This file is indexed.

/usr/lib/python2.7/dist-packages/pycassa/columnfamilymap.py is in python-pycassa 1.11.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""
Provides a way to map an existing class of objects to a column family.

This can help to cut down boilerplate code related to converting
objects to a row format and back again.  ColumnFamilyMap is primarily
useful when you have one "object" per row.

.. seealso:: :mod:`pycassa.types` for selecting data types for object
             attributes and infomation about creating custom data
             types.

"""

from pycassa.types import CassandraType
from pycassa.columnfamily import ColumnFamily
import pycassa.util as util
import inspect

__all__ = ['ColumnFamilyMap']

def create_instance(cls, **kwargs):
    instance = cls()
    map(lambda (k,v): setattr(instance, k, v), kwargs.iteritems())
    return instance

class ColumnFamilyMap(ColumnFamily):
    """
    Maps an existing class to a column family.  Class fields become columns,
    and instances of that class can be represented as rows in standard column
    families or super columns in super column families.
    """

    def __init__(self, cls, pool, column_family, raw_columns=False, **kwargs):
        """
        Instances of `cls` are returned from :meth:`get()`, :meth:`multiget()`,
        :meth:`get_range()` and :meth:`get_indexed_slices()`.

        `pool` is a :class:`~pycassa.pool.ConnectionPool` that will be used
        in the same way a :class:`~.ColumnFamily` uses one.

        `column_family` is the name of a column family to tie to `cls`.

        If `raw_columns` is ``True``, all columns will be fetched into the
        `raw_columns` field in requests.
        """
        ColumnFamily.__init__(self, pool, column_family, **kwargs)

        self.cls = cls
        self.autopack_names = False

        self.raw_columns = raw_columns
        self.dict_class = util.OrderedDict
        self.defaults = {}
        self.fields = []
        for name, val_type in inspect.getmembers(self.cls):
            if name != 'key' and isinstance(val_type, CassandraType):
                self.fields.append(name)
                self.column_validators[name] = val_type
                self.defaults[name] = val_type.default

        if hasattr(self.cls, 'key') and isinstance(self.cls.key, CassandraType):
            self.key_validation_class = self.cls.key

    def combine_columns(self, columns):
        combined_columns = columns

        if self.raw_columns:
            combined_columns['raw_columns'] = columns

        for column, default in self.defaults.items():
            combined_columns.setdefault(column, default)

        return combined_columns

    def get(self, key, *args, **kwargs):
        """
        Creates one or more instances of `cls` from the row with key `key`.

        The fields that are retreived may be specified using `columns`, which
        should be a list of column names.

        If the column family is a super column family, a list of `cls`
        instances will be returned, one for each super column.  If
        the `super_column` parameter is not supplied, then `columns`
        specifies which super columns will be used to create instances
        of `cls`.  If the `super_column` parameter *is* supplied, only
        one instance of `cls` will be returned; if `columns` is specified
        in this case, only those attributes listed in `columns` will be fetched.

        All other parameters behave the same as in :meth:`.ColumnFamily.get()`.

        """
        if 'columns' not in kwargs and not self.super and not self.raw_columns:
            kwargs['columns'] = self.fields

        columns = ColumnFamily.get(self, key, *args, **kwargs)

        if self.super:
            if 'super_column' not in kwargs:
                vals = self.dict_class()
                for super_column, subcols in columns.iteritems():
                    combined = self.combine_columns(subcols)
                    vals[super_column] = create_instance(self.cls, key=key,
                            super_column=super_column, **combined)
                return vals

            combined = self.combine_columns(columns)
            return create_instance(self.cls, key=key,
                                   super_column=kwargs['super_column'],
                                   **combined)

        combined = self.combine_columns(columns)
        return create_instance(self.cls, key=key, **combined)

    def multiget(self, *args, **kwargs):
        """
        Like :meth:`get()`, but a list of keys may be specified.

        The result of multiget will be a dictionary where the keys
        are the keys from the `keys` argument, minus any missing rows.
        The value for each key in the dictionary will be the same as
        if :meth:`get()` were called on that individual key.

        """
        if 'columns' not in kwargs and not self.super and not self.raw_columns:
            kwargs['columns'] = self.fields

        kcmap = ColumnFamily.multiget(self, *args, **kwargs)
        ret = self.dict_class()
        for key, columns in kcmap.iteritems():
            if self.super:
                if 'super_column' not in kwargs:
                    vals = self.dict_class()
                    for super_column, subcols in columns.iteritems():
                        combined = self.combine_columns(subcols)
                        vals[super_column] = create_instance(self.cls, key=key, super_column=super_column, **combined)
                    ret[key] = vals
                else:
                    combined = self.combine_columns(columns)
                    ret[key] = create_instance(self.cls, key=key, super_column=kwargs['super_column'], **combined)
            else:
                combined = self.combine_columns(columns)
                ret[key] = create_instance(self.cls, key=key, **combined)
        return ret

    def get_range(self, *args, **kwargs):
        """
        Get an iterator over instances in a specified key range.

        Like :meth:`multiget()`, whether a single instance or multiple
        instances are returned per-row when the column family is a super
        column family depends on what parameters are passed.

        For an explanation of how :meth:`get_range` works and a description
        of the parameters, see :meth:`.ColumnFamily.get_range()`.

        Example usage with a standard column family:

        .. code-block:: python

            >>> pool = pycassa.ConnectionPool('Keyspace1')
            >>> usercf =  pycassa.ColumnFamily(pool, 'Users')
            >>> cfmap = pycassa.ColumnFamilyMap(MyClass, usercf)
            >>> users = cfmap.get_range(row_count=2, columns=['name', 'age'])
            >>> for key, user in users:
            ...     print user.name, user.age
            Miles Davis 84
            Winston Smith 42

        """
        if 'columns' not in kwargs and not self.super and not self.raw_columns:
            kwargs['columns'] = self.fields

        for key, columns in ColumnFamily.get_range(self, *args, **kwargs):
            if self.super:
                if 'super_column' not in kwargs:
                    vals = self.dict_class()
                    for super_column, subcols in columns.iteritems():
                        combined = self.combine_columns(subcols)
                        vals[super_column] = create_instance(self.cls, key=key, super_column=super_column, **combined)
                    yield vals
                else:
                    combined = self.combine_columns(columns)
                    yield create_instance(self.cls, key=key, super_column=kwargs['super_column'], **combined)
            else:
                combined = self.combine_columns(columns)
                yield create_instance(self.cls, key=key, **combined)

    def get_indexed_slices(self, *args, **kwargs):
        """
        Fetches a list of instances that satisfy an index clause. Similar
        to :meth:`get_range()`, but uses an index clause instead of a key range.

        See :meth:`.ColumnFamily.get_indexed_slices()` for
        an explanation of the parameters.

        """

        assert not self.super, "get_indexed_slices() is not " \
                "supported by super column families"

        if 'columns' not in kwargs and not self.raw_columns:
            kwargs['columns'] = self.fields

        for key, columns in ColumnFamily.get_indexed_slices(self, *args, **kwargs):
            combined = self.combine_columns(columns)
            yield create_instance(self.cls, key=key, **combined)

    def _get_instance_as_dict(self, instance, columns=None):
        fields = columns or self.fields
        instance_dict = {}
        for field in fields:
            val = getattr(instance, field, None)
            if val is not None and not isinstance(val, CassandraType):
                instance_dict[field] = val
        if self.super:
            instance_dict = {instance.super_column: instance_dict}
        return instance_dict

    def insert(self, instance, columns=None, timestamp=None, ttl=None,
               write_consistency_level=None):
        """
        Insert or update stored instances.

        `instance` should be an instance of `cls` to store.

        The `columns` parameter allows to you specify which attributes of
        `instance` should be inserted or updated. If left as ``None``, all
        attributes will be inserted.
        """

        if columns is None:
            fields = self.fields
        else:
            fields = columns

        insert_dict = self._get_instance_as_dict(instance, columns=fields)
        return ColumnFamily.insert(self, instance.key, insert_dict,
                                   timestamp=timestamp, ttl=ttl,
                                   write_consistency_level=write_consistency_level)

    def batch_insert(self, instances, timestamp=None, ttl=None,
            write_consistency_level=None):
        """
        Insert or update stored instances.

        `instances` should be a list containing instances of `cls` to store.
        """
        insert_dict = dict(
            [(instance.key, self._get_instance_as_dict(instance))
                for instance in instances]
        )
        return ColumnFamily.batch_insert(self, insert_dict,
                timestamp=timestamp, ttl=ttl,
                write_consistency_level=write_consistency_level)

    def remove(self, instance, columns=None, write_consistency_level=None):
        """
        Removes a stored instance.

        The `columns` parameter is a list of columns that should be removed.
        If this is left as the default value of ``None``, the entire stored
        instance will be removed.

        """
        if self.super:
            return ColumnFamily.remove(self, instance.key,
                                       super_column=instance.super_column,
                                       columns=columns,
                                       write_consistency_level=write_consistency_level)
        else:
            return ColumnFamily.remove(self, instance.key, columns,
                                       write_consistency_level=write_consistency_level)