This file is indexed.

/usr/lib/python2.7/dist-packages/GenomicConsensus/utils.py is in python-pbgenomicconsensus 2.1.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#################################################################################
# Copyright (c) 2011-2013, Pacific Biosciences of California, Inc.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
#   notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
# * Neither the name of Pacific Biosciences nor the names of its
#   contributors may be used to endorse or promote products derived from
#   this software without specific prior written permission.
#
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
# THIS LICENSE.  THIS SOFTWARE IS PROVIDED BY PACIFIC BIOSCIENCES AND ITS
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL PACIFIC BIOSCIENCES OR
# ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
# IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#################################################################################

# Author: David Alexander

from __future__ import absolute_import
import ast
import math, numpy as np, os.path, sys, itertools

def die(msg):
    print >>sys.stderr, msg
    sys.exit(-1)

class CommonEqualityMixin(object):
    def __eq__(self, other):
        return (isinstance(other, self.__class__)
            and self.__dict__ == other.__dict__)

    def __ne__(self, other):
        return not self.__eq__(other)


# An exception for incompatible cmp.h5 files
class IncompatibleDataException(Exception):
    pass

# We truncate QVs at 93 because the FASTQ format downstream can only
# support QVs in the range [0, 93] without lossage.

def error_probability_to_qv(error_probability, cap=93):
    """
    Convert an error probability to a phred-scaled QV.
    """
    if error_probability==0:
        return cap
    else:
        return min(cap, int(round(-10*math.log10(error_probability))))


_complement = { "A" : "T",
                "C" : "G",
                "G" : "C",
                "T" : "A",
                "-" : "-" }

def complement(s):
    cStr = "".join(_complement[c] for c in s)
    if type(s) == str:
        return cStr
    else:
        return np.fromstring(cStr, "S1")

def reverseComplement(s):
    return complement(s)[::-1]

def fileFormat(filename):
    if filename.endswith(".gz"):
        ext = os.path.splitext(filename[:-3])[1]
    else:
        ext = os.path.splitext(filename)[1]
    ext = ext.lower()
    if   ext in [".fa", ".fasta"]: return "FASTA"
    elif ext in [".fq", ".fastq"]: return "FASTQ"
    elif ext in [".gff" ]:         return "GFF"
    elif ext in [".csv" ]:         return "CSV"
    else: raise Exception, "Unrecognized file format"

def rowNumberIsInReadStratum(readStratum, rowNumber):
    n, N = readStratum
    return (rowNumber % N) == n

def readsInWindow(alnFile, window, depthLimit=None,
                  minMapQV=0, strategy="fileorder",
                  stratum=None, barcode=None):
    """
    Return up to `depthLimit` reads (as row numbers integers) where
    the mapped reference intersects the window.  If depthLimit is None,
    return all the reads meeting the criteria.

    `strategy` can be:
      - "longest" --- get the reads with the longest length in the window
      - "spanning" --- get only the reads spanning the window
      - "fileorder" --- get the reads in file order
    """
    assert strategy in {"longest", "spanning", "fileorder",
                        "long-and-strand-balanced"}

    if stratum is not None:
        raise ValueError, "stratum needs to be reimplemented"

    def depthCap(iter):
        if depthLimit is not None:
            return alnFile[list(itertools.islice(iter, 0, depthLimit))]
        else:
            return alnFile[list(iter)]

    def lengthInWindow(hit):
        return (min(alnFile.index.tEnd[hit], winEnd) -
                max(alnFile.index.tStart[hit], winStart))

    winId, winStart, winEnd = window
    alnHits = np.array(list(alnFile.readsInRange(winId, winStart, winEnd,
                                                 justIndices=True)))
    if len(alnHits) == 0:
        return []

    if barcode == None:
        alnHits = alnHits[alnFile.mapQV[alnHits] >= minMapQV]
    else:
        # this wont work with CmpH5 (no bc in index):
        barcode = ast.literal_eval(barcode)
        alnHits = alnHits[(alnFile.mapQV[alnHits] >= minMapQV) &
                          (alnFile.index.bcLeft[alnHits] == barcode[0]) &
                          (alnFile.index.bcRight[alnHits] == barcode[1])]

    if strategy == "fileorder":
        return depthCap(alnHits)
    elif strategy == "spanning":
        winLen = winEnd - winStart
        return depthCap( hit for hit in alnHits
                         if lengthInWindow(hit) == winLen )
    elif strategy == "longest":
        return depthCap(sorted(alnHits, key=lengthInWindow, reverse=True))
    elif strategy == "long-and-strand-balanced":
        # Longest (in window) is great, but bam sorts by tStart then strand.
        # With high coverage, this bias resulted in variants. Here we lexsort
        # by tStart and tEnd. Longest in window is the final criteria in
        # either case.

        # lexical sort:
        ends = alnFile.index.tEnd[alnHits]
        starts = alnFile.index.tStart[alnHits]
        lex_sort = np.lexsort((ends, starts))

        # reorder based on sort:
        sorted_ends = ends[lex_sort]
        sorted_starts = starts[lex_sort]
        sorted_alnHits = alnHits[lex_sort]

        # get lengths in window:
        post = sorted_ends > winEnd
        sorted_ends[post] = winEnd
        pre = sorted_starts < winStart
        sorted_starts[pre] = winStart
        lens = sorted_ends - sorted_starts

        # coerce a descending sort:
        win_sort = ((winEnd - winStart) - lens).argsort(kind="mergesort")
        return depthCap(sorted_alnHits[win_sort])


def datasetCountExceedsThreshold(alnFile, threshold):
    """
    Does the file contain more than `threshold` datasets?  This
    impacts whether or not we should disable the chunk cache.
    """
    total = 0
    for i in np.unique(alnFile.AlnGroupID):
        total += len(alnFile._alignmentGroup(i))
        if total > threshold:
            return True
    return False

#
# Some lisp functions we want
#
fst   = lambda t: t[0]
snd   = lambda t: t[1]
third = lambda t: t[2]

def nub(it):
    """
    Unique entries in an iterable, preserving order
    """
    seen = set()
    for x in it:
        if x not in seen: yield(x)
        seen.add(x)