This file is indexed.

/usr/lib/python2.7/dist-packages/Pysolar/util.py is in python-pysolar 0.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
#!/usr/bin/env python

# -*- coding: utf-8 -*-

#    Copyright Brandon Stafford
#
#    This file is part of Pysolar.
#
#    Pysolar is free software; you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation; either version 3 of the License, or
#    (at your option) any later version.
#
#    Pysolar is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License along
#    with Pysolar. If not, see <http://www.gnu.org/licenses/>.

"""Additional support functions for solar geometry, astronomy, radiation correlation

:Original author: Simeon Nwaogaidu
:Contact: SimeonObinna.Nwaogaidu AT lahmeyer DOT de

:Additional author: Holger Zebner
:Contact: holger.zebner AT lahmeyer DOT de

:Additional author: Brandon Stafford

"""
from datetime import datetime as dt
from datetime import timedelta
import math
import pytz
from pytz import all_timezones
from . import solar

# Some default constants

AM_default = 2.0             # Default air mass is 2.0
TL_default = 1.0             # Default Linke turbidity factor is 1.0 
SC_default = 1367.0          # Solar constant in W/m^2 is 1367.0. Note that this value could vary by +/-4 W/m^2 
TY_default = 365             # Total year number from 1 to 365 days
elevation_default = 0.0      # Default elevation is 0.0

# Useful equations for analysis

def GetSunriseSunset(latitude_deg, longitude_deg, utc_datetime, timezone):
    """This function calculates the astronomical sunrise and sunset times in local time.
    
    Parameters
    ----------
    latitude_deg : float
        latitude in decimal degree. A geographical term denoting 
        the north/south angular location of a place on a sphere.            
    longitude_deg : float
        longitude in decimal degree. Longitude shows your location 
        in an east-west direction,relative to the Greenwich meridian.        
    utc_datetime : date_object
        utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 )        
    timezone : float
        timezone as numerical value: GMT offset in hours. A time zone is a region of 
        the earth that has uniform standard time, usually referred to as the local time.
               
    Returns
    -------
    sunrise_time_dt : datetime.datetime
        Sunrise time in local time as datetime_obj.
    sunset_time_dt : datetime.datetime
        Sunset time in local time as datetime_obj.
            
    References
    ----------
    .. [1] http://www.skypowerinternational.com/pdf/Radiation/7.1415.01.121_cm121_bed-anleitung_engl.pdf
    .. [2] http://pysolar.org/
        
    Examples
    --------
    >>> gmt_offset = 1
    >>> lat = 50.111512
    >>> lon = 8.680506
    >>> timezone_local = 'Europe/Berlin'
    >>> utct = dt.datetime.utcnow()
    >>> sr, ss = sb.GetSunriseSunset(lat, lon, utct, gmt_offset)
    >>> print 'sunrise: ', sr
    >>> print 'sunset:', ss
   
    """

    # Day of the year
    day = solar.GetDayOfYear(utc_datetime)

    # Solar hour angle
    SHA = ((timezone)* 15.0 - longitude_deg)

    # Time adjustment
    TT = (279.134+0.985647*day)*math.pi/180

    # Time adjustment in hours
    time_adst = ((5.0323 - 100.976*math.sin(TT)+595.275*math.sin(2*TT)+
                  3.6858*math.sin(3*TT) - 12.47*math.sin(4*TT) - 430.847*math.cos(TT)+
                  12.5024*math.cos(2*TT) + 18.25*math.cos(3*TT))/3600)
 
    # Time of noon
    TON = (12 + (SHA/15.0) - time_adst)
    
    sunn = (math.pi/2-(23.45*math.pi/180)*math.tan(latitude_deg*math.pi/180)*
            math.cos(2*math.pi*day/365.25))*(180/(math.pi*15))

    # Sunrise_time in hours
    sunrise_time = (TON - sunn + time_adst)
 
    # Sunset_time in hours
    sunset_time = (TON + sunn - time_adst) 

    sunrise_time_dt = date_with_decimal_hour(utc_datetime, sunrise_time)    
    sunset_time_dt = date_with_decimal_hour(utc_datetime, sunset_time)    

    return sunrise_time_dt, sunset_time_dt

def GetSunriseTime(latitude_deg, longitude_deg, utc_datetime, timezone):
    "Wrapper for GetSunriseSunset that returns just the sunrise time" 
    sr, ss = GetSunriseSunset(latitude_deg, longitude_deg, utc_datetime, timezone)
    
    return sr

def GetSunsetTime(latitude_deg, longitude_deg, utc_datetime, timezone):
    "Wrapper for GetSunriseSunset that returns just the sunset time" 
    sr, ss = GetSunriseSunset(latitude_deg, longitude_deg, utc_datetime, timezone)    
    return ss

def mean_earth_sun_distance(utc_datetime):
    """Mean Earth-Sun distance is the arithmetical mean of the maximum and minimum distances
    between a planet (Earth) and the object about which it revolves (Sun). However, 
    the function is used to  calculate the Mean earth sun distance.
    
    Parameters
    ----------
    utc_datetime : date_object
        utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) 
                         
    Returns
    -------
    KD : float
        Mean earth sun distance
    
    References
    ----------
    .. [1] http://sunbird.jrc.it/pvgis/solres/solmod3.htm#clear-sky%20radiation
    .. [2] R. aguiar and et al, "The ESRA user guidebook, vol. 2. database", models and exploitation software-Solar 
            radiation models, p.113
    """   

    return (1 - (0.0335 * math.sin(360 * ((solar.GetDayOfYear(utc_datetime)) - 94)) / (365)))

def extraterrestrial_irrad(utc_datetime, latitude_deg, longitude_deg,SC=SC_default):
    """Equation calculates Extratrestrial radiation. Solar radiation incident outside the earth's
    atmosphere is called extraterrestrial radiation. On average the extraterrestrial irradiance
    is 1367 Watts/meter2 (W/m2). This value varies by + or - 3 percent as the earth orbits the sun. 
    The earth's closest approach to the sun occurs around January 4th and it is furthest
    from the sun around July 5th.
    
    Parameters
    ----------
    utc_datetime : date_object
        utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 )                   
    latitude_deg : float
        latitude in decimal degree. A geographical term denoting the north/south angular location 
        of a place on a sphere.    
    longitude_deg : float
        longitude in decimal degree. Longitude shows your location in an east-west direction,relative
        to the Greenwich meridian.    
    SC : float
        The solar constant is the amount of incoming solar electromagnetic radiation per unit area, measured 
        on the outer surface of Earth's atmosphere in a plane perpendicular to the rays.It is measured by 
        satellite to be roughly 1366 watts per square meter (W/m^2)
    
    Returns
    -------
    EXTR1 : float
        Extraterrestrial irradiation
    
    References
    ----------
    .. [1] http://solardat.uoregon.edu/SolarRadiationBasics.html
    .. [2] Dr. J. Schumacher and et al,"INSEL LE(Integrated Simulation Environment Language)Block reference",p.68
        
    """
    day = solar.GetDayOfYear(utc_datetime)
    ab = math.cos(2 * math.pi * (solar.GetDayOfYear(utc_datetime) - 1.0)/(365.0))
    bc = math.sin(2 * math.pi * (solar.GetDayOfYear(utc_datetime) - 1.0)/(365.0))
    cd = math.cos(2 * (2 * math.pi * (solar.GetDayOfYear(utc_datetime) - 1.0)/(365.0)))
    df = math.sin(2 * (2 * math.pi * (solar.GetDayOfYear(utc_datetime) - 1.0)/(365.0)))
    decl = solar.GetDeclination(day)
    ha = solar.GetHourAngle(utc_datetime, longitude_deg)
    ZA = math.sin(latitude_deg) * math.sin(decl) + math.cos(latitude_deg) * math.cos(decl) * math.cos(ha)
    
    return SC * ZA * (1.00010 + 0.034221 * ab + 0.001280 * bc + 0.000719 * cd + 0.000077 * df)


def declination_degree(utc_datetime, TY = TY_default ):
    """The declination of the sun is the angle between Earth's equatorial plane and a line 
    between the Earth and the sun. It varies between 23.45 degrees and -23.45 degrees,
    hitting zero on the equinoxes and peaking on the solstices.
    
    Parameters
    ----------
    utc_datetime : date_object
        utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 )        
    TY : float
        Total number of days in a year. eg. 365 days per year,(no leap days)
    
    Returns
    -------
    DEC : float
        The declination of the Sun 
    
    References
    ----------
    .. [1] http://pysolar.org/
             
    """    
    return 23.45 * math.sin((2 * math.pi / (TY)) * ((solar.GetDayOfYear(utc_datetime)) - 81))


def solarelevation_function_clear(latitude_deg, longitude_deg, utc_datetime,temperature_celsius = 25,
                                  pressure_millibars = 1013.25,  elevation = elevation_default):
    """Equation calculates Solar elevation function for clear sky type.
    
    Parameters
    ----------
    latitude_deg : float
        latitude in decimal degree. A geographical term denoting 
        the north/south angular location of a place on a sphere.            
    longitude_deg : float
        longitude in decimal degree. Longitude shows your location 
        in an east-west direction,relative to the Greenwich meridian.        
    utc_datetime : date_object
        utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 )         
    temperature_celsius : float
        Temperature is a physical property of a system that underlies the common notions of hot and cold.    
    pressure_millibars : float
        pressure_millibars    
    elevation : float
        The elevation of a geographic location is its height above a fixed reference point, often the mean
        sea level.
    
    Returns
    -------
    SOLALTC : float
        Solar elevation function clear sky 
        
    References
    ----------
    .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status 
            and proposed new approaches", energy 30 (2005), pp 1533 - 1549.
    
    """
    altitude = solar.GetAltitude(latitude_deg, longitude_deg,utc_datetime, elevation, temperature_celsius,pressure_millibars)        
    return (0.038175 + (1.5458 * (math.sin(altitude))) + ((-0.59980) * (0.5 * (1 - math.cos(2 * (altitude))))))

def solarelevation_function_overcast(latitude_deg, longitude_deg, utc_datetime,
                                     elevation = elevation_default, temperature_celsius = 25,
                                     pressure_millibars = 1013.25):
    """ The function calculates solar elevation function for overcast sky type. 
    This associated hourly overcast radiation model is based on the estimation of the 
    overcast sky transmittance with the sun directly overhead combined with the application 
    of an over sky elavation function to estimate the overcast day global irradiation 
    value at any solar elevation.
    
    Parameters
    ----------
    latitude_deg : float
        latitude in decimal degree. A geographical term denoting the north/south angular location of a place on a 
        sphere.            
    longitude_deg : float
        longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the 
        Greenwich meridian.        
    utc_datetime : date_object 
        utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 ) 
    elevation : float 
        The elevation of a geographic location is its height above a fixed reference point, often the mean sea level.        
    temperature_celsius : float 
        Temperature is a physical property of a system that underlies the common notions of hot and cold.    
    pressure_millibars : float
        pressure_millibars  
                               
    Returns
    -------
    SOLALTO : float
        Solar elevation function overcast
    
    References
    ----------
    .. [1] Prof. Peter Tregenza,"Solar radiation and daylight models", p.89.
    
    .. [2] Also accessible through Google Books: http://tinyurl.com/5kdbwu
        Tariq Muneer, "Solar Radiation and Daylight Models, Second Edition: For the Energy Efficient 
        Design of Buildings"  
            
    """
    altitude = solar.GetAltitude(latitude_deg, longitude_deg,utc_datetime, elevation, temperature_celsius,pressure_millibars)
    return ((-0.0067133) + (0.78600 * (math.sin(altitude)))) + (0.22401 * (0.5 * (1 - math.cos(2 * altitude))))


def diffuse_transmittance(TL = TL_default):
    """Equation calculates the Diffuse_transmittance and the is the Theoretical Diffuse Irradiance on a horizontal 
    surface when the sun is at the zenith.
    
    Parameters
    ----------
    TL : float
        Linke turbidity factor 
        
    Returns
    -------
    DT : float
        diffuse_transmittance
    
    References
    ----------
    .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed 
            new approaches", energy 30 (2005), pp 1533 - 1549.
    
    """
    return ((-21.657) + (41.752 * (TL)) + (0.51905 * (TL) * (TL)))


def diffuse_underclear(latitude_deg, longitude_deg, utc_datetime, elevation = elevation_default, 
                       temperature_celsius = 25, pressure_millibars = 1013.25, TL=TL_default):    
    """Equation calculates diffuse radiation under clear sky conditions.
    
    Parameters
    ----------
    latitude_deg : float
        latitude in decimal degree. A geographical term denoting the north/south angular location of a place on 
        a sphere.            
    longitude_deg : float
        longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the 
        Greenwich meridian.        
    utc_datetime : date_object
        utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 )
    elevation : float
        The elevation of a geographic location is its height above a fixed reference point, often the mean sea level.         
    temperature_celsius : float
        Temperature is a physical property of a system that underlies the common notions of hot and cold.    
    pressure_millibars : float
        pressure_millibars
    TL : float
        Linke turbidity factor     
    
    Returns
    -------
    DIFFC : float
        Diffuse Irradiation under clear sky
    
    References
    ----------
    .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed 
            new approaches", energy 30 (2005), pp 1533 - 1549.
    
    """    
    DT = ((-21.657) + (41.752 * (TL)) + (0.51905 * (TL) * (TL)))
    altitude = solar.GetAltitude(latitude_deg, longitude_deg,utc_datetime, elevation, temperature_celsius,pressure_millibars)

    return mean_earth_sun_distance(utc_datetime) * DT * altitude

def diffuse_underovercast(latitude_deg, longitude_deg, utc_datetime, elevation = elevation_default,
                          temperature_celsius = 25, pressure_millibars = 1013.25,TL=TL_default):    
    """Function calculates the diffuse radiation under overcast conditions.
    
    Parameters
    ----------
    latitude_deg : float
        latitude in decimal degree. A geographical term denoting the north/south angular location of a place on a 
        sphere.            
    longitude_deg : float 
        longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the 
        Greenwich meridian.        
    utc_datetime : date_object
        utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 )
    elevation : float
        The elevation of a geographic location is its height above a fixed reference point, often the mean sea level.         
    temperature_celsius : float
        Temperature is a physical property of a system that underlies the common notions of hot and cold.    
    pressure_millibars : float
        pressure_millibars
    TL : float
        Linke turbidity factor       
    
    Returns
    -------
    DIFOC : float
        Diffuse Irradiation under overcast
    
    References
    ----------
    .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed 
            new approaches", energy 30 (2005), pp 1533 - 1549.
    
    """    
    DT = ((-21.657) + (41.752 * (TL)) + (0.51905 * (TL) * (TL)))
        
    DIFOC = ((mean_earth_sun_distance(utc_datetime)
              )*(DT)*(solar.GetAltitude(latitude_deg,longitude_deg, utc_datetime, elevation, 
                                        temperature_celsius, pressure_millibars)))    
    return DIFOC

def direct_underclear(latitude_deg, longitude_deg, utc_datetime, 
                      temperature_celsius = 25, pressure_millibars = 1013.25, TY = TY_default, 
                      AM = AM_default, TL = TL_default,elevation = elevation_default):    
    """Equation calculates direct radiation under clear sky conditions.
    
    Parameters
    ----------
    latitude_deg : float
        latitude in decimal degree. A geographical term denoting the north/south angular location of a 
        place on a sphere.            
    longitude_deg : float
        longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the 
        Greenwich meridian.        
    utc_datetime : date_object
        utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 )           
    temperature_celsius : float
        Temperature is a physical property of a system that underlies the common notions of hot and cold.    
    pressure_millibars : float
        pressure_millibars
    TY : float
        Total number of days in a year. eg. 365 days per year,(no leap days)
    AM : float
        Air mass. An Air Mass is a measure of how far light travels through the Earth's atmosphere. One air mass,
        or AM1, is the thickness of the Earth's atmosphere. Air mass zero (AM0) describes solar irradiance in space,
        where it is unaffected by the atmosphere. The power density of AM1 light is about 1,000 W/m^2
    TL : float
        Linke turbidity factor 
    elevation : float
        The elevation of a geographic location is its height above a fixed reference point, often the mean 
        sea level.        
    
    Returns
    -------
    DIRC : float
        Direct Irradiation under clear
        
    References
    ----------
    .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed 
           new approaches", energy 30 (2005), pp 1533 - 1549.
    
    """
    KD = mean_earth_sun_distance(utc_datetime)
    
    DEC = declination_degree(utc_datetime,TY)
    
    DIRC = (1367 * KD * math.exp(-0.8662 * (AM) * (TL) * (DEC)
                             ) * math.sin(solar.GetAltitude(latitude_deg,longitude_deg, 
                                                          utc_datetime,elevation , 
                                                          temperature_celsius , pressure_millibars )))
    
    return DIRC

def global_irradiance_clear(DIRC, DIFFC, latitude_deg, longitude_deg, utc_datetime, 
                            temperature_celsius = 25, pressure_millibars = 1013.25, TY = TY_default, 
                            AM = AM_default, TL = TL_default, elevation = elevation_default):
    
    """Equation calculates global irradiance under clear sky conditions.
    
    Parameters
    ----------
    DIRC : float
        Direct Irradiation under clear        
    DIFFC : float
        Diffuse Irradiation under clear sky
    
    latitude_deg : float
        latitude in decimal degree. A geographical term denoting the north/south angular location of a place
        on a sphere.            
    longitude_deg : float
        longitude in decimal degree. Longitude shows your location in an east-west direction,relative to 
        the Greenwich meridian.        
    utc_datetime : date_object
        utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 )
    temperature_celsius : float
        Temperature is a physical property of a system that underlies the common notions of hot and cold. 
    pressure_millibars : float
        pressure_millibars
    elevation : float
        The elevation of a geographic location is its height above a fixed reference point, often the 
        mean sea level.
    TY : float
        Total number of days in a year. eg. 365 days per year,(no leap days)
    AM : float
        Air mass. An Air Mass is a measure of how far light travels through the Earth's atmosphere. One air mass, 
        or AM1, is the thickness of the Earth's atmosphere. Air mass zero (AM0) describes solar irradiance in 
        space, where it is unaffected by the atmosphere. The power density of AM1 light is about 1,000 W/m.
        
    TL : float
        Linke turbidity factor 
    elevation : float
        The elevation of a geographic location is its height above a fixed reference point, often the mean sea 
        level.     
    
    Returns
    -------
    ghic : float
        Global Irradiation under clear sky
    
    References
    ----------
    .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed 
            new approaches", energy 30 (2005), pp 1533 - 1549.
            
    """
    DIRC =  direct_underclear(latitude_deg, longitude_deg, utc_datetime, 
                              TY, AM, TL, elevation, temperature_celsius = 25, 
                              pressure_millibars = 1013.25)
    
    DIFFC = diffuse_underclear(latitude_deg, longitude_deg, utc_datetime, 
                               elevation, temperature_celsius = 25, pressure_millibars= 1013.25)
    
    ghic = (DIRC + DIFFC)
    
    return ghic
    

def global_irradiance_overcast(latitude_deg, longitude_deg, utc_datetime, 
                               elevation = elevation_default, temperature_celsius = 25, 
                               pressure_millibars = 1013.25):
    """Calculated Global is used to compare to the Diffuse under overcast conditions.
    Under overcast skies, global and diffuse are expected to be equal due to the absence of the beam 
    component.
    
    Parameters
    ----------
    latitude_deg : float
        latitude in decimal degree. A geographical term denoting the north/south angular location of a 
        place on a sphere.            
    longitude_deg : float
        longitude in decimal degree. Longitude shows your location in an east-west direction,relative 
        to the Greenwich meridian.        
    utc_datetime : date_object
        utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 )
    elevation : float
        The elevation of a geographic location is its height above a fixed reference point, often the 
        mean sea level.         
    temperature_celsius : float
        Temperature is a physical property of a system that underlies the common notions of hot and 
        cold.    
    pressure_millibars : float
        pressure_millibars    
    
    Returns
    -------
    ghioc : float
        Global Irradiation under overcast sky
    
    References
    ----------
    .. [1] S. Younes, R.Claywell and el al, "Quality
            control of solar radiation data: present status
            and proposed new approaches", energy 30
            (2005), pp 1533 - 1549.

    """    
    ghioc = (572 * (solar.GetAltitude(latitude_deg, longitude_deg, utc_datetime, 
                                    elevation , temperature_celsius , pressure_millibars )))
    
    return ghioc
    

def diffuse_ratio(DIFF_data,ghi_data):
    """Function calculates the Diffuse ratio.
    
    Parameters
    ----------
    DIFF_data : array_like
        Diffuse horizontal irradiation data 
    ghi_data : array_like
        global horizontal irradiation data array    
    
    Returns
    -------
    K : float
        diffuse_ratio
    
    References
    ----------
    .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed 
            new approaches", energy 30 (2005), pp 1533 - 1549.
           
    """    
    K = DIFF_data/ghi_data
    
    return K 
    

def clear_index(ghi_data, utc_datetime, latitude_deg, longitude_deg):
   
    """This calculates the clear index ratio.
    
    Parameters
    ----------
    ghi_data : array_like
        global horizontal irradiation data array    
    utc_datetime : date_object
        utc_datetime. UTC DateTime is for Universal Time ( i.e. like a GMT+0 )        
    latitude_deg : float
        latitude in decimal degree. A geographical term denoting the north/south angular location of a place 
        on a sphere.            
    longitude_deg : float
        longitude in decimal degree. Longitude shows your location in an east-west direction,relative to the 
        Greenwich meridian.        
        
    Returns
    -------
    KT : float
        Clear index ratio
    
    References
    ----------
    .. [1] S. Younes, R.Claywell and el al,"Quality control of solar radiation data: present status and proposed 
            new approaches", energy 30 (2005), pp 1533 - 1549.
            
    """    
    EXTR1 = extraterrestrial_irrad(utc_datetime, latitude_deg, longitude_deg)
    
    KT = (ghi_data/EXTR1)
    
    return KT
  
def date_with_decimal_hour(date_utc, hour_decimal):    
    """This converts dates with decimal hour to datetime_hour.
    An improved version :mod:`conversions_time`
    
    Parameters
    ----------
    datetime : datetime.datetime
        A datetime object is a single object containing all the information from a 
        date object and a time object.              
    hour_decimal : datetime.datetime
        An hour is a unit of time 60 minutes, or 3,600 seconds in length.
    
    Returns
    -------.
    datetime_hour : datetime.datetime
        datetime_hour
    
    """
    # Backwards compatibility: round down to nearest round minute
    offset_seconds = int(hour_decimal * 60) * 60
    datetime_utc = dt(date_utc.year, date_utc.month, date_utc.day)
    
    return datetime_utc + timedelta(seconds=offset_seconds)