/usr/lib/python2.7/dist-packages/GenomicConsensus/utils.py is in python-pbgenomicconsensus 2.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | #################################################################################
# Copyright (c) 2011-2013, Pacific Biosciences of California, Inc.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of Pacific Biosciences nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY PACIFIC BIOSCIENCES AND ITS
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL PACIFIC BIOSCIENCES OR
# ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
# IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#################################################################################
# Author: David Alexander
from __future__ import absolute_import
import ast
import math, numpy as np, os.path, sys, itertools
def die(msg):
print >>sys.stderr, msg
sys.exit(-1)
class CommonEqualityMixin(object):
def __eq__(self, other):
return (isinstance(other, self.__class__)
and self.__dict__ == other.__dict__)
def __ne__(self, other):
return not self.__eq__(other)
# An exception for incompatible cmp.h5 files
class IncompatibleDataException(Exception):
pass
# We truncate QVs at 93 because the FASTQ format downstream can only
# support QVs in the range [0, 93] without lossage.
def error_probability_to_qv(error_probability, cap=93):
"""
Convert an error probability to a phred-scaled QV.
"""
if error_probability==0:
return cap
else:
return min(cap, int(round(-10*math.log10(error_probability))))
_complement = { "A" : "T",
"C" : "G",
"G" : "C",
"T" : "A",
"-" : "-" }
def complement(s):
cStr = "".join(_complement[c] for c in s)
if type(s) == str:
return cStr
else:
return np.fromstring(cStr, "S1")
def reverseComplement(s):
return complement(s)[::-1]
def fileFormat(filename):
if filename.endswith(".gz"):
ext = os.path.splitext(filename[:-3])[1]
else:
ext = os.path.splitext(filename)[1]
ext = ext.lower()
if ext in [".fa", ".fasta"]: return "FASTA"
elif ext in [".fq", ".fastq"]: return "FASTQ"
elif ext in [".gff" ]: return "GFF"
elif ext in [".csv" ]: return "CSV"
else: raise Exception, "Unrecognized file format"
def rowNumberIsInReadStratum(readStratum, rowNumber):
n, N = readStratum
return (rowNumber % N) == n
def readsInWindow(alnFile, window, depthLimit=None,
minMapQV=0, strategy="fileorder",
stratum=None, barcode=None):
"""
Return up to `depthLimit` reads (as row numbers integers) where
the mapped reference intersects the window. If depthLimit is None,
return all the reads meeting the criteria.
`strategy` can be:
- "longest" --- get the reads with the longest length in the window
- "spanning" --- get only the reads spanning the window
- "fileorder" --- get the reads in file order
"""
assert strategy in {"longest", "spanning", "fileorder",
"long-and-strand-balanced"}
if stratum is not None:
raise ValueError, "stratum needs to be reimplemented"
def depthCap(iter):
if depthLimit is not None:
return alnFile[list(itertools.islice(iter, 0, depthLimit))]
else:
return alnFile[list(iter)]
def lengthInWindow(hit):
return (min(alnFile.index.tEnd[hit], winEnd) -
max(alnFile.index.tStart[hit], winStart))
winId, winStart, winEnd = window
alnHits = np.array(list(alnFile.readsInRange(winId, winStart, winEnd,
justIndices=True)))
if len(alnHits) == 0:
return []
if barcode == None:
alnHits = alnHits[alnFile.mapQV[alnHits] >= minMapQV]
else:
# this wont work with CmpH5 (no bc in index):
barcode = ast.literal_eval(barcode)
alnHits = alnHits[(alnFile.mapQV[alnHits] >= minMapQV) &
(alnFile.index.bcLeft[alnHits] == barcode[0]) &
(alnFile.index.bcRight[alnHits] == barcode[1])]
if strategy == "fileorder":
return depthCap(alnHits)
elif strategy == "spanning":
winLen = winEnd - winStart
return depthCap( hit for hit in alnHits
if lengthInWindow(hit) == winLen )
elif strategy == "longest":
return depthCap(sorted(alnHits, key=lengthInWindow, reverse=True))
elif strategy == "long-and-strand-balanced":
# Longest (in window) is great, but bam sorts by tStart then strand.
# With high coverage, this bias resulted in variants. Here we lexsort
# by tStart and tEnd. Longest in window is the final criteria in
# either case.
# lexical sort:
ends = alnFile.index.tEnd[alnHits]
starts = alnFile.index.tStart[alnHits]
lex_sort = np.lexsort((ends, starts))
# reorder based on sort:
sorted_ends = ends[lex_sort]
sorted_starts = starts[lex_sort]
sorted_alnHits = alnHits[lex_sort]
# get lengths in window:
post = sorted_ends > winEnd
sorted_ends[post] = winEnd
pre = sorted_starts < winStart
sorted_starts[pre] = winStart
lens = sorted_ends - sorted_starts
# coerce a descending sort:
win_sort = ((winEnd - winStart) - lens).argsort(kind="mergesort")
return depthCap(sorted_alnHits[win_sort])
def datasetCountExceedsThreshold(alnFile, threshold):
"""
Does the file contain more than `threshold` datasets? This
impacts whether or not we should disable the chunk cache.
"""
total = 0
for i in np.unique(alnFile.AlnGroupID):
total += len(alnFile._alignmentGroup(i))
if total > threshold:
return True
return False
#
# Some lisp functions we want
#
fst = lambda t: t[0]
snd = lambda t: t[1]
third = lambda t: t[2]
def nub(it):
"""
Unique entries in an iterable, preserving order
"""
seen = set()
for x in it:
if x not in seen: yield(x)
seen.add(x)
|