/usr/lib/python2.7/dist-packages/ufl/domain.py is in python-ufl 2016.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 | # -*- coding: utf-8 -*-
"Types for representing a geometric domain."
# Copyright (C) 2008-2016 Martin Sandve Alnæs
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2009.
# Modified by Kristian B. Oelgaard, 2009
# Modified by Marie E. Rognes 2012
# import six
import numbers
from ufl.utils.py23 import as_native_str
from ufl.utils.py23 import as_native_strings
from ufl.core.ufl_type import attach_operators_from_hash_data
from ufl.core.ufl_id import attach_ufl_id
from ufl.corealg.traversal import traverse_unique_terminals
from ufl.log import error
from ufl.cell import as_cell, AbstractCell, TensorProductCell
from ufl.finiteelement.tensorproductelement import TensorProductElement
# Export list for ufl.classes
__all_classes__ = as_native_strings(["AbstractDomain", "Mesh", "MeshView", "TensorProductMesh"])
class AbstractDomain(object):
"""Symbolic representation of a geometric domain with only a geometric and topological dimension."""
def __init__(self, topological_dimension, geometric_dimension):
# Validate dimensions
if not isinstance(geometric_dimension, numbers.Integral):
error("Expecting integer geometric dimension, not %s" % (geometric_dimension.__class__,))
if not isinstance(topological_dimension, numbers.Integral):
error("Expecting integer topological dimension, not %s" % (topological_dimension.__class__,))
if topological_dimension > geometric_dimension:
error("Topological dimension cannot be larger than geometric dimension.")
# Store validated dimensions
self._topological_dimension = topological_dimension
self._geometric_dimension = geometric_dimension
def geometric_dimension(self):
"Return the dimension of the space this domain is embedded in."
return self._geometric_dimension
def topological_dimension(self):
"Return the dimension of the topology of this domain."
return self._topological_dimension
def __unicode__(self):
# Only in python 2
return str(self).decode("utf-8")
# TODO: Would it be useful to have a domain representing R^d? E.g. for
# Expression.
# class EuclideanSpace(AbstractDomain):
# def __init__(self, geometric_dimension):
# AbstractDomain.__init__(self, geometric_dimension, geometric_dimension)
# @six.python_2_unicode_compatible
@attach_operators_from_hash_data
@attach_ufl_id
class Mesh(AbstractDomain):
"""Symbolic representation of a mesh."""
def __init__(self, coordinate_element, ufl_id=None, cargo=None):
self._ufl_id = self._init_ufl_id(ufl_id)
# Store reference to object that will not be used by UFL
self._ufl_cargo = cargo
if cargo is not None and cargo.ufl_id() != self._ufl_id:
error("Expecting cargo object (e.g. dolfin.Mesh) to have the same ufl_id.")
# No longer accepting coordinates provided as a Coefficient
from ufl.coefficient import Coefficient
if isinstance(coordinate_element, Coefficient):
error("Expecting a coordinate element in the ufl.Mesh construct.")
# Accept a cell in place of an element for brevity Mesh(triangle)
if isinstance(coordinate_element, AbstractCell):
from ufl.finiteelement import VectorElement
cell = coordinate_element
coordinate_element = VectorElement("Lagrange", cell, 1,
dim=cell.geometric_dimension())
# Store coordinate element
self._ufl_coordinate_element = coordinate_element
# Derive dimensions from element
gdim, = coordinate_element.value_shape()
tdim = coordinate_element.cell().topological_dimension()
AbstractDomain.__init__(self, tdim, gdim)
def ufl_cargo(self):
"Return carried object that will not be used by UFL."
return self._ufl_cargo
def ufl_coordinate_element(self):
return self._ufl_coordinate_element
def ufl_cell(self):
return self._ufl_coordinate_element.cell()
def is_piecewise_linear_simplex_domain(self):
return (self._ufl_coordinate_element.degree() == 1) and self.ufl_cell().is_simplex()
def __repr__(self):
r = "Mesh(%s, %s)" % (repr(self._ufl_coordinate_element), repr(self._ufl_id))
return as_native_str(r)
def __str__(self):
return "<Mesh #%s>" % (self._ufl_id,)
def _ufl_hash_data_(self):
return (self._ufl_id, self._ufl_coordinate_element)
def _ufl_signature_data_(self, renumbering):
return ("Mesh", renumbering[self], self._ufl_coordinate_element)
# NB! Dropped __lt__ here, don't want users to write 'mesh1 <
# mesh2'.
def _ufl_sort_key_(self):
typespecific = (self._ufl_id, self._ufl_coordinate_element)
return (self.geometric_dimension(), self.topological_dimension(),
"Mesh", typespecific)
# Deprecations inherited from Domain
#def cell(self):
# deprecate("Mesh.cell() is deprecated, please use .ufl_cell() instead.")
# return self.ufl_cell()
#def coordinates(self):
# error("Coordinate function support has been removed!\n"
# "Use mesh.ufl_coordinate_element() to get the coordinate element,\n"
# "and SpatialCoordinate(mesh) to represent the coordinate field in a form.")
#def ufl_coordinates(self):
# error("Coordinate function support has been removed!\n"
# "Use mesh.ufl_coordinate_element() to get the coordinate element,\n"
# "and SpatialCoordinate(mesh) to represent the coordinate field in a form.")
# @six.python_2_unicode_compatible
@attach_operators_from_hash_data
@attach_ufl_id
class MeshView(AbstractDomain):
"""Symbolic representation of a mesh."""
def __init__(self, mesh, topological_dimension, ufl_id=None):
self._ufl_id = self._init_ufl_id(ufl_id)
# Store mesh
self._ufl_mesh = mesh
# Derive dimensions from element
coordinate_element = mesh.ufl_coordinate_element()
gdim, = coordinate_element.value_shape()
tdim = coordinate_element.cell().topological_dimension()
AbstractDomain.__init__(self, tdim, gdim)
def ufl_mesh(self):
return self._ufl_mesh
def ufl_cell(self):
return self._ufl_mesh.ufl_cell()
def is_piecewise_linear_simplex_domain(self):
return self._ufl_mesh.is_piecewise_linear_simplex_domain()
def __repr__(self):
tdim = self.topological_dimension()
r = "MeshView(%s, %s, %s)" % (repr(self._ufl_mesh), repr(tdim), repr(self._ufl_id))
return as_native_str(r)
def __str__(self):
return "<MeshView #%s of dimension %d over mesh %s>" % (
self._ufl_id, self.topological_dimension(), self._ufl_mesh)
def _ufl_hash_data_(self):
return (self._ufl_id,) + self._ufl_mesh._ufl_hash_data_()
def _ufl_signature_data_(self, renumbering):
return ("MeshView", renumbering[self],
self._ufl_mesh._ufl_signature_data_(renumbering))
# NB! Dropped __lt__ here, don't want users to write 'mesh1 <
# mesh2'.
def _ufl_sort_key_(self):
typespecific = (self._ufl_id, self._ufl_mesh)
return (self.geometric_dimension(), self.topological_dimension(),
"MeshView", typespecific)
# @six.python_2_unicode_compatible
@attach_operators_from_hash_data
@attach_ufl_id
class TensorProductMesh(AbstractDomain):
"""Symbolic representation of a mesh."""
def __init__(self, meshes, ufl_id=None):
self._ufl_id = self._init_ufl_id(ufl_id)
# TODO: Error checking of meshes
self._ufl_meshes = meshes
# TODO: Is this what we want to do?
# Build cell from mesh cells
self._ufl_cell = TensorProductCell(*[mesh.ufl_cell() for mesh in meshes])
# TODO: Is this what we want to do?
# Build coordinate element from mesh coordinate elements
self._ufl_coordinate_element = TensorProductElement([mesh.ufl_coordinate_element() for mesh in meshes])
# Derive dimensions from meshes
gdim = sum(mesh.geometric_dimension() for mesh in meshes)
tdim = sum(mesh.topological_dimension() for mesh in meshes)
AbstractDomain.__init__(self, tdim, gdim)
def ufl_coordinate_element(self):
return self._ufl_coordinate_element
def ufl_cell(self):
return self._ufl_cell
def is_piecewise_linear_simplex_domain(self):
return False # TODO: Any cases this is True
def __repr__(self):
r = "TensorProductMesh(%s, %s)" % (repr(self._ufl_meshes), repr(self._ufl_id))
return as_native_str(r)
def __str__(self):
return "<TensorProductMesh #%s with meshes %s>" % (
self._ufl_id, self._ufl_meshes)
def _ufl_hash_data_(self):
return (self._ufl_id,) + tuple(mesh._ufl_hash_data_() for mesh in self._ufl_meshes)
def _ufl_signature_data_(self, renumbering):
return ("TensorProductMesh",) + tuple(mesh._ufl_signature_data_(renumbering) for mesh in self._ufl_meshes)
# NB! Dropped __lt__ here, don't want users to write 'mesh1 <
# mesh2'.
def _ufl_sort_key_(self):
typespecific = (self._ufl_id, tuple(mesh._ufl_sort_key_() for mesh in self._ufl_meshes))
return (self.geometric_dimension(), self.topological_dimension(),
"TensorProductMesh", typespecific)
# --- Utility conversion functions
def affine_mesh(cell, ufl_id=None):
"Create a Mesh over a given cell type with an affine geometric parameterization."
from ufl.finiteelement import VectorElement
cell = as_cell(cell)
gdim = cell.geometric_dimension()
degree = 1
coordinate_element = VectorElement("Lagrange", cell, degree, dim=gdim)
return Mesh(coordinate_element, ufl_id=ufl_id)
_default_domains = {}
def default_domain(cell):
"Create a singular default Mesh from a cell, always returning the same Mesh object for the same cell."
global _default_domains
assert isinstance(cell, AbstractCell)
domain = _default_domains.get(cell)
if domain is None:
# Create one and only one affine Mesh with a negative ufl_id
# to avoid id collision
ufl_id = -(len(_default_domains)+1)
domain = affine_mesh(cell, ufl_id=ufl_id)
_default_domains[cell] = domain
return domain
def as_domain(domain):
"""Convert any valid object to an AbstractDomain type."""
if isinstance(domain, AbstractDomain):
# Modern .ufl files and dolfin behaviour
return domain
elif hasattr(domain, "ufl_domain"):
# If we get a dolfin.Mesh, it can provide us a corresponding
# ufl.Mesh. This would be unnecessary if dolfin.Mesh could
# subclass ufl.Mesh.
return domain.ufl_domain()
else:
# Legacy .ufl files
# TODO: Make this conversion in the relevant constructors
# closer to the user interface?
# TODO: Make this configurable to be an error from the dolfin side?
cell = as_cell(domain)
return default_domain(cell)
def sort_domains(domains):
"Sort domains in a canonical ordering."
return tuple(sorted(domains, key=lambda domain: domain._ufl_sort_key_()))
def join_domains(domains):
"""Take a list of domains and return a tuple with only unique domain objects.
Checks that domains with the same id are compatible.
"""
# Use hashing to join domains, ignore None
domains = set(domains) - set((None,))
if not domains:
return ()
# Check geometric dimension compatibility
gdims = set()
for domain in domains:
gdims.add(domain.geometric_dimension())
if len(gdims) != 1:
error("Found domains with different geometric dimensions.")
gdim, = gdims
# Split into legacy and modern style domains
legacy_domains = []
modern_domains = []
for domain in domains:
if isinstance(domain, Mesh) and domain.ufl_id() < 0:
assert domain.ufl_cargo() is None
legacy_domains.append(domain)
else:
modern_domains.append(domain)
# Handle legacy domains checking
if legacy_domains:
if modern_domains:
error("Found both a new-style domain and a legacy default domain.\n"
"These should not be used interchangeably. To find the legacy\n"
"domain, note that it is automatically created from a cell so\n"
"look for constructors taking a cell.")
return tuple(legacy_domains)
# Handle modern domains checking (assuming correct by construction)
return tuple(modern_domains)
# TODO: Move these to an analysis module?
def extract_domains(expr):
"Return all domains expression is defined on."
domainlist = []
for t in traverse_unique_terminals(expr):
domainlist.extend(t.ufl_domains())
return sorted(join_domains(domainlist))
def extract_unique_domain(expr):
"Return the single unique domain expression is defined on or throw an error."
domains = extract_domains(expr)
if len(domains) == 1:
return domains[0]
elif domains:
error("Found multiple domains, cannot return just one.")
else:
return None
def find_geometric_dimension(expr):
"Find the geometric dimension of an expression."
gdims = set()
for t in traverse_unique_terminals(expr):
if hasattr(t, "ufl_domain"):
domain = t.ufl_domain()
if domain is not None:
gdims.add(domain.geometric_dimension())
if hasattr(t, "ufl_element"):
element = t.ufl_element()
if element is not None:
cell = element.cell()
if cell is not None:
gdims.add(cell.geometric_dimension())
if len(gdims) != 1:
error("Cannot determine geometric dimension from expression.")
gdim, = gdims
return gdim
|