[1] == '='
node_pred = tokens[0]
node_label = tokens[2]
def node_label_bind_pred(n, m=None, l=None):
if node_pred(n, m, l):
# bind `n` into the dictionary `l`
if l is None:
raise TgrepException(
'cannot bind node_label {0}: label_dict is None'.format(
node_label))
l[node_label] = n
return True
else:
return False
return node_label_bind_pred
def _tgrep_rel_disjunction_action(_s, _l, tokens):
'''
Builds a lambda function representing a predicate on a tree node
from the disjunction of several other such lambda functions.
'''
# filter out the pipe
tokens = [x for x in tokens if x != '|']
# print 'relation disjunction tokens: ', tokens
if len(tokens) == 1:
return tokens[0]
elif len(tokens) == 2:
return (lambda a, b: lambda n, m=None, l=None:
a(n, m, l) or b(n, m, l))(tokens[0], tokens[1])
def _macro_defn_action(_s, _l, tokens):
'''
Builds a dictionary structure which defines the given macro.
'''
assert len(tokens) == 3
assert tokens[0] == '@'
return {tokens[1]: tokens[2]}
def _tgrep_exprs_action(_s, _l, tokens):
'''
This is the top-lebel node in a tgrep2 search string; the
predicate function it returns binds together all the state of a
tgrep2 search string.
Builds a lambda function representing a predicate on a tree node
from the disjunction of several tgrep expressions. Also handles
macro definitions and macro name binding, and node label
definitions and node label binding.
'''
if len(tokens) == 1:
return lambda n, m=None, l=None: tokens[0](n, None, {})
# filter out all the semicolons
tokens = [x for x in tokens if x != ';']
# collect all macro definitions
macro_dict = {}
macro_defs = [tok for tok in tokens if isinstance(tok, dict)]
for macro_def in macro_defs:
macro_dict.update(macro_def)
# collect all tgrep expressions
tgrep_exprs = [tok for tok in tokens if not isinstance(tok, dict)]
# create a new scope for the node label dictionary
def top_level_pred(n, m=macro_dict, l=None):
label_dict = {}
# bind macro definitions and OR together all tgrep_exprs
return any(predicate(n, m, label_dict) for predicate in tgrep_exprs)
return top_level_pred
def _build_tgrep_parser(set_parse_actions = True):
'''
Builds a pyparsing-based parser object for tokenizing and
interpreting tgrep search strings.
'''
tgrep_op = (pyparsing.Optional('!') +
pyparsing.Regex('[$%,.<>][%,.<>0-9-\':]*'))
tgrep_qstring = pyparsing.QuotedString(quoteChar='"', escChar='\\',
unquoteResults=False)
tgrep_node_regex = pyparsing.QuotedString(quoteChar='/', escChar='\\',
unquoteResults=False)
tgrep_qstring_icase = pyparsing.Regex(
'i@\\"(?:[^"\\n\\r\\\\]|(?:\\\\.))*\\"')
tgrep_node_regex_icase = pyparsing.Regex(
'i@\\/(?:[^/\\n\\r\\\\]|(?:\\\\.))*\\/')
tgrep_node_literal = pyparsing.Regex('[^][ \r\t\n;:.,&|<>()$!@%\'^=]+')
tgrep_expr = pyparsing.Forward()
tgrep_relations = pyparsing.Forward()
tgrep_parens = pyparsing.Literal('(') + tgrep_expr + ')'
tgrep_nltk_tree_pos = (
pyparsing.Literal('N(') +
pyparsing.Optional(pyparsing.Word(pyparsing.nums) + ',' +
pyparsing.Optional(pyparsing.delimitedList(
pyparsing.Word(pyparsing.nums), delim=',') +
pyparsing.Optional(','))) + ')')
tgrep_node_label = pyparsing.Regex('[A-Za-z0-9]+')
tgrep_node_label_use = pyparsing.Combine('=' + tgrep_node_label)
# see _tgrep_segmented_pattern_action
tgrep_node_label_use_pred = tgrep_node_label_use.copy()
macro_name = pyparsing.Regex('[^];:.,&|<>()[$!@%\'^=\r\t\n ]+')
macro_name.setWhitespaceChars('')
macro_use = pyparsing.Combine('@' + macro_name)
tgrep_node_expr = (tgrep_node_label_use_pred |
macro_use |
tgrep_nltk_tree_pos |
tgrep_qstring_icase |
tgrep_node_regex_icase |
tgrep_qstring |
tgrep_node_regex |
'*' |
tgrep_node_literal)
tgrep_node_expr2 = ((tgrep_node_expr +
pyparsing.Literal('=').setWhitespaceChars('') +
tgrep_node_label.copy().setWhitespaceChars('')) |
tgrep_node_expr)
tgrep_node = (tgrep_parens |
(pyparsing.Optional("'") +
tgrep_node_expr2 +
pyparsing.ZeroOrMore("|" + tgrep_node_expr)))
tgrep_brackets = pyparsing.Optional('!') + '[' + tgrep_relations + ']'
tgrep_relation = tgrep_brackets | (tgrep_op + tgrep_node)
tgrep_rel_conjunction = pyparsing.Forward()
tgrep_rel_conjunction << (tgrep_relation +
pyparsing.ZeroOrMore(pyparsing.Optional('&') +
tgrep_rel_conjunction))
tgrep_relations << tgrep_rel_conjunction + pyparsing.ZeroOrMore(
"|" + tgrep_relations)
tgrep_expr << tgrep_node + pyparsing.Optional(tgrep_relations)
tgrep_expr_labeled = tgrep_node_label_use + pyparsing.Optional(tgrep_relations)
tgrep_expr2 = tgrep_expr + pyparsing.ZeroOrMore(':' + tgrep_expr_labeled)
macro_defn = (pyparsing.Literal('@') +
pyparsing.White().suppress() +
macro_name +
tgrep_expr2)
tgrep_exprs = (pyparsing.Optional(macro_defn + pyparsing.ZeroOrMore(';' + macro_defn) + ';') +
tgrep_expr2 +
pyparsing.ZeroOrMore(';' + (macro_defn | tgrep_expr2)) +
pyparsing.ZeroOrMore(';').suppress())
if set_parse_actions:
tgrep_node_label_use.setParseAction(_tgrep_node_label_use_action)
tgrep_node_label_use_pred.setParseAction(_tgrep_node_label_pred_use_action)
macro_use.setParseAction(_tgrep_macro_use_action)
tgrep_node.setParseAction(_tgrep_node_action)
tgrep_node_expr2.setParseAction(_tgrep_bind_node_label_action)
tgrep_parens.setParseAction(_tgrep_parens_action)
tgrep_nltk_tree_pos.setParseAction(_tgrep_nltk_tree_pos_action)
tgrep_relation.setParseAction(_tgrep_relation_action)
tgrep_rel_conjunction.setParseAction(_tgrep_conjunction_action)
tgrep_relations.setParseAction(_tgrep_rel_disjunction_action)
macro_defn.setParseAction(_macro_defn_action)
# the whole expression is also the conjunction of two
# predicates: the first node predicate, and the remaining
# relation predicates
tgrep_expr.setParseAction(_tgrep_conjunction_action)
tgrep_expr_labeled.setParseAction(_tgrep_segmented_pattern_action)
tgrep_expr2.setParseAction(functools.partial(_tgrep_conjunction_action,
join_char = ':'))
tgrep_exprs.setParseAction(_tgrep_exprs_action)
return tgrep_exprs.ignore('#' + pyparsing.restOfLine)
def tgrep_tokenize(tgrep_string):
'''
Tokenizes a TGrep search string into separate tokens.
'''
parser = _build_tgrep_parser(False)
if isinstance(tgrep_string, binary_type):
tgrep_string = tgrep_string.decode()
return list(parser.parseString(tgrep_string))
def tgrep_compile(tgrep_string):
'''
Parses (and tokenizes, if necessary) a TGrep search string into a
lambda function.
'''
parser = _build_tgrep_parser(True)
if isinstance(tgrep_string, binary_type):
tgrep_string = tgrep_string.decode()
return list(parser.parseString(tgrep_string, parseAll=True))[0]
def treepositions_no_leaves(tree):
'''
Returns all the tree positions in the given tree which are not
leaf nodes.
'''
treepositions = tree.treepositions()
# leaves are treeposition tuples that are not prefixes of any
# other treeposition
prefixes = set()
for pos in treepositions:
for length in range(len(pos)):
prefixes.add(pos[:length])
return [pos for pos in treepositions if pos in prefixes]
def tgrep_positions(pattern, trees, search_leaves=True):
"""
Return the tree positions in the trees which match the given pattern.
:param pattern: a tgrep search pattern
:type pattern: str or output of tgrep_compile()
:param trees: a sequence of NLTK trees (usually ParentedTrees)
:type trees: iter(ParentedTree) or iter(Tree)
:param search_leaves: whether ot return matching leaf nodes
:type search_leaves: bool
:rtype: iter(tree positions)
"""
if isinstance(pattern, (binary_type, text_type)):
pattern = tgrep_compile(pattern)
for tree in trees:
try:
if search_leaves:
positions = tree.treepositions()
else:
positions = treepositions_no_leaves(tree)
yield [position for position in positions
if pattern(tree[position])]
except AttributeError:
yield []
def tgrep_nodes(pattern, trees, search_leaves=True):
"""
Return the tree nodes in the trees which match the given pattern.
:param pattern: a tgrep search pattern
:type pattern: str or output of tgrep_compile()
:param trees: a sequence of NLTK trees (usually ParentedTrees)
:type trees: iter(ParentedTree) or iter(Tree)
:param search_leaves: whether ot return matching leaf nodes
:type search_leaves: bool
:rtype: iter(tree nodes)
"""
if isinstance(pattern, (binary_type, text_type)):
pattern = tgrep_compile(pattern)
for tree in trees:
try:
if search_leaves:
positions = tree.treepositions()
else:
positions = treepositions_no_leaves(tree)
yield [tree[position] for position in positions
if pattern(tree[position])]
except AttributeError:
yield []
|