/usr/lib/python2.7/dist-packages/pycassa/columnfamilymap.py is in python-pycassa 1.11.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | """
Provides a way to map an existing class of objects to a column family.
This can help to cut down boilerplate code related to converting
objects to a row format and back again. ColumnFamilyMap is primarily
useful when you have one "object" per row.
.. seealso:: :mod:`pycassa.types` for selecting data types for object
attributes and infomation about creating custom data
types.
"""
from pycassa.types import CassandraType
from pycassa.columnfamily import ColumnFamily
import pycassa.util as util
import inspect
__all__ = ['ColumnFamilyMap']
def create_instance(cls, **kwargs):
instance = cls()
map(lambda (k,v): setattr(instance, k, v), kwargs.iteritems())
return instance
class ColumnFamilyMap(ColumnFamily):
"""
Maps an existing class to a column family. Class fields become columns,
and instances of that class can be represented as rows in standard column
families or super columns in super column families.
"""
def __init__(self, cls, pool, column_family, raw_columns=False, **kwargs):
"""
Instances of `cls` are returned from :meth:`get()`, :meth:`multiget()`,
:meth:`get_range()` and :meth:`get_indexed_slices()`.
`pool` is a :class:`~pycassa.pool.ConnectionPool` that will be used
in the same way a :class:`~.ColumnFamily` uses one.
`column_family` is the name of a column family to tie to `cls`.
If `raw_columns` is ``True``, all columns will be fetched into the
`raw_columns` field in requests.
"""
ColumnFamily.__init__(self, pool, column_family, **kwargs)
self.cls = cls
self.autopack_names = False
self.raw_columns = raw_columns
self.dict_class = util.OrderedDict
self.defaults = {}
self.fields = []
for name, val_type in inspect.getmembers(self.cls):
if name != 'key' and isinstance(val_type, CassandraType):
self.fields.append(name)
self.column_validators[name] = val_type
self.defaults[name] = val_type.default
if hasattr(self.cls, 'key') and isinstance(self.cls.key, CassandraType):
self.key_validation_class = self.cls.key
def combine_columns(self, columns):
combined_columns = columns
if self.raw_columns:
combined_columns['raw_columns'] = columns
for column, default in self.defaults.items():
combined_columns.setdefault(column, default)
return combined_columns
def get(self, key, *args, **kwargs):
"""
Creates one or more instances of `cls` from the row with key `key`.
The fields that are retreived may be specified using `columns`, which
should be a list of column names.
If the column family is a super column family, a list of `cls`
instances will be returned, one for each super column. If
the `super_column` parameter is not supplied, then `columns`
specifies which super columns will be used to create instances
of `cls`. If the `super_column` parameter *is* supplied, only
one instance of `cls` will be returned; if `columns` is specified
in this case, only those attributes listed in `columns` will be fetched.
All other parameters behave the same as in :meth:`.ColumnFamily.get()`.
"""
if 'columns' not in kwargs and not self.super and not self.raw_columns:
kwargs['columns'] = self.fields
columns = ColumnFamily.get(self, key, *args, **kwargs)
if self.super:
if 'super_column' not in kwargs:
vals = self.dict_class()
for super_column, subcols in columns.iteritems():
combined = self.combine_columns(subcols)
vals[super_column] = create_instance(self.cls, key=key,
super_column=super_column, **combined)
return vals
combined = self.combine_columns(columns)
return create_instance(self.cls, key=key,
super_column=kwargs['super_column'],
**combined)
combined = self.combine_columns(columns)
return create_instance(self.cls, key=key, **combined)
def multiget(self, *args, **kwargs):
"""
Like :meth:`get()`, but a list of keys may be specified.
The result of multiget will be a dictionary where the keys
are the keys from the `keys` argument, minus any missing rows.
The value for each key in the dictionary will be the same as
if :meth:`get()` were called on that individual key.
"""
if 'columns' not in kwargs and not self.super and not self.raw_columns:
kwargs['columns'] = self.fields
kcmap = ColumnFamily.multiget(self, *args, **kwargs)
ret = self.dict_class()
for key, columns in kcmap.iteritems():
if self.super:
if 'super_column' not in kwargs:
vals = self.dict_class()
for super_column, subcols in columns.iteritems():
combined = self.combine_columns(subcols)
vals[super_column] = create_instance(self.cls, key=key, super_column=super_column, **combined)
ret[key] = vals
else:
combined = self.combine_columns(columns)
ret[key] = create_instance(self.cls, key=key, super_column=kwargs['super_column'], **combined)
else:
combined = self.combine_columns(columns)
ret[key] = create_instance(self.cls, key=key, **combined)
return ret
def get_range(self, *args, **kwargs):
"""
Get an iterator over instances in a specified key range.
Like :meth:`multiget()`, whether a single instance or multiple
instances are returned per-row when the column family is a super
column family depends on what parameters are passed.
For an explanation of how :meth:`get_range` works and a description
of the parameters, see :meth:`.ColumnFamily.get_range()`.
Example usage with a standard column family:
.. code-block:: python
>>> pool = pycassa.ConnectionPool('Keyspace1')
>>> usercf = pycassa.ColumnFamily(pool, 'Users')
>>> cfmap = pycassa.ColumnFamilyMap(MyClass, usercf)
>>> users = cfmap.get_range(row_count=2, columns=['name', 'age'])
>>> for key, user in users:
... print user.name, user.age
Miles Davis 84
Winston Smith 42
"""
if 'columns' not in kwargs and not self.super and not self.raw_columns:
kwargs['columns'] = self.fields
for key, columns in ColumnFamily.get_range(self, *args, **kwargs):
if self.super:
if 'super_column' not in kwargs:
vals = self.dict_class()
for super_column, subcols in columns.iteritems():
combined = self.combine_columns(subcols)
vals[super_column] = create_instance(self.cls, key=key, super_column=super_column, **combined)
yield vals
else:
combined = self.combine_columns(columns)
yield create_instance(self.cls, key=key, super_column=kwargs['super_column'], **combined)
else:
combined = self.combine_columns(columns)
yield create_instance(self.cls, key=key, **combined)
def get_indexed_slices(self, *args, **kwargs):
"""
Fetches a list of instances that satisfy an index clause. Similar
to :meth:`get_range()`, but uses an index clause instead of a key range.
See :meth:`.ColumnFamily.get_indexed_slices()` for
an explanation of the parameters.
"""
assert not self.super, "get_indexed_slices() is not " \
"supported by super column families"
if 'columns' not in kwargs and not self.raw_columns:
kwargs['columns'] = self.fields
for key, columns in ColumnFamily.get_indexed_slices(self, *args, **kwargs):
combined = self.combine_columns(columns)
yield create_instance(self.cls, key=key, **combined)
def _get_instance_as_dict(self, instance, columns=None):
fields = columns or self.fields
instance_dict = {}
for field in fields:
val = getattr(instance, field, None)
if val is not None and not isinstance(val, CassandraType):
instance_dict[field] = val
if self.super:
instance_dict = {instance.super_column: instance_dict}
return instance_dict
def insert(self, instance, columns=None, timestamp=None, ttl=None,
write_consistency_level=None):
"""
Insert or update stored instances.
`instance` should be an instance of `cls` to store.
The `columns` parameter allows to you specify which attributes of
`instance` should be inserted or updated. If left as ``None``, all
attributes will be inserted.
"""
if columns is None:
fields = self.fields
else:
fields = columns
insert_dict = self._get_instance_as_dict(instance, columns=fields)
return ColumnFamily.insert(self, instance.key, insert_dict,
timestamp=timestamp, ttl=ttl,
write_consistency_level=write_consistency_level)
def batch_insert(self, instances, timestamp=None, ttl=None,
write_consistency_level=None):
"""
Insert or update stored instances.
`instances` should be a list containing instances of `cls` to store.
"""
insert_dict = dict(
[(instance.key, self._get_instance_as_dict(instance))
for instance in instances]
)
return ColumnFamily.batch_insert(self, insert_dict,
timestamp=timestamp, ttl=ttl,
write_consistency_level=write_consistency_level)
def remove(self, instance, columns=None, write_consistency_level=None):
"""
Removes a stored instance.
The `columns` parameter is a list of columns that should be removed.
If this is left as the default value of ``None``, the entire stored
instance will be removed.
"""
if self.super:
return ColumnFamily.remove(self, instance.key,
super_column=instance.super_column,
columns=columns,
write_consistency_level=write_consistency_level)
else:
return ColumnFamily.remove(self, instance.key, columns,
write_consistency_level=write_consistency_level)
|