This file is indexed.

/usr/lib/python2.7/dist-packages/ufl/domain.py is in python-ufl 2016.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# -*- coding: utf-8 -*-
"Types for representing a geometric domain."

# Copyright (C) 2008-2016 Martin Sandve Alnæs
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2009.
# Modified by Kristian B. Oelgaard, 2009
# Modified by Marie E. Rognes 2012

# import six
import numbers

from ufl.utils.py23 import as_native_str
from ufl.utils.py23 import as_native_strings
from ufl.core.ufl_type import attach_operators_from_hash_data
from ufl.core.ufl_id import attach_ufl_id
from ufl.corealg.traversal import traverse_unique_terminals
from ufl.log import error
from ufl.cell import as_cell, AbstractCell, TensorProductCell
from ufl.finiteelement.tensorproductelement import TensorProductElement


# Export list for ufl.classes
__all_classes__ = as_native_strings(["AbstractDomain", "Mesh", "MeshView", "TensorProductMesh"])


class AbstractDomain(object):
    """Symbolic representation of a geometric domain with only a geometric and topological dimension."""
    def __init__(self, topological_dimension, geometric_dimension):
        # Validate dimensions
        if not isinstance(geometric_dimension, numbers.Integral):
            error("Expecting integer geometric dimension, not %s" % (geometric_dimension.__class__,))
        if not isinstance(topological_dimension, numbers.Integral):
            error("Expecting integer topological dimension, not %s" % (topological_dimension.__class__,))
        if topological_dimension > geometric_dimension:
            error("Topological dimension cannot be larger than geometric dimension.")

        # Store validated dimensions
        self._topological_dimension = topological_dimension
        self._geometric_dimension = geometric_dimension

    def geometric_dimension(self):
        "Return the dimension of the space this domain is embedded in."
        return self._geometric_dimension

    def topological_dimension(self):
        "Return the dimension of the topology of this domain."
        return self._topological_dimension

    def __unicode__(self):
        # Only in python 2
        return str(self).decode("utf-8")


# TODO: Would it be useful to have a domain representing R^d? E.g. for
# Expression.
# class EuclideanSpace(AbstractDomain):
#     def __init__(self, geometric_dimension):
#         AbstractDomain.__init__(self, geometric_dimension, geometric_dimension)


# @six.python_2_unicode_compatible
@attach_operators_from_hash_data
@attach_ufl_id
class Mesh(AbstractDomain):
    """Symbolic representation of a mesh."""
    def __init__(self, coordinate_element, ufl_id=None, cargo=None):
        self._ufl_id = self._init_ufl_id(ufl_id)

        # Store reference to object that will not be used by UFL
        self._ufl_cargo = cargo
        if cargo is not None and cargo.ufl_id() != self._ufl_id:
            error("Expecting cargo object (e.g. dolfin.Mesh) to have the same ufl_id.")

        # No longer accepting coordinates provided as a Coefficient
        from ufl.coefficient import Coefficient
        if isinstance(coordinate_element, Coefficient):
            error("Expecting a coordinate element in the ufl.Mesh construct.")

        # Accept a cell in place of an element for brevity Mesh(triangle)
        if isinstance(coordinate_element, AbstractCell):
            from ufl.finiteelement import VectorElement
            cell = coordinate_element
            coordinate_element = VectorElement("Lagrange", cell, 1,
                                               dim=cell.geometric_dimension())

        # Store coordinate element
        self._ufl_coordinate_element = coordinate_element

        # Derive dimensions from element
        gdim, = coordinate_element.value_shape()
        tdim = coordinate_element.cell().topological_dimension()
        AbstractDomain.__init__(self, tdim, gdim)

    def ufl_cargo(self):
        "Return carried object that will not be used by UFL."
        return self._ufl_cargo

    def ufl_coordinate_element(self):
        return self._ufl_coordinate_element

    def ufl_cell(self):
        return self._ufl_coordinate_element.cell()

    def is_piecewise_linear_simplex_domain(self):
        return (self._ufl_coordinate_element.degree() == 1) and self.ufl_cell().is_simplex()

    def __repr__(self):
        r = "Mesh(%s, %s)" % (repr(self._ufl_coordinate_element), repr(self._ufl_id))
        return as_native_str(r)

    def __str__(self):
        return "<Mesh #%s>" % (self._ufl_id,)

    def _ufl_hash_data_(self):
        return (self._ufl_id, self._ufl_coordinate_element)

    def _ufl_signature_data_(self, renumbering):
        return ("Mesh", renumbering[self], self._ufl_coordinate_element)

    # NB! Dropped __lt__ here, don't want users to write 'mesh1 <
    # mesh2'.
    def _ufl_sort_key_(self):
        typespecific = (self._ufl_id, self._ufl_coordinate_element)
        return (self.geometric_dimension(), self.topological_dimension(),
                "Mesh", typespecific)

    # Deprecations inherited from Domain
    #def cell(self):
    #    deprecate("Mesh.cell() is deprecated, please use .ufl_cell() instead.")
    #    return self.ufl_cell()

    #def coordinates(self):
    #    error("Coordinate function support has been removed!\n"
    #          "Use mesh.ufl_coordinate_element() to get the coordinate element,\n"
    #          "and SpatialCoordinate(mesh) to represent the coordinate field in a form.")

    #def ufl_coordinates(self):
    #    error("Coordinate function support has been removed!\n"
    #          "Use mesh.ufl_coordinate_element() to get the coordinate element,\n"
    #          "and SpatialCoordinate(mesh) to represent the coordinate field in a form.")


# @six.python_2_unicode_compatible
@attach_operators_from_hash_data
@attach_ufl_id
class MeshView(AbstractDomain):
    """Symbolic representation of a mesh."""
    def __init__(self, mesh, topological_dimension, ufl_id=None):
        self._ufl_id = self._init_ufl_id(ufl_id)

        # Store mesh
        self._ufl_mesh = mesh

        # Derive dimensions from element
        coordinate_element = mesh.ufl_coordinate_element()
        gdim, = coordinate_element.value_shape()
        tdim = coordinate_element.cell().topological_dimension()
        AbstractDomain.__init__(self, tdim, gdim)

    def ufl_mesh(self):
        return self._ufl_mesh

    def ufl_cell(self):
        return self._ufl_mesh.ufl_cell()

    def is_piecewise_linear_simplex_domain(self):
        return self._ufl_mesh.is_piecewise_linear_simplex_domain()

    def __repr__(self):
        tdim = self.topological_dimension()
        r = "MeshView(%s, %s, %s)" % (repr(self._ufl_mesh), repr(tdim), repr(self._ufl_id))
        return as_native_str(r)

    def __str__(self):
        return "<MeshView #%s of dimension %d over mesh %s>" % (
            self._ufl_id, self.topological_dimension(), self._ufl_mesh)

    def _ufl_hash_data_(self):
        return (self._ufl_id,) + self._ufl_mesh._ufl_hash_data_()

    def _ufl_signature_data_(self, renumbering):
        return ("MeshView", renumbering[self],
                self._ufl_mesh._ufl_signature_data_(renumbering))

    # NB! Dropped __lt__ here, don't want users to write 'mesh1 <
    # mesh2'.
    def _ufl_sort_key_(self):
        typespecific = (self._ufl_id, self._ufl_mesh)
        return (self.geometric_dimension(), self.topological_dimension(),
                "MeshView", typespecific)


# @six.python_2_unicode_compatible
@attach_operators_from_hash_data
@attach_ufl_id
class TensorProductMesh(AbstractDomain):
    """Symbolic representation of a mesh."""
    def __init__(self, meshes, ufl_id=None):
        self._ufl_id = self._init_ufl_id(ufl_id)

        # TODO: Error checking of meshes
        self._ufl_meshes = meshes

        # TODO: Is this what we want to do?
        # Build cell from mesh cells
        self._ufl_cell = TensorProductCell(*[mesh.ufl_cell() for mesh in meshes])

        # TODO: Is this what we want to do?
        # Build coordinate element from mesh coordinate elements
        self._ufl_coordinate_element = TensorProductElement([mesh.ufl_coordinate_element() for mesh in meshes])

        # Derive dimensions from meshes
        gdim = sum(mesh.geometric_dimension() for mesh in meshes)
        tdim = sum(mesh.topological_dimension() for mesh in meshes)

        AbstractDomain.__init__(self, tdim, gdim)

    def ufl_coordinate_element(self):
        return self._ufl_coordinate_element

    def ufl_cell(self):
        return self._ufl_cell

    def is_piecewise_linear_simplex_domain(self):
        return False  # TODO: Any cases this is True

    def __repr__(self):
        r = "TensorProductMesh(%s, %s)" % (repr(self._ufl_meshes), repr(self._ufl_id))
        return as_native_str(r)

    def __str__(self):
        return "<TensorProductMesh #%s with meshes %s>" % (
            self._ufl_id, self._ufl_meshes)

    def _ufl_hash_data_(self):
        return (self._ufl_id,) + tuple(mesh._ufl_hash_data_() for mesh in self._ufl_meshes)

    def _ufl_signature_data_(self, renumbering):
        return ("TensorProductMesh",) + tuple(mesh._ufl_signature_data_(renumbering) for mesh in self._ufl_meshes)

    # NB! Dropped __lt__ here, don't want users to write 'mesh1 <
    # mesh2'.
    def _ufl_sort_key_(self):
        typespecific = (self._ufl_id, tuple(mesh._ufl_sort_key_() for mesh in self._ufl_meshes))
        return (self.geometric_dimension(), self.topological_dimension(),
                "TensorProductMesh", typespecific)


# --- Utility conversion functions

def affine_mesh(cell, ufl_id=None):
    "Create a Mesh over a given cell type with an affine geometric parameterization."
    from ufl.finiteelement import VectorElement
    cell = as_cell(cell)
    gdim = cell.geometric_dimension()
    degree = 1
    coordinate_element = VectorElement("Lagrange", cell, degree, dim=gdim)
    return Mesh(coordinate_element, ufl_id=ufl_id)


_default_domains = {}


def default_domain(cell):
    "Create a singular default Mesh from a cell, always returning the same Mesh object for the same cell."
    global _default_domains
    assert isinstance(cell, AbstractCell)
    domain = _default_domains.get(cell)
    if domain is None:
        # Create one and only one affine Mesh with a negative ufl_id
        # to avoid id collision
        ufl_id = -(len(_default_domains)+1)
        domain = affine_mesh(cell, ufl_id=ufl_id)
        _default_domains[cell] = domain
    return domain


def as_domain(domain):
    """Convert any valid object to an AbstractDomain type."""
    if isinstance(domain, AbstractDomain):
        # Modern .ufl files and dolfin behaviour
        return domain
    elif hasattr(domain, "ufl_domain"):
        # If we get a dolfin.Mesh, it can provide us a corresponding
        # ufl.Mesh.  This would be unnecessary if dolfin.Mesh could
        # subclass ufl.Mesh.
        return domain.ufl_domain()
    else:
        # Legacy .ufl files
        # TODO: Make this conversion in the relevant constructors
        # closer to the user interface?
        # TODO: Make this configurable to be an error from the dolfin side?
        cell = as_cell(domain)
        return default_domain(cell)


def sort_domains(domains):
    "Sort domains in a canonical ordering."
    return tuple(sorted(domains, key=lambda domain: domain._ufl_sort_key_()))


def join_domains(domains):
    """Take a list of domains and return a tuple with only unique domain objects.

    Checks that domains with the same id are compatible.
    """
    # Use hashing to join domains, ignore None
    domains = set(domains) - set((None,))
    if not domains:
        return ()

    # Check geometric dimension compatibility
    gdims = set()
    for domain in domains:
        gdims.add(domain.geometric_dimension())
    if len(gdims) != 1:
        error("Found domains with different geometric dimensions.")
    gdim, = gdims

    # Split into legacy and modern style domains
    legacy_domains = []
    modern_domains = []
    for domain in domains:
        if isinstance(domain, Mesh) and domain.ufl_id() < 0:
            assert domain.ufl_cargo() is None
            legacy_domains.append(domain)
        else:
            modern_domains.append(domain)

    # Handle legacy domains checking
    if legacy_domains:
        if modern_domains:
            error("Found both a new-style domain and a legacy default domain.\n"
                  "These should not be used interchangeably. To find the legacy\n"
                  "domain, note that it is automatically created from a cell so\n"
                  "look for constructors taking a cell.")
        return tuple(legacy_domains)

    # Handle modern domains checking (assuming correct by construction)
    return tuple(modern_domains)


# TODO: Move these to an analysis module?

def extract_domains(expr):
    "Return all domains expression is defined on."
    domainlist = []
    for t in traverse_unique_terminals(expr):
        domainlist.extend(t.ufl_domains())
    return sorted(join_domains(domainlist))


def extract_unique_domain(expr):
    "Return the single unique domain expression is defined on or throw an error."
    domains = extract_domains(expr)
    if len(domains) == 1:
        return domains[0]
    elif domains:
        error("Found multiple domains, cannot return just one.")
    else:
        return None


def find_geometric_dimension(expr):
    "Find the geometric dimension of an expression."
    gdims = set()
    for t in traverse_unique_terminals(expr):
        if hasattr(t, "ufl_domain"):
            domain = t.ufl_domain()
            if domain is not None:
                gdims.add(domain.geometric_dimension())
        if hasattr(t, "ufl_element"):
            element = t.ufl_element()
            if element is not None:
                cell = element.cell()
                if cell is not None:
                    gdims.add(cell.geometric_dimension())
    if len(gdims) != 1:
        error("Cannot determine geometric dimension from expression.")
    gdim, = gdims
    return gdim