This file is indexed.

/usr/share/pyshared/uncertainties/test_uncertainties.py is in python-uncertainties 2.4.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
# coding=utf-8

"""
Tests of the code in uncertainties/__init__.py.

These tests can be run through the Nose testing framework.

(c) 2010-2013 by Eric O. LEBIGOT (EOL).
"""

from __future__ import division


# Standard modules
import copy
import weakref
import math
import random
import sys

        
# 3rd-party modules
# import nose.tools

# Local modules

import uncertainties
from uncertainties import ufloat, AffineScalarFunc, ufloat_fromstr, isnan
from uncertainties import umath
from backport import *

from uncertainties import __author__

# The following information is useful for making sure that the right
# version of Python is running the tests (for instance with the Travis
# Continuous Integration system):
print "Testing with Python", sys.version

###############################################################################

# Utilities for unit testing

def numbers_close(x, y, tolerance=1e-6):
    """
    Returns True if the given floats are close enough.

    The given tolerance is the relative difference allowed, or the absolute
    difference, if one of the numbers is 0.

    NaN is allowed: it is considered close to itself.
    """

    # Instead of using a try and ZeroDivisionError, we do a test,
    # NaN could appear silently:

    if x != 0 and y != 0:
        if not uncertainties.isnan(x):
            # Symmetric form of the test:
            return 2*abs(x-y)/(abs(x)+abs(y)) < tolerance
        else:
            return uncertainties.isnan(y)
    else:  # Either x or y is zero
        return abs(x or y) < tolerance 

def ufloats_close(x, y, tolerance=1e-6):
    '''
    Tests if two numbers with uncertainties are close, as random
    variables: this is stronger than testing whether their nominal
    value and standard deviation are close.

    The tolerance is applied to both the nominal value and the
    standard deviation of the difference between the numbers.
    '''

    diff = x-y
    return (numbers_close(diff.nominal_value, 0, tolerance)
            and numbers_close(diff.std_dev, 0, tolerance))
    
class DerivativesDiffer(Exception):
    pass

    
def compare_derivatives(func, numerical_derivatives,
                         num_args_list=None):
    """
    Checks the derivatives of a function 'func' (as returned by the
    wrap() wrapper), by comparing them to the
    'numerical_derivatives' functions.

    Raises a DerivativesDiffer exception in case of problem.
    
    These functions all take the number of arguments listed in
    num_args_list.  If num_args is None, it is automatically obtained.

    Tests are done on random arguments.
    """

    try:
        funcname = func.name
    except AttributeError:
        funcname = func.__name__
        
    # print "Testing", func.__name__

    if not num_args_list: 

        # Detecting automatically the correct number of arguments is not
        # always easy (because not all values are allowed, etc.):

        num_args_table = {
            'atanh': [1],
            'log': [1, 2]  # Both numbers of arguments are tested
            }
        if funcname in num_args_table:
            num_args_list = num_args_table[funcname]
        else:

            num_args_list = []

            # We loop until we find reasonable function arguments:
            # We get the number of arguments by trial and error:
            for num_args in range(10):
                try:
                    #! Giving integer arguments is good for preventing
                    # certain functions from failing even though num_args
                    # is their correct number of arguments
                    # (e.g. math.ldexp(x, i), where i must be an integer)
                    func(*(1,)*num_args)
                except TypeError:
                    pass  # Not the right number of arguments
                else:  # No error
                    # num_args is a good number of arguments for func:
                    num_args_list.append(num_args)

            if not num_args_list:
                raise Exception("Can't find a reasonable number of arguments"
                                " for function '%s'." % funcname)

    for num_args in num_args_list:

        # Argument numbers that will have a random integer value:
        integer_arg_nums = set()

        if funcname == 'ldexp':
            # The second argument must be an integer:
            integer_arg_nums.add(1)

        while True:
            try:

                # We include negative numbers, for more thorough tests:
                args = []
                for arg_num in range(num_args):
                    if arg_num in integer_arg_nums:                    
                        args.append(random.choice(range(-10, 10)))
                    else:
                        args.append(
                            uncertainties.Variable(random.random()*4-2, 0))

                # 'args', but as scalar values:
                args_scalar = [uncertainties.nominal_value(v)
                               for v in args]

                func_approx = func(*args)

                # Some functions yield simple Python constants, after
                # wrapping in wrap(): no test has to be performed.
                # Some functions also yield tuples...
                if isinstance(func_approx, AffineScalarFunc):
                    
                    # We compare all derivatives:
                    for (arg_num, (arg, numerical_deriv)) in (
                        enumerate(zip(args, numerical_derivatives))):

                        # Some arguments might not be differentiable:
                        if isinstance(arg, int):
                            continue

                        fixed_deriv_value = func_approx.derivatives[arg]
                        
                        num_deriv_value = numerical_deriv(*args_scalar)

                        # This message is useful: the user can see that
                        # tests are really performed (instead of not being
                        # performed, silently):
                        print "Testing %s at %s, arg #%d" % (
                            funcname, args, arg_num)
                        
                        if not numbers_close(fixed_deriv_value,
                                              num_deriv_value, 1e-4):

                            # It is possible that the result is NaN:

                            # ! Python 2.6+: this would be
                            # not math.isnan(func_approx):
                            if func_approx == func_approx:
                                raise DerivativesDiffer(
                                    "Derivative #%d of function '%s' may be"
                                    " wrong: at args = %s,"
                                    " value obtained = %.16f,"
                                    " while numerical approximation = %.16f."
                                    % (arg_num, funcname, args,
                                       fixed_deriv_value, num_deriv_value))

            except ValueError, err:  # Arguments out of range, or of wrong type
                # Factorial(real) lands here:
                if str(err).startswith('factorial'):
                    integer_arg_nums = set([0])
                continue  # We try with different arguments
            # Some arguments might have to be integers, for instance:
            except TypeError, err:
                if len(integer_arg_nums) == num_args:
                    raise Exception("Incorrect testing procedure: unable to "
                                    "find correct argument values for %s: %s"
                                    % (funcname, err))

                # Another argument might be forced to be an integer:
                integer_arg_nums.add(random.choice(range(num_args)))
            else:
                # We have found reasonable arguments, and the test passed:
                break

###############################################################################

def test_value_construction():
    '''
    Tests the various means of constructing a constant number with
    uncertainty *without a string* (see test_ufloat_fromstr(), for this).
    '''

    ## Simple construction:
    x = ufloat(3, 0.14)
    assert x.nominal_value == 3
    assert x.std_dev == 0.14
    assert x.tag is None
    
    # ... with tag as positional argument:
    x = ufloat(3, 0.14, 'pi')
    assert x.nominal_value == 3
    assert x.std_dev == 0.14
    assert x.tag == 'pi'

    # ... with tag keyword:
    x = ufloat(3, 0.14, tag='pi')
    assert x.nominal_value == 3
    assert x.std_dev == 0.14
    assert x.tag == 'pi'

    ## Comparison with the obsolete tuple form:

    # The following tuple is stored in a variable instead of being
    # repeated in the calls below, so that the automatic code update
    # does not replace ufloat((3, 0.14)) by ufloat(3, 14): the goal
    # here is to make sure that the obsolete form gives the same
    # result as the new form.
    
    representation = (3, 0.14)  # Obsolete representation
    
    x = ufloat(3, 0.14)
    x2 = ufloat(representation)  # Obsolete
    assert x.nominal_value == x2.nominal_value
    assert x.std_dev == x2.std_dev
    assert x.tag is None
    assert x2.tag is None
    
    # With tag as positional argument:
    x = ufloat(3, 0.14, "pi")
    x2 = ufloat(representation, "pi")  # Obsolete
    assert x.nominal_value == x2.nominal_value
    assert x.std_dev == x2.std_dev
    assert x.tag == 'pi'
    assert x2.tag == 'pi'
    
    # With tag keyword:
    x = ufloat(3, 0.14, tag="pi")
    x2 = ufloat(representation, tag="pi")  # Obsolete
    assert x.nominal_value == x2.nominal_value
    assert x.std_dev == x2.std_dev
    assert x.tag == 'pi'
    assert x2.tag == 'pi'

    # Negative standard deviations should be caught in a nice way
    # (with the right exception):
    try:
        x = ufloat(3, -0.1)
    except uncertainties.NegativeStdDev:
        pass
    
    try:
        # Obsolete form:
        x = ufloat((3, -0.1))
    except uncertainties.NegativeStdDev:
        pass
    
def test_ufloat_fromstr():
    "Input of numbers with uncertainties as a string"

    # String representation, and numerical values:
    tests = {
        "-1.23(3.4)": (-1.23, 3.4),  # (Nominal value, error)
        "  -1.23(3.4)  ": (-1.23, 3.4),  # Spaces ignored
        "-1.34(5)": (-1.34, 0.05),
        "1(6)": (1, 6),
        "3(4.2)": (3, 4.2),
        "-9(2)": (-9, 2),
        "1234567(1.2)": (1234567, 1.2),
        "12.345(15)": (12.345, 0.015),
        "-12.3456(78)e-6": (-12.3456e-6, 0.0078e-6),
        "0.29": (0.29, 0.01),
        "31.": (31, 1),
        "-31.": (-31, 1),
        # The following tests that the ufloat() routine does
        # not consider '31' like the tuple ('3', '1'), which would
        # make it expect two numbers (instead of 2 1-character
        # strings):
        "31": (31, 1),
        "-3.1e10": (-3.1e10, 0.1e10),
        "169.0(7)": (169, 0.7),
        "-0.1+/-1": (-0.1, 1),
        "-13e-2+/-1e2": (-13e-2, 1e2),
        '-14.(15)': (-14, 15),
        '-100.0(15)': (-100, 1.5),
        '14.(15)': (14, 15),
        # Global exponent:
        '(3.141+/-0.001)E+02': (314.1, 0.1),

        
        ## Pretty-print notation:
        
        # ± sign, global exponent (not pretty-printed):
        u'(3.141±0.001)E+02': (314.1, 0.1),
        # ± sign, individual exponent:
        u'3.141E+02±0.001e2': (314.1, 0.1),
        
        # ± sign, times symbol, superscript (= full pretty-print):
        u'(3.141 ± 0.001) × 10²': (314.1, 0.1),
        
        # NaN uncertainty:
        u'(3.141±nan)E+02': (314.1, float('nan')),
        '3.4(nan)e10': (3.4e10, float('nan')),
        # "Double-floats"
        '(-3.1415 +/- 1e-4)e+200': (-3.1415e200, 1e196),
        '(-3.1415e-10 +/- 1e-4)e+200': (-3.1415e190, 1e196),
        # Special float representation:
        '-3(0.)': (-3, 0)
        }
          
    for (representation, values) in tests.iteritems():

        # Without tag:
        num = ufloat_fromstr(representation)
        assert numbers_close(num.nominal_value, values[0])
        assert numbers_close(num.std_dev, values[1])
        assert num.tag is None
        
        # With a tag as positional argument:
        num = ufloat_fromstr(representation, 'test variable')
        assert numbers_close(num.nominal_value, values[0])
        assert numbers_close(num.std_dev, values[1])
        assert num.tag == 'test variable'

        # With a tag as keyword argument:
        num = ufloat_fromstr(representation, tag='test variable')
        assert numbers_close(num.nominal_value, values[0])
        assert numbers_close(num.std_dev, values[1])
        assert num.tag == 'test variable'
        
        ## Obsolete forms

        num = ufloat(representation)  # Obsolete
        assert numbers_close(num.nominal_value, values[0])
        assert numbers_close(num.std_dev, values[1])
        assert num.tag is None
        
        # Call with a tag list argument:
        num = ufloat(representation, 'test variable')  # Obsolete
        assert numbers_close(num.nominal_value, values[0])
        assert numbers_close(num.std_dev, values[1])
        assert num.tag == 'test variable'
        
        # Call with a tag keyword argument:
        num = ufloat(representation, tag='test variable')  # Obsolete
        assert numbers_close(num.nominal_value, values[0])
        assert numbers_close(num.std_dev, values[1])
        assert num.tag == 'test variable'

###############################################################################
            
# Test of correctness of the fixed (usually analytical) derivatives:
def test_fixed_derivatives_basic_funcs():
    """
    Pre-calculated derivatives for operations on AffineScalarFunc.
    """

    def check_op(op, num_args):
        """
        Makes sure that the derivatives for function '__op__' of class
        AffineScalarFunc, which takes num_args arguments, are correct.

        If num_args is None, a correct value is calculated.
        """

        op_string = "__%s__" % op
        func = getattr(AffineScalarFunc, op_string)
        numerical_derivatives = uncertainties.NumericalDerivatives(
            # The __neg__ etc. methods of AffineScalarFunc only apply,
            # by definition, to AffineScalarFunc objects: we first map
            # possible scalar arguments (used for calculating
            # derivatives) to AffineScalarFunc objects:
            lambda *args: func(*map(uncertainties.to_affine_scalar, args)))
        compare_derivatives(func, numerical_derivatives, [num_args])

    # Operators that take 1 value:
    for op in uncertainties.modified_operators:
        check_op(op, 1)

    # Operators that take 2 values:
    for op in uncertainties.modified_ops_with_reflection:
        check_op(op, 2)

# Additional, more complex checks, for use with the nose unit testing
# framework.

def test_copy():
    "Standard copy module integration"
    import gc
    
    x = ufloat(3, 0.1)
    assert x == x
    
    y = copy.copy(x)
    assert x != y
    assert not(x == y)
    assert y in y.derivatives.keys()  # y must not copy the dependence on x
    
    z = copy.deepcopy(x)
    assert x != z

    # Copy tests on expressions:
    t = x + 2*z
    # t depends on x:
    assert x in t.derivatives
    
    # The relationship between the copy of an expression and the
    # original variables should be preserved:
    t_copy = copy.copy(t)
    # Shallow copy: the variables on which t depends are not copied:
    assert x in t_copy.derivatives
    assert (uncertainties.covariance_matrix([t, z]) ==
            uncertainties.covariance_matrix([t_copy, z]))

    # However, the relationship between a deep copy and the original
    # variables should be broken, since the deep copy created new,
    # independent variables:
    t_deepcopy = copy.deepcopy(t)
    assert x not in t_deepcopy.derivatives    
    assert (uncertainties.covariance_matrix([t, z]) !=
            uncertainties.covariance_matrix([t_deepcopy, z]))

    # Test of implementations with weak references:

    # Weak references: destroying a variable should never destroy the
    # integrity of its copies (which would happen if the copy keeps a
    # weak reference to the original, in its derivatives member: the
    # weak reference to the original would become invalid):
    del x

    gc.collect()

    assert y in y.derivatives.keys()

## Classes for the pickling tests (put at the module level, so that
## they can be unpickled):
    
# Subclass without slots:
class NewVariable_dict(uncertainties.Variable):
    pass

# Subclass with slots defined by a tuple:
class NewVariable_slots_tuple(uncertainties.Variable):
    __slots__ = ('new_attr',)

# Subclass with slots defined by a string:
class NewVariable_slots_str(uncertainties.Variable):
    __slots__ = 'new_attr'
        
def test_pickling():
    "Standard pickle module integration."

    import pickle

    x = ufloat(2, 0.1)

    x_unpickled = pickle.loads(pickle.dumps(x))

    assert x != x_unpickled  # Pickling creates copies

    ## Tests with correlations and AffineScalarFunc objects:
    f = 2*x
    assert isinstance(f, AffineScalarFunc)
    (f_unpickled, x_unpickled2) = pickle.loads(pickle.dumps((f, x)))
    # Correlations must be preserved:
    assert f_unpickled - x_unpickled2 - x_unpickled2 == 0
    
    ## Tests with subclasses:

    for subclass in (NewVariable_dict, NewVariable_slots_tuple,
                     NewVariable_slots_str):
        
        x = subclass(3, 0.14)

        # Pickling test with possibly uninitialized slots:
        pickle.loads(pickle.dumps(x))
        
        # Unpickling test:
        x.new_attr = 'New attr value'
        x_unpickled = pickle.loads(pickle.dumps(x))
        # Must exist (From the slots of the parent class):        
        x_unpickled.nominal_value
        x_unpickled.new_attr  # Must exist    

    ##
        
    # Corner case test: when an attribute is present both in __slots__
    # and in __dict__, it is first looked up from the slots
    # (references:
    # http://docs.python.org/2/reference/datamodel.html#invoking-descriptors,
    # http://stackoverflow.com/a/15139208/42973). As a consequence,
    # the pickling process must pickle the correct value (i.e., not
    # the value from __dict__):
    x = NewVariable_dict(3, 0.14)
    x._nominal_value = 'in slots'
    # Corner case: __dict__ key which is also a slot name (it is
    # shadowed by the corresponding slot, so this is very unusual,
    # though):
    x.__dict__['_nominal_value'] = 'in dict'
    # Additional __dict__ attribute:
    x.dict_attr = 'dict attribute'
    
    x_unpickled = pickle.loads(pickle.dumps(x))
    # We make sure that the data is still there and untouched:
    assert x_unpickled._nominal_value == 'in slots'
    assert x_unpickled.__dict__ == x.__dict__
        
def test_int_div():
    "Integer division"
    # We perform all operations on floats, because derivatives can
    # otherwise be meaningless:
    x = ufloat(3.9, 2)//2
    assert x.nominal_value == 1.
    # All errors are supposed to be small, so the ufloat()
    # in x violates the assumption.  Therefore, the following is
    # correct:
    assert x.std_dev == 0.0

def test_comparison_ops():
    "Test of comparison operators"

    import random
    
    # Operations on quantities equivalent to Python numbers must still
    # be correct:
    a = ufloat(-3, 0)
    b = ufloat(10, 0)
    c = ufloat(10, 0)
    assert a < b
    assert a < 3
    assert 3 < b  # This is first given to int.__lt__()
    assert b == c

    x = ufloat(3, 0.1)
    
    # One constraint is that usual Python code for inequality testing
    # still work in a reasonable way (for instance, it is generally
    # desirable that functions defined by different formulas on
    # different intervals can still do "if 0 < x < 1:...".  This
    # supposes again that errors are "small" (as for the estimate of
    # the standard error).
    assert x > 1

    # The limit case is not obvious:
    assert not(x >= 3)
    assert not(x < 3)

    assert x == x
    # Comparaison between Variable and AffineScalarFunc:
    assert x == x + 0
    # Comparaison between 2 _different_ AffineScalarFunc objects
    # representing the same value:
    assert x/2 == x/2
    # With uncorrelated result that have the same behavior (value and
    # standard error):
    assert 2*ufloat(1, 0.1) != ufloat(2, 0.2)    
    # Comparaison between 2 _different_ Variable objects
    # that are uncorrelated:
    assert x != ufloat(3, 0.1)
    
    assert x != ufloat(3, 0.2)

    # Comparison to other types should work:
    assert x != None  # Not comparable
    assert x-x == 0  # Comparable, even though the types are different
    assert x != [1, 2]

    
    ####################
    
    # Checks of the semantics of logical operations: they return True
    # iff they are always True when the parameters vary in an
    # infinitesimal interval inside sigma (sigma == 0 is a special
    # case):

    def test_all_comparison_ops(x, y):
        """
        Takes two Variable objects.
        
        Fails if any comparison operation fails to follow the proper
        semantics: a comparison only returns True if the correspond float
        comparison results are True for all the float values taken by
        the variables (of x and y) when they vary in an infinitesimal
        neighborhood within their uncertainty.

        This test is stochastic: it may, exceptionally, fail for
        correctly implemented comparison operators.
        """

        import random

        def random_float(var):
            """
            Returns a random value for Variable var, in an
            infinitesimal interval withing its uncertainty.  The case
            of a zero uncertainty is special.
            """
            return ((random.random()-0.5) * min(var.std_dev, 1e-5)
                    + var.nominal_value)

        # All operations are tested:
        for op in ["__%s__" % name
                   for name in('ne', 'eq', 'lt', 'le', 'gt', 'ge')]:

            try:
                float_func = getattr(float, op)
            except AttributeError:  # Python 2.3's floats don't have __ne__
                continue
            
            # Determination of the correct truth value of func(x, y):

            sampled_results = []
            
            # The "main" value is an important particular case, and
            # the starting value for the final result
            # (correct_result):

            sampled_results.append(float_func(x.nominal_value, y.nominal_value))

            for check_num in range(50):  # Many points checked
                sampled_results.append(float_func(random_float(x),
                                                  random_float(y)))

            min_result = min(sampled_results)
            max_result = max(sampled_results)

            if min_result == max_result:
                correct_result = min_result
            else:

                # Almost all results must be True, for the final value
                # to be True:
                num_min_result = sampled_results.count(min_result)

                # 1 exception is considered OK:
                correct_result = (num_min_result == 1)

            try:
                assert correct_result == getattr(x, op)(y)
            except AssertionError:
                print "Sampling results:", sampled_results
                raise Exception("Semantic value of %s %s (%s) %s not"
                                " correctly reproduced."
                                % (x, op, y, correct_result))

    # With different numbers:
    test_all_comparison_ops(ufloat(3, 0.1),
                            ufloat(-2, 0.1))
    test_all_comparison_ops(ufloat(0, 0),  # Special number
                            ufloat(1, 1))
    test_all_comparison_ops(ufloat(0, 0),  # Special number
                            ufloat(0, 0.1))
    # With identical numbers:
    test_all_comparison_ops(ufloat(0, 0),
                            ufloat(0, 0))
    test_all_comparison_ops(ufloat(1, 1),
                            ufloat(1, 1))

    
def test_logic():
    "Boolean logic: __nonzero__, bool."

    x = ufloat(3, 0)
    y = ufloat(0, 0)
    z = ufloat(0, 0.1)
    t = ufloat(-1, 2)

    assert bool(x) == True
    assert bool(y) == False
    assert bool(z) == True
    assert bool(t) == True  # Only infinitseimal neighborhood are used

def test_obsolete():
    'Tests some obsolete creation of number with uncertainties'
    x = ufloat(3, 0.1)
    # Obsolete function, protected against automatic modification:
    x.set_std_dev.__call__(0.2)  # Obsolete

    x_std_dev = x.std_dev
    assert x_std_dev() == 0.2  # Obsolete call
    
def test_basic_access_to_data():
    "Access to data from Variable and AffineScalarFunc objects."

    x = ufloat(3.14, 0.01, "x var")
    assert x.tag == "x var"
    assert x.nominal_value == 3.14
    assert x.std_dev == 0.01

    # Case of AffineScalarFunc objects:
    y = x + 0
    assert type(y) == AffineScalarFunc
    assert y.nominal_value == 3.14
    assert y.std_dev == 0.01

    # Details on the sources of error:
    a = ufloat(-1, 0.001)
    y = 2*x + 3*x + 2 + a
    error_sources = y.error_components()
    assert len(error_sources) == 2  # 'a' and 'x'
    assert error_sources[x] == 0.05
    assert error_sources[a] == 0.001

    # Derivative values should be available:
    assert y.derivatives[x] == 5

    # Modification of the standard deviation of variables:
    x.std_dev = 1
    assert y.error_components()[x] == 5  # New error contribution!

    # Calculated values with uncertainties should not have a settable
    # standard deviation:
    y = 2*x
    try:
        y.std_dev = 1
    except AttributeError:
        pass
    else:
        raise Exception(
            "std_dev should not be settable for calculated results")
    
    # Calculation of deviations in units of the standard deviations:
    assert 10/x.std_dev == x.std_score(10 + x.nominal_value)

    # "In units of the standard deviation" is not always meaningful:
    x.std_dev = 0
    try:
        x.std_score(1)
    except ValueError:
        pass  # Normal behavior

def test_correlations():
    "Correlations between variables"

    a = ufloat(1, 0)
    x = ufloat(4, 0.1)
    y = x*2 + a
    # Correlations cancel "naive" additions of uncertainties:
    assert y.std_dev != 0
    normally_zero = y - (x*2 + 1)
    assert normally_zero.nominal_value == 0
    assert normally_zero.std_dev == 0

    
def test_no_coercion():
    """
    Coercion of Variable object to a simple float.

    The coercion should be impossible, like for complex numbers.
    """

    x = ufloat(4, 1)
    try:
        assert float(x) == 4
    except TypeError:
        pass
    else:
        raise Exception("Conversion to float() should fail with TypeError")

def test_wrapped_func_no_args_no_kwargs():
    '''
    Wraps a function that takes only positional-or-keyword parameters.
    '''
    
    def f_auto_unc(x, y):
        return 2*x+umath.sin(y)

    # Like f_auto_unc, but does not accept numbers with uncertainties:
    def f(x, y):
        assert not isinstance(x, uncertainties.UFloat)
        assert not isinstance(y, uncertainties.UFloat)
        return f_auto_unc(x, y)

    x = uncertainties.ufloat(1, 0.1)
    y = uncertainties.ufloat(10, 2)

    ### Automatic numerical derivatives:
    
    ## Fully automatic numerical derivatives:
    f_wrapped = uncertainties.wrap(f)
    assert ufloats_close(f_auto_unc(x, y), f_wrapped(x, y))

    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x), f_wrapped(y=y, x=x))

    ## Automatic additional derivatives for non-defined derivatives:
    f_wrapped = uncertainties.wrap(f, [None])  # No derivative for y
    assert ufloats_close(f_auto_unc(x, y), f_wrapped(x, y))

    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x), f_wrapped(y=y, x=x))

    ### Explicit derivatives:

    ## Fully defined derivatives:
    f_wrapped = uncertainties.wrap(f, [lambda x, y: 2,
                                       lambda x, y: math.cos(y)])
    
    assert ufloats_close(f_auto_unc(x, y), f_wrapped(x, y))

    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x), f_wrapped(y=y, x=x))

    ## Automatic additional derivatives for non-defined derivatives:
    f_wrapped = uncertainties.wrap(f, [lambda x, y: 2])  # No derivative for y
    assert ufloats_close(f_auto_unc(x, y), f_wrapped(x, y))

    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x), f_wrapped(y=y, x=x))

def test_wrapped_func_no_args_no_kwargs():
    '''
    Wraps a function that takes only positional-or-keyword parameters.
    '''
    
    def f_auto_unc(x, y):
        return 2*x+umath.sin(y)

    # Like f_auto_unc, but does not accept numbers with uncertainties:
    def f(x, y):
        assert not isinstance(x, uncertainties.UFloat)
        assert not isinstance(y, uncertainties.UFloat)
        return f_auto_unc(x, y)

    x = uncertainties.ufloat(1, 0.1)
    y = uncertainties.ufloat(10, 2)

    ### Automatic numerical derivatives:
    
    ## Fully automatic numerical derivatives:
    f_wrapped = uncertainties.wrap(f)
    assert ufloats_close(f_auto_unc(x, y), f_wrapped(x, y))

    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x), f_wrapped(y=y, x=x))

    ## Automatic additional derivatives for non-defined derivatives,
    ## and explicit None derivative:
    f_wrapped = uncertainties.wrap(f, [None])  # No derivative for y
    assert ufloats_close(f_auto_unc(x, y), f_wrapped(x, y))

    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x), f_wrapped(y=y, x=x))

    ### Explicit derivatives:

    ## Fully defined derivatives:
    f_wrapped = uncertainties.wrap(f, [lambda x, y: 2,
                                       lambda x, y: math.cos(y)])
    
    assert ufloats_close(f_auto_unc(x, y), f_wrapped(x, y))

    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x), f_wrapped(y=y, x=x))

    ## Automatic additional derivatives for non-defined derivatives:
    f_wrapped = uncertainties.wrap(f, [lambda x, y: 2])  # No derivative for y
    assert ufloats_close(f_auto_unc(x, y), f_wrapped(x, y))

    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x), f_wrapped(y=y, x=x))

def test_wrapped_func_args_no_kwargs():
    '''
    Wraps a function that takes only positional-or-keyword and
    var-positional parameters.
    '''
    
    def f_auto_unc(x, y, *args):
        return 2*x+umath.sin(y)+3*args[1]

    # Like f_auto_unc, but does not accept numbers with uncertainties:
    def f(x, y, *args):
        assert not any(isinstance(value, uncertainties.UFloat)
                       for value in [x, y] + list(args))
        return f_auto_unc(x, y, *args)

    x = uncertainties.ufloat(1, 0.1)
    y = uncertainties.ufloat(10, 2)
    s = 'string arg'
    z = uncertainties.ufloat(100, 3)

    args = [s, z, s]  # var-positional parameters
    
    ### Automatic numerical derivatives:
    
    ## Fully automatic numerical derivatives:
    f_wrapped = uncertainties.wrap(f)
    assert ufloats_close(f_auto_unc(x, y, *args), f_wrapped(x, y, *args))

    ## Automatic additional derivatives for non-defined derivatives,
    ## and explicit None derivative:
    f_wrapped = uncertainties.wrap(f, [None])  # No derivative for y
    assert ufloats_close(f_auto_unc(x, y, *args), f_wrapped(x, y, *args))

    ### Explicit derivatives:

    ## Fully defined derivatives:
    f_wrapped = uncertainties.wrap(f, [lambda x, y, *args: 2,
                                       lambda x, y, *args: math.cos(y),
                                       None,
                                       lambda x, y, *args: 3])
    
    assert ufloats_close(f_auto_unc(x, y, *args), f_wrapped(x, y, *args))

    ## Automatic additional derivatives for non-defined derivatives:
    
    # No derivative for y:    
    f_wrapped = uncertainties.wrap(f, [lambda x, y, *args: 2])
    assert ufloats_close(f_auto_unc(x, y, *args), f_wrapped(x, y, *args))

def test_wrapped_func_no_args_kwargs():
    '''
    Wraps a function that takes only positional-or-keyword and
    var-keyword parameters.
    '''
    
    def f_auto_unc(x, y, **kwargs):
        return 2*x+umath.sin(y)+3*kwargs['z']

    # Like f_auto_unc, but does not accept numbers with uncertainties:
    def f(x, y, **kwargs):
        assert not any(isinstance(value, uncertainties.UFloat)
                       for value in [x, y] + kwargs.values())
        return f_auto_unc(x, y, **kwargs)

    x = uncertainties.ufloat(1, 0.1)
    y = uncertainties.ufloat(10, 2)
    s = 'string arg'
    z = uncertainties.ufloat(100, 3)

    kwargs = {'s': s, 'z': z}  # Arguments not in signature

    ### Automatic numerical derivatives:
    
    ## Fully automatic numerical derivatives:
    f_wrapped = uncertainties.wrap(f)
    assert ufloats_close(f_auto_unc(x, y, **kwargs),
                          f_wrapped(x, y, **kwargs))

    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x, **kwargs),
                          f_wrapped(y=y, x=x, **kwargs))
    
    ## Automatic additional derivatives for non-defined derivatives,
    ## and explicit None derivative:

    # No derivative for positional-or-keyword parameter y, no
    # derivative for optional-keyword parameter z:
    f_wrapped = uncertainties.wrap(f, [None])
    assert ufloats_close(f_auto_unc(x, y, **kwargs),
                          f_wrapped(x, y, **kwargs))

    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x, **kwargs),
                          f_wrapped(y=y, x=x, **kwargs))

    # No derivative for positional-or-keyword parameter y, no
    # derivative for optional-keyword parameter z:
    f_wrapped = uncertainties.wrap(f, [None], {'z': None})
    assert ufloats_close(f_auto_unc(x, y, **kwargs),
                          f_wrapped(x, y, **kwargs))

    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x, **kwargs),
                          f_wrapped(y=y, x=x, **kwargs))
    
    # No derivative for positional-or-keyword parameter y, derivative
    # for optional-keyword parameter z:
    f_wrapped = uncertainties.wrap(f, [None],
                                   {'z': lambda x, y, **kwargs: 3})
    assert ufloats_close(f_auto_unc(x, y, **kwargs),
                          f_wrapped(x, y, **kwargs))

    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x, **kwargs),
                          f_wrapped(y=y, x=x, **kwargs))
    
    ### Explicit derivatives:

    ## Fully defined derivatives:
    f_wrapped = uncertainties.wrap(
        f,
        [lambda x, y, **kwargs: 2, lambda x, y, **kwargs: math.cos(y)],
        {'z:': lambda x, y, **kwargs: 3})
    
    assert ufloats_close(f_auto_unc(x, y, **kwargs),
                          f_wrapped(x, y, **kwargs))
    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x, **kwargs),
                          f_wrapped(y=y, x=x, **kwargs))
    
    ## Automatic additional derivatives for non-defined derivatives:
    
    # No derivative for y or z:    
    f_wrapped = uncertainties.wrap(f, [lambda x, y, **kwargs: 2])
    assert ufloats_close(f_auto_unc(x, y, **kwargs),
                          f_wrapped(x, y, **kwargs))

    # Call with keyword arguments:
    assert ufloats_close(f_auto_unc(y=y, x=x, **kwargs),
                          f_wrapped(y=y, x=x, **kwargs))

def test_wrapped_func_args_kwargs():
    '''
    Wraps a function that takes positional-or-keyword, var-positional
    and var-keyword parameters.
    '''
    
    def f_auto_unc(x, y, *args, **kwargs):
        return 2*x+umath.sin(y)+4*args[1]+3*kwargs['z']

    # Like f_auto_unc, but does not accept numbers with uncertainties:
    def f(x, y, *args, **kwargs):
        assert not any(isinstance(value, uncertainties.UFloat)
                       for value in [x, y]+list(args)+kwargs.values())
        return f_auto_unc(x, y, *args, **kwargs)

    x = uncertainties.ufloat(1, 0.1)
    y = uncertainties.ufloat(10, 2)
    t = uncertainties.ufloat(1000, 4)
    s = 'string arg'
    z = uncertainties.ufloat(100, 3)

    args = [s, t, s]
    kwargs = {'u': s, 'z': z}  # Arguments not in signature

    ### Automatic numerical derivatives:
    
    ## Fully automatic numerical derivatives:
    f_wrapped = uncertainties.wrap(f)
    
    assert ufloats_close(f_auto_unc(x, y, *args, **kwargs),
                          f_wrapped(x, y, *args, **kwargs), tolerance=1e-5)

    ## Automatic additional derivatives for non-defined derivatives,
    ## and explicit None derivative:

    # No derivative for positional-or-keyword parameter y, no
    # derivative for optional-keyword parameter z:
    f_wrapped = uncertainties.wrap(f, [None, None, None,
                                       lambda x, y, *args, **kwargs: 4])
    assert ufloats_close(f_auto_unc(x, y, *args, **kwargs),
                          f_wrapped(x, y, *args, **kwargs), tolerance=1e-5)

    # No derivative for positional-or-keyword parameter y, no
    # derivative for optional-keyword parameter z:
    f_wrapped = uncertainties.wrap(f, [None], {'z': None})
    assert ufloats_close(f_auto_unc(x, y, *args, **kwargs),
                          f_wrapped(x, y, *args, **kwargs), tolerance=1e-5)
    
    # No derivative for positional-or-keyword parameter y, derivative
    # for optional-keyword parameter z:
    f_wrapped = uncertainties.wrap(f, [None],
                                   {'z': lambda x, y, *args, **kwargs: 3})
    assert ufloats_close(f_auto_unc(x, y, *args, **kwargs),
                          f_wrapped(x, y, *args, **kwargs), tolerance=1e-5)
    
    ### Explicit derivatives:

    ## Fully defined derivatives:
    f_wrapped = uncertainties.wrap(
        f,
        [lambda x, y, *args, **kwargs: 2,
         lambda x, y, *args, **kwargs: math.cos(y)],
        {'z:': lambda x, y, *args, **kwargs: 3})
    
    assert ufloats_close(f_auto_unc(x, y, *args, **kwargs),
                          f_wrapped(x, y, *args, **kwargs), tolerance=1e-5)
    
    ## Automatic additional derivatives for non-defined derivatives:
    
    # No derivative for y or z:    
    f_wrapped = uncertainties.wrap(f, [lambda x, y, *args, **kwargs: 2])
    assert ufloats_close(f_auto_unc(x, y, *args, **kwargs),
                          f_wrapped(x, y, *args, **kwargs), tolerance=1e-5)

    
def test_wrapped_func():
    """
    Test uncertainty-aware functions obtained through wrapping.
    """

    ########################################

    # Function which can automatically handle numbers with
    # uncertainties:
    def f_auto_unc(angle, *list_var):
        return umath.cos(angle) + sum(list_var)
    
    def f(angle, *list_var):
        # We make sure that this function is only ever called with
        # numbers with no uncertainty (since it is wrapped):
        assert not isinstance(angle, uncertainties.UFloat)
        assert not any(isinstance(arg, uncertainties.UFloat)
                       for arg in list_var)
        return f_auto_unc(angle, *list_var)
    
    f_wrapped = uncertainties.wrap(f)


    my_list = [1, 2, 3]

    ########################################
    # Test of a wrapped function that only calls the original
    # function: it should obtain the exact same result:
    assert f_wrapped(0, *my_list) == f(0, *my_list)
    # 1 == 1 +/- 0, so the type must be checked too:
    assert type(f_wrapped(0, *my_list)) == type(f(0, *my_list))

    ########################################
    # Call with uncertainties:
    
    angle = uncertainties.ufloat(1, 0.1)
    list_value = uncertainties.ufloat(3, 0.2)

    # The random variables must be the same (full correlation):

    assert ufloats_close(f_wrapped(angle, *[1, angle]),
                          f_auto_unc(angle, *[1, angle]))
    
    assert ufloats_close(f_wrapped(angle, *[list_value, angle]),
                          f_auto_unc(angle, *[list_value, angle]))
    
    ########################################
    # Non-numerical arguments, and  explicit and implicit derivatives:
    def f(x, y, z, t, u):
        return x+2*z+3*t+4*u
    
    f_wrapped = uncertainties.wrap(
        f, [lambda *args: 1, None, lambda *args:2, None])  # No deriv. for u

    assert f_wrapped(10, 'string argument', 1, 0, 0) == 12

    x = uncertainties.ufloat(10, 1)

    assert numbers_close(f_wrapped(x, 'string argument', x, x, x).std_dev,
                          (1+2+3+4)*x.std_dev)

def test_wrap_with_kwargs():
    '''
    Tests wrap() on functions with keyword arguments.

    Includes both wrapping a function that takes optional keyword
    arguments and calling a wrapped function with keyword arguments
    (optional or not).
    '''

    # Version of f() that automatically works with numbers with
    # uncertainties:
    def f_auto_unc(x, y, *args, **kwargs):
        return x + umath.sin(y) + 2*args[0] + 3*kwargs['t']
    
    # We also add keyword arguments in the function which is wrapped:
    def f(x, y, *args, **kwargs):
        # We make sure that f is not called directly with a number with
        # uncertainty:

        for value in [x, y]+list(args)+kwargs.values():
            assert not isinstance(value, uncertainties.UFloat)
        
        return f_auto_unc(x, y, *args, **kwargs)
    
    f_wrapped = uncertainties.wrap(f)


    x = ufloat(1, 0.1)
    y = ufloat(10, 0.11)
    z = ufloat(100, 0.111)
    t = ufloat(0.1, 0.1111)
        
    assert ufloats_close(f_wrapped(x, y, z, t=t),
                          f_auto_unc(x, y, z, t=t), tolerance=1e-5)

    ########################################

    # We make sure that analytical derivatives are indeed used. We
    # also test the automatic handling of additional *args arguments
    # beyond the number of supplied derivatives.

    f_wrapped2 = uncertainties.wrap(
        f, [None, lambda x, y, *args, **kwargs: math.cos(y)])

    # The derivatives must be perfectly identical:

    # The *args parameter of f() is given as a keyword argument, so as
    # to try to confuse the code:
    
    assert (f_wrapped2(x, y, z, t=t).derivatives[y]
            == f_auto_unc(x, y, z, t=t).derivatives[y])
    
    # Derivatives supplied through the keyword-parameter dictionary of
    # derivatives, and also derivatives supplied for the
    # var-positional arguments (*args[0]):

    f_wrapped3 = uncertainties.wrap(
        f,
        [None, None, lambda x, y, *args, **kwargs: 2],
        {'t': lambda x, y, *args, **kwargs: 3})

    # The derivatives should be exactly the same, because they are
    # obtained with the exact same analytic formula:
    assert (f_wrapped3(x, y, z, t=t).derivatives[z]
            == f_auto_unc(x, y, z, t=t).derivatives[z])
    assert (f_wrapped3(x, y, z, t=t).derivatives[t]
            == f_auto_unc(x, y, z, t=t).derivatives[t])

    ########################################
    # Making sure that user-supplied derivatives are indeed called:
    
    class FunctionCalled(Exception):
        '''
        Raised to signal that a function is indeed called.
        '''
        pass
    
    def failing_func(x, y, *args, **kwargs):
        raise FunctionCalled

    f_wrapped4 = uncertainties.wrap(
        f,
        [None, failing_func],
        {'t': failing_func})

    try:
        f_wrapped4(x, 3.14, z, t=t)
    except FunctionCalled:
        pass
    else:
        raise Exception('User-supplied derivative should be called')
    
    try:
        f_wrapped4(x, y, z, t=3.14)
    except FunctionCalled:
        pass
    else:
        raise Exception('User-supplied derivative should be called')

    try:
        f_wrapped4(x, 3.14, z, t=3.14)
    except FunctionCalled:
        raise Exception('User-supplied derivative should *not* be called')
    
###############################################################################
        
def test_access_to_std_dev():
    "Uniform access to the standard deviation"

    x = ufloat(1, 0.1)
    y = 2*x

    # std_dev for Variable and AffineScalarFunc objects:
    assert uncertainties.std_dev(x) == x.std_dev
    assert uncertainties.std_dev(y) == y.std_dev

    # std_dev for other objects:
    assert uncertainties.std_dev([]) == 0
    assert uncertainties.std_dev(None) == 0
    
###############################################################################

def test_covariances():
    "Covariance matrix"

    x = ufloat(1, 0.1)
    y = -2*x+10
    z = -3*x
    covs = uncertainties.covariance_matrix([x, y, z])
    # Diagonal elements are simple:
    assert numbers_close(covs[0][0], 0.01)
    assert numbers_close(covs[1][1], 0.04)
    assert numbers_close(covs[2][2], 0.09)
    # Non-diagonal elements:
    assert numbers_close(covs[0][1], -0.02)

    
###############################################################################
def test_power_all_cases():
    '''
    Checks all cases for the value and derivatives of x**p.
    '''

    power_all_cases(pow)

def power_all_cases(op):
    '''
    Checks all cases for the value and derivatives of power-like
    operator op (op is typically the built-in pow(), or math.pow()).
    
    Checks only the details of special results like 0, 1 or NaN).

    Different cases for the value of x**p and its derivatives are
    tested by dividing the (x, p) plane with:

    - x < 0, x = 0, x > 0
    - p integer or not, p < 0, p = 0, p > 0

    (not all combinations are distinct: for instance x > 0 gives
    identical formulas for all p).
    '''

    zero = ufloat(0, 0.1)
    zero2 = ufloat(0, 0.1)
    one = ufloat(1, 0.1)
    positive = ufloat(0.3, 0.01)
    positive2 = ufloat(0.3, 0.01)
    negative = ufloat(-0.3, 0.01)
    integer = ufloat(-3, 0)
    non_int_larger_than_one = ufloat(3.1, 0.01)
    positive_smaller_than_one = ufloat(0.3, 0.01)
    
    ## negative**integer
    
    result = op(negative, integer)
    assert not isnan(result.derivatives[negative])
    assert isnan(result.derivatives[integer])

    # Limit cases:
    result = op(negative, one)
    assert result.derivatives[negative] == 1
    assert isnan(result.derivatives[one])

    result = op(negative, zero)
    assert result.derivatives[negative] == 0
    assert isnan(result.derivatives[zero])
    
    ## negative**non-integer

    ## zero**...

    result = op(zero, non_int_larger_than_one)
    assert isnan(result.derivatives[zero])
    assert result.derivatives[non_int_larger_than_one] == 0

    # Special cases:
    result = op(zero, one)
    assert result.derivatives[zero] == 1
    assert result.derivatives[one] == 0

    result = op(zero, 2*one)
    assert result.derivatives[zero] == 0
    assert result.derivatives[one] == 0

    result = op(zero, positive_smaller_than_one)
    assert isnan(result.derivatives[zero])
    assert result.derivatives[positive_smaller_than_one] == 0

    result = op(zero, zero2)
    assert result.derivatives[zero] == 0
    assert isnan(result.derivatives[zero2])
    
    ## positive**...: this is a quite regular case where the value and
    ## the derivatives are all defined.

    result = op(positive, positive2)
    assert not isnan(result.derivatives[positive])
    assert not isnan(result.derivatives[positive2])

    result = op(positive, zero)
    assert result.derivatives[positive] == 0
    assert not isnan(result.derivatives[zero])

    result = op(positive, negative)
    assert not isnan(result.derivatives[positive])
    assert not isnan(result.derivatives[negative])

    
###############################################################################
    
def test_power_special_cases():
    '''
    Checks special cases of x**p.
    '''
    power_special_cases(pow)

    # We want the same behavior for numbers with uncertainties and for
    # math.pow() at their nominal values:

    positive = ufloat(0.3, 0.01)
    negative = ufloat(-0.3, 0.01)
    
    # http://stackoverflow.com/questions/10282674/difference-between-the-built-in-pow-and-math-pow-for-floats-in-python

    try:
        pow(ufloat(0, 0), negative)
    except ZeroDivisionError:
        pass
    else:
        raise Exception("A proper exception should have been raised")

    try:
        pow(ufloat(0, 0.1), negative)
    except ZeroDivisionError:
        pass
    else:
        raise Exception('A proper exception should have been raised')

    try:
        result = pow(negative, positive)
    except ValueError:
        # The reason why it should also fail in Python 3 is that the
        # result of Python 3 is a complex number, which uncertainties
        # does not handle (no uncertainties on complex numbers). In
        # Python 2, this should always fail, since Python 2 does not
        # know how to calculate it.
        pass
    else:
        raise Exception('A proper exception should have been raised')
    
def power_special_cases(op):
    '''
    Checks special cases of the uncertainty power operator op (where
    op is typically the built-in pow or uncertainties.umath.pow).
        
    The values x = 0, x = 1 and x = NaN are special, as are null,
    integral and NaN values of p.
    '''

    zero = ufloat(0, 0)
    one = ufloat(1, 0)
    p = ufloat(0.3, 0.01)

    assert op(0, p) == 0
    assert op(zero, p) == 0

    # The outcome of 1**nan and nan**0 was undefined before Python
    # 2.6 (http://docs.python.org/library/math.html#math.pow):
    if sys.version_info >= (2, 6):
        assert op(float('nan'), zero) == 1.0
        assert op(one, float('nan')) == 1.0
        
    # …**0 == 1.0:
    assert op(p, 0) == 1.0        
    assert op(zero, 0) == 1.0
    assert op((-p), 0) == 1.0
    # …**zero:
    assert op((-10.3), zero) == 1.0        
    assert op(0, zero) == 1.0        
    assert op(0.3, zero) == 1.0
    assert op((-p), zero) == 1.0        
    assert op(zero, zero) == 1.0
    assert op(p, zero) == 1.0

    # one**… == 1.0
    assert op(one, -3) == 1.0
    assert op(one, -3.1) == 1.0
    assert op(one, 0) == 1.0
    assert op(one, 3) == 1.0
    assert op(one, 3.1) == 1.0

    # … with two numbers with uncertainties:
    assert op(one, (-p)) == 1.0
    assert op(one, zero) == 1.0
    assert op(one, p) == 1.0
    # 1**… == 1.0:
    assert op(1., (-p)) == 1.0
    assert op(1., zero) == 1.0
    assert op(1., p) == 1.0
        

def test_power_wrt_ref():
    '''
    Checks special cases of the built-in pow() power operator.
    '''
    power_wrt_ref(pow, pow)
    
def power_wrt_ref(op, ref_op):
    '''
    Checks special cases of the uncertainty power operator op (where
    op is typically the built-in pow or uncertainties.umath.pow), by
    comparing its results to the reference power operator ref_op
    (which is typically the built-in pow or math.pow).
    '''
    
    # Negative numbers with uncertainty can be exponentiated to an
    # integral power:
    assert op(ufloat(-1.1, 0.1), -9).nominal_value == ref_op(-1.1, -9)

    # Case of numbers with no uncertainty: should give the same result
    # as numbers with uncertainties:
    assert op(ufloat(-1, 0), 9) == ref_op(-1, 9)
    assert op(ufloat(-1.1, 0), 9) == ref_op(-1.1, 9)
    

###############################################################################

def test_PDG_precision():
    '''
    Test of the calculation of the number of significant digits for
    the uncertainty.
    '''

    # The 3 cases of the rounding rules are covered in each case:
    tests = {
        # Very big floats:
        1.7976931348623157e308: (2, 1.7976931348623157e308),
        0.5e308: (1, 0.5e308),
        0.9976931348623157e+308: (2, 1e308),
        # Very small floats:
        1.3e-323: (2, 1.3e-323),
        5e-324: (1, 5e-324),
        9.99e-324: (2, 1e-323)
        }

    for (std_dev, result) in tests.iteritems():
        assert uncertainties.PDG_precision(std_dev) == result

def test_repr():
    '''Test the representation of numbers with uncertainty.'''

    # The uncertainty is a power of 2, so that it can be exactly
    # represented:
    x = ufloat(3.14159265358979, 0.25)
    assert repr(x) == '3.14159265358979+/-0.25'

    x = ufloat(3.14159265358979, 0)
    assert repr(x) == '3.14159265358979+/-0'

    # Tagging:
    x = ufloat(3, 1, "length")
    assert repr(x) == '< length = 3.0+/-1.0 >'

def python26_add(dict0, dict1):
    '''
    If Python 2.6+ is running, Updates dict0 with dict1 and returns the
    updated dict0.
    '''
    if sys.version_info >= (2, 6):
        dict0.update(dict1)
    return dict0
    
def test_format():
    '''Test the formatting of numbers with uncertainty.'''

    # The way NaN is formatted with F and E depends on the version of
    # Python (NAN for Python 2.7+):
    NaN_EF = '%F' % float('nan')
    
    # Tests of each point of the docstring of
    # AffineScalarFunc.__format__() in turn, mostly in the same order.

    # The LaTeX tests do not use the customization of
    # uncertainties.GROUP_SYMBOLS and uncertainties.EXP_PRINT: this
    # way, problems in the customization themselves are caught.
    
    tests = {  # (Nominal value, uncertainty): {format: result,...}

        # Usual float formatting, and individual widths, etc.:
        (3.1415, 0.0001): {
            '*^+7.2f': '*+3.14*+/-*0.00**',
            '+07.2f': '+003.14+/-0000.00',  # 0 fill
            '>10f': '  3.141500+/-  0.000100',  # Width and align
            '11.3e': '  3.142e+00+/-  0.000e+00',  # Duplicated exponent
            '0.4e': '3.1415e+00+/-0.0000e+00'  # Forced double exponent
        },
        
        # Full generalization of float formatting:
        (3.1415, 0.0001): python26_add({
            '+09.2uf': '+03.14150+/-000.00010'
        }, {
            # Alignment is not available with the % formatting
            # operator of Python < 2.6:
            '*^+9.2uf': '+3.14150*+/-*0.00010*',
            '>9f': '  3.14150+/-  0.00010'  # Width and align
        }),

        # Number of digits of the uncertainty fixed:
        (123.456789, 0.00123): {
            '.1uf': '123.457+/-0.001',
            '.2uf': '123.4568+/-0.0012',
            '.3uf': '123.45679+/-0.00123',
            '.2ue': '(1.234568+/-0.000012)e+02'
        },
        # Sign handling:
        (-123.456789, 0.00123): {
            '.1uf': '-123.457+/-0.001',
            '.2uf': '-123.4568+/-0.0012',
            '.3uf': '-123.45679+/-0.00123',
            '.2ue': '(-1.234568+/-0.000012)e+02'
        },
        # Uncertainty larger than the nominal value:
        (12.3, 456.78): {
            '': '12+/-457',
            '.1uf': '12+/-457',
            '.4uf': '12.3+/-456.8'
        },
        # ... Same thing, but with an exponent:
        (12.3, 456.78): {
            '.1ue': '(0+/-5)e+02',
            '.4ue': '(0.123+/-4.568)e+02',
            '.4ueS': '0.123(4.568)e+02'
        },

        (23456.789123, 1234.56789123): {
            '.6gS': '23456.8(1234.6)'
        },
        
        # Test of the various float formats: the nominal value should
        # have a similar representation as if it were directly
        # represented as a float:
        (1234567.89, 0.1): {
            '.0e': '(1+/-0)e+06',
            'e': '(1.23456789+/-0.00000010)e+06',
            'E': '(1.23456789+/-0.00000010)E+06',
            'f': '1234567.89+/-0.10',
            'F': '1234567.89+/-0.10',
            'g': '1234567.89+/-0.10',
            'G': '1234567.89+/-0.10',
            '%': '(123456789+/-10)%'
        },
        (1234567.89, 4.3): {
            'g': '1234568+/-4'
        },
        (1234567.89, 43): {  # Case where g triggers the exponent notation
            'g': '(1.23457+/-0.00004)e+06',
            'G': '(1.23457+/-0.00004)E+06'
        },        


        (3.1415, 0.0001): {
            '+09.2uf': '+03.14150+/-000.00010'
            },
        
        (1234.56789, 0.1): {
            '.0f': '(1234+/-0.)',  # Approximate error indicated with "."
            'e': '(1.23456+/-0.00010)e+03',
            'E': '(1.23456+/-0.00010)E+03',
            'f': '1234.57+/-0.10',
            'F': '1234.57+/-0.10',
            'f': '1234.57+/-0.10',
            'F': '1234.57+/-0.10',            
            '%': '123457+/-10%'
        },

        # Percent notation:
        (0.42, 0.0055): {
            # Because '%' does 0.0055*100, the value
            # 0.5499999999999999 is obtained, which rounds to 0.5. The
            # original rounded value is 0.006. The same behavior is
            # found in Python 2.7: '{:.1%}'.format(0.0055) is '0.5%'.
            '.1u%': '(42.0+/-0.5)%',
            '.1u%S': '42.0(5)%',
            '%P': u'(42.0±0.5)%'
        },
        
        # Particle Data Group automatic convention, including limit cases:
        (1.2345678, 0.354): {'': '1.23+/-0.35'},
        (1.2345678, 0.3549): {'': '1.23+/-0.35'},
        (1.2345678, 0.355): {'': '1.2+/-0.4'},
        (1.5678, 0.355): {'': '1.6+/-0.4'},
        (1.2345678, 0.09499): {'': '1.23+/-0.09'},
        (1.2345678, 0.095): {'': '1.23+/-0.10'},        

        # Automatic extension of the uncertainty up to the decimal
        # point:
        (1000, 123): {
            '.1uf': '1000+/-123',
            # The nominal value has 1 <= mantissa < 10. The precision
            # is the number of significant digits of the uncertainty:
            '.1ue': '(1.0+/-0.1)e+03'
        },

        # Spectroscopic notation:
        (-1.23, 3.4): {
            'S': '-1.2(3.4)',
            '.2ufS': '-1.2(3.4)',
            '.3ufS': '-1.23(3.40)',
        },
        (-123.456, 0.123): {
            'S': '-123.46(12)',
            '.1ufS': '-123.5(1)',            
            '.2ufS': '-123.46(12)',
            '.3ufS': '-123.456(123)',
        },
        (-123.456, 0.567): {
            'S': '-123.5(6)',
            '.1ufS': '-123.5(6)',            
            '.2ufS': '-123.46(57)',
            '.3ufS': '-123.456(567)',
        },
        (-123.456, 0.004): {
            # The decimal point shows that the uncertainty is not
            # exact:
            '.2fS': '-123.46(0.00)'
        },
        
        # LaTeX notation:
        #
        (1234.56789, 0.1): {
            'eL': r'\left(1.23457 \pm 0.00010\right) \times 10^{3}',
            'EL': r'\left(1.23457 \pm 0.00010\right) \times 10^{3}',
            'fL': '1234.57 \pm 0.10',
            'FL': '1234.57 \pm 0.10',
            'fL': '1234.57 \pm 0.10',
            'FL': '1234.57 \pm 0.10',            
            '%L': r'\left(123457 \pm 10\right) \%'
        },
        #
        # ... combined with the spectroscopic notation:
        (-1.23, 3.4): {
            'SL': '-1.2(3.4)',
            'LS': '-1.2(3.4)',
            '.2ufSL': '-1.2(3.4)',
            '.2ufLS': '-1.2(3.4)'
        },

        # Special cases for the uncertainty (0, nan) and format
        # strings (extension S, L, U,..., global width, etc.).
        #
        # Python 3.2 and 3.3 give 1.4e-12*1e+12 = 1.4000000000000001
        # instead of 1.4 for Python 3.1. The problem does not appear
        # with 1.2, so 1.2 is used.
        (-1.2e-12, 0): python26_add({
            '12.2gPL': ur'  -1.2×10⁻¹²±           0'
        }, {
            # Pure "width" formats are not accepted by the % operator,
            # and only %-compatible formats are accepted, for Python <
            # 2.6:
            '13S': '  -1.2(0)e-12',
            '10P': u'-1.2×10⁻¹²±         0',
            'L': r'\left(-1.2 \pm 0\right) \times 10^{-12}',
            # No factored exponent, LaTeX
            '1L': r'-1.2 \times 10^{-12} \pm 0',
            'SL': r'-1.2(0) \times 10^{-12}',
            'SP': ur'-1.2(0)×10⁻¹²'
        }),

        # Python 3.2 and 3.3 give 1.4e-12*1e+12 = 1.4000000000000001
        # instead of 1.4 for Python 3.1. The problem does not appear
        # with 1.2, so 1.2 is used.        
        (-1.2e-12, float('nan')): python26_add({
            '.2uG': '(-1.2+/-%s)E-12' % NaN_EF,  # u ignored, format used
            '15GS': '  -1.2(%s)E-12' % NaN_EF
        }, {
            'SL': r'-1.2(\mathrm{nan}) \times 10^{-12}',  # LaTeX NaN
            # Pretty-print priority, but not for NaN:
            'PSL': u'-1.2(\mathrm{nan})×10⁻¹²',
            'L': r'\left(-1.2 \pm \mathrm{nan}\right) \times 10^{-12}',
            # Uppercase NaN and LaTeX:
            '.1EL': (r'\left(-1.2 \pm \mathrm{%s}\right) \times 10^{-12}'
                     % NaN_EF),
            '10': '  -1.2e-12+/-       nan',
            '15S': '  -1.2(nan)e-12'
        }),

        (3.14e-10, 0.01e-10): {
            # Character (Unicode) strings:
            u'P': u'(3.140±0.010)×10⁻¹⁰',  # PDG rules: 2 digits
            u'PL': ur'(3.140±0.010)×10⁻¹⁰',  # Pretty-print has higher priority
            # Truncated non-zero uncertainty:
            '.1e': '(3.1+/-0.0)e-10',
            '.1eS': '3.1(0.0)e-10'
        },
    
        # Some special cases:
        (1, float('nan')): python26_add({
            'g': '1+/-nan',
            'G': '1+/-%s' % NaN_EF,
            '%': '(100.000000+/-nan)%',  # The % format type is like f
            # Should be the same as '+05', for floats, but is not, in
            # Python 2.7:
            '+05g': '+0001+/-00nan',
            # 5 is the *minimal* width, 6 is the default number of
            # digits after the decimal point:
            '+05%': '(+100.000000+/-00nan)%'
        }, {
            # There is a difference between '{}'.format(1.) and
            # '{:g}'.format(1.), which is not fully obvious in the
            # documentation, which indicates that a None format type
            # is like g. The reason is that the empty format string is
            # actually interpreted as str(), and that str() does not
            # have to behave like g ('{}'.format(1.234567890123456789)
            # and '{:g}'.format(1.234567890123456789) are different).
            '': '1.0+/-nan',
            # This is ugly, but consistent with
            # '{:+05}'.format(float('nan')) and format(1.) [which
            # differs from format(1)!):
            '+05': '+01.0+/-00nan'            
            }),
        
        (9.9, 0.1): {
            '.1ue': '(9.9+/-0.1)e+00',
            '.0fS': '10(0.)'
        },
        (9.99, 0.1): {
             # The precision has an effect on the exponent, like for
             # floats:
            '.2ue': '(9.99+/-0.10)e+00',  # Same exponent as for 9.99 alone
            '.1ue': '(1.00+/-0.01)e+01'  # Same exponent as for 9.99 alone
        },
        # 0 uncertainty: nominal value displayed like a float:
        (1.2345, 0): python26_add({
            '.2ue': '(1.23+/-0)e+00',
            '1.2ue': '1.23e+00+/-0',
            '.2uf': '1.23+/-0',
            '.2ufS': '1.23(0)',
            '.2fS': '1.23(0)',
            'g': '1.2345+/-0'
        }, {
            '': '1.2345+/-0'
        }),

        # Alignment and filling characters:
        (3.1415e10, 0): python26_add(
        {}, {
            '<15': '3.1415e+10     +/-0              ',
            '<20S': '3.1415(0)e+10       ',
            # Trying to trip the format parsing with a fill character
            # which is an alignment character:
            '=>15': '=====3.1415e+10+/-==============0'
        }),
        
        (1234.56789, 0): {
            '1.2ue': '1.23e+03+/-0',  # u ignored
            '1.2e': '1.23e+03+/-0',
            # Default precision = 6
            'eL': r'\left(1.234568 \pm 0\right) \times 10^{3}',
            'EL': r'\left(1.234568 \pm 0\right) \times 10^{3}',
            'fL': '1234.567890 \pm 0',
            'FL': '1234.567890 \pm 0',
            '%L': r'\left(123456.789000 \pm 0\right) \%'
        },

        (1e5, 0): {
            'g': '100000+/-0'
        }, 
        (1e6, 0): {
            # A default precision of 6 is used because the uncertainty
            # cannot be used for defining a default precision (it does
            # not have a magnitude):
            'g': '(1+/-0)e+06'
        },
        (1e6+10, 0): {
            # A default precision of 6 is used because the uncertainty
            # cannot be used for defining a default precision (it does
            # not have a magnitude):
            'g': '(1.00001+/-0)e+06'
        },
        # Rounding of the uncertainty that "changes" the number of
        # significant digits:
        (1, 0.994): {
            '.3uf': '1.000+/-0.994',
            '.2uf': '1.00+/-0.99',
            '.1uf': '1+/-1'  # Discontinuity in the number of digits
        },
        (12.3, 2.3): {
            '.2ufS': '12.3(2.3)'  # Decimal point on the uncertainty
        },
        (12.3, 2.3): {
            '.1ufS': '12(2)'  # No decimal point on the uncertainty
        },
        (0, 0): {  # Make defining the first significant digit problematic
            '.1f': '0.0+/-0',  # Simple float formatting
            'g': '0+/-0'
        },
        (1.2e-34, 5e-67): {
            '.6g': '(1.20000+/-0.00000)e-34',
            '13.6g': '  1.20000e-34+/-  0.00000e-34',
            '13.6G': '  1.20000E-34+/-  0.00000E-34',
            '.6GL': r'\left(1.20000 \pm 0.00000\right) \times 10^{-34}'
        }
    }

    # ',' format option: introduced in Python 2.7
    if sys.version_info >= (2, 7):
        
        tests.update({
            (1234.56789, 0.012): {
                ',.1uf': '1,234.57+/-0.01'
                },

            (123456.789123, 1234.5678): {
                ',f': '123,457+/-1,235',  # Particle Data Group convention
                ',.4f': '123,456.7891+/-1,234.5678'
                }
        })
        
    # True if we can detect that the Jython interpreter is running this code:
    try:
        jython_detected = sys.subversion[0] == 'Jython'
    except AttributeError:
        jython_detected = False
    
    for (values, representations) in tests.iteritems():

        value = ufloat(*values)

        for (format_spec, result) in representations.iteritems():

            # print "FORMATTING", repr(value), "WITH", format_spec
            
            # Jython 2.5.2 does not always represent NaN as nan or NAN
            # in the CPython way: for example, '%.2g' % float('nan')
            # is '\ufffd'. The test is skipped, in this case:
            if jython_detected and isnan(value.std_dev):
                continue
            
            # Call that works with Python < 2.6 too:
            representation = value.format(format_spec)

            assert representation == result, (
                # The representation is used, for terminal that do not
                # support some characters like ±, and superscripts:
                'Incorrect representation %r for format %r of %s+/-%s:'
                ' %r expected.'
                % (representation, format_spec, values[0], values[1],
                   result))

            # An empty format string is like calling str()
            # (http://docs.python.org/2/library/string.html#formatspec):
            if not format_spec:
                assert representation == str(value), (
                    'Empty format should give the same thing as str():'
                    ' %s obtained instead of %s'
                    % (representation, str(value)))
            
            # Parsing back into a number with uncertainty (unless the
            # LaTeX or comma notation is used):
            if (not set(format_spec).intersection('L,*%')  # * = fill with *
                # "00nan"
                and '0nan' not in representation.lower()
                # Specific case:
                and '=====' not in representation):
                
                value_back = ufloat_fromstr(representation)

                # The original number and the new one should be consistent
                # with each other:
                try:

                    # The nominal value can be rounded to 0 when the
                    # uncertainty is larger (because p digits on the
                    # uncertainty can still show 0.00... for the
                    # nominal value). The relative error is infinite,
                    # so this should not cause an error:
                    if value_back.nominal_value:
                        assert numbers_close(value.nominal_value,
                                              value_back.nominal_value, 2.4e-1)

                    # If the uncertainty is zero, then the relative
                    # change can be large:
                    assert numbers_close(value.std_dev,
                                         value_back.std_dev, 3e-1)

                except AssertionError:
                    # !! The following string formatting requires
                    # str() to work (to not raise an exception):
                    raise AssertionError(
                        'Original value %s and value %s parsed from %r'
                        ' (obtained through format specification %r)'
                        ' are not close enough'
                        % (value, value_back, representation, format_spec))

def test_unicode_format():
    '''Test of the unicode formatting of numbers with uncertainties'''

    x = ufloat(3.14159265358979, 0.25)

    assert isinstance(u'Résultat = %s' % x.format(''), unicode)
    assert isinstance(u'Résultat = %s' % x.format('P'), unicode)
    
###############################################################################

# The tests below require NumPy, which is an optional package:
try:
    import numpy
except ImportError:
    pass
else:

    def arrays_close(m1, m2, precision=1e-4):
        """
        Returns True iff m1 and m2 are almost equal, where elements
        can be either floats or AffineScalarFunc objects.

        Two independent AffineScalarFunc objects are deemed equal if
        both their nominal value and uncertainty are equal (up to the
        given precision).
        
        m1, m2 -- NumPy matrices.
        precision -- precision passed through to
        uncertainties.test_uncertainties.numbers_close().
        """

        # ! numpy.allclose() is similar to this function, but does not
        # work on arrays that contain numbers with uncertainties, because
        # of the isinf() function.

        for (elmt1, elmt2) in zip(m1.flat, m2.flat):

            # For a simpler comparison, both elements are
            # converted to AffineScalarFunc objects:
            elmt1 = uncertainties.to_affine_scalar(elmt1)
            elmt2 = uncertainties.to_affine_scalar(elmt2)

            if not numbers_close(elmt1.nominal_value,
                                  elmt2.nominal_value, precision):
                return False

            if not numbers_close(elmt1.std_dev,
                                  elmt2.std_dev, precision):
                return False
        return True

    
    def test_numpy_comparison():
        "Comparison with a Numpy array."

        x = ufloat(1, 0.1)
        
        # Comparison with a different type:
        assert x != [x, x]
        
        # NumPy arrays can be compared, through element-wise
        # comparisons.  Numbers with uncertainties should yield the
        # same kind of results as pure floats (i.e., a NumPy array,
        # etc.).

        # We test the comparison operators both for the uncertainties
        # package *and* the NumPy package:

        # Equalities, etc.:
        assert len(x == numpy.arange(10)) == 10
        assert len(numpy.arange(10) == x) == 10
        assert len(x != numpy.arange(10)) == 10
        assert len(numpy.arange(10) != x) == 10
        assert len(x == numpy.array([x, x, x])) == 3
        assert len(numpy.array([x, x, x]) == x) == 3
        assert numpy.all(x == numpy.array([x, x, x]))
        
        # Inequalities:
        assert len(x < numpy.arange(10)) == 10
        assert len(numpy.arange(10) > x) == 10
        assert len(x <= numpy.arange(10)) == 10
        assert len(numpy.arange(10) >= x) == 10
        assert len(x > numpy.arange(10)) == 10
        assert len(numpy.arange(10) < x) == 10
        assert len(x >= numpy.arange(10)) == 10
        assert len(numpy.arange(10) <= x) == 10

        # More detailed test, that shows that the comparisons are
        # meaningful (x >= 0, but not x <= 1):
        assert numpy.all((x >= numpy.arange(3)) == [True, False, False])

    def test_correlated_values():
        """
        Correlated variables.
        Test through the input of the (full) covariance matrix.
        """

        u = uncertainties.ufloat(1, 0.1)
        cov = uncertainties.covariance_matrix([u])
        # "1" is used instead of u.nominal_value because
        # u.nominal_value might return a float.  The idea is to force
        # the new variable u2 to be defined through an integer nominal
        # value:
        u2, = uncertainties.correlated_values([1], cov)
        expr = 2*u2  # Calculations with u2 should be possible, like with u

        ####################    

        # Covariances between output and input variables:

        x = ufloat(1, 0.1)
        y = ufloat(2, 0.3)
        z = -3*x+y

        covs = uncertainties.covariance_matrix([x, y, z])

        # Test of the diagonal covariance elements:
        assert arrays_close(
            numpy.array([v.std_dev**2 for v in (x, y, z)]),
            numpy.array(covs).diagonal())
        
        # "Inversion" of the covariance matrix: creation of new
        # variables:
        (x_new, y_new, z_new) = uncertainties.correlated_values(
            [x.nominal_value, y.nominal_value, z.nominal_value],
            covs,
            tags = ['x', 'y', 'z'])

        # Even the uncertainties should be correctly reconstructed:
        assert arrays_close(numpy.array((x, y, z)),
                              numpy.array((x_new, y_new, z_new)))

        # ... and the covariances too:
        assert arrays_close(
            numpy.array(covs),
            numpy.array(uncertainties.covariance_matrix([x_new, y_new, z_new])))

        assert arrays_close(
            numpy.array([z_new]), numpy.array([-3*x_new+y_new]))

        ####################

        # ... as well as functional relations:

        u = ufloat(1, 0.05)
        v = ufloat(10, 0.1)
        sum_value = u+2*v

        # Covariance matrices:
        cov_matrix = uncertainties.covariance_matrix([u, v, sum_value])

        # Correlated variables can be constructed from a covariance
        # matrix, if NumPy is available:
        (u2, v2, sum2) = uncertainties.correlated_values(
            [x.nominal_value for x in [u, v, sum_value]],
            cov_matrix)

        # arrays_close() is used instead of numbers_close() because
        # it compares uncertainties too:
        assert arrays_close(numpy.array([u]), numpy.array([u2]))
        assert arrays_close(numpy.array([v]), numpy.array([v2]))
        assert arrays_close(numpy.array([sum_value]), numpy.array([sum2]))
        assert arrays_close(numpy.array([0]),
                              numpy.array([sum2-(u2+2*v2)]))


    def test_correlated_values_correlation_mat():
        '''
        Tests the input of correlated value.

        Test through their correlation matrix (instead of the
        covariance matrix).
        '''
        
        x = ufloat(1, 0.1)
        y = ufloat(2, 0.3)
        z = -3*x+y

        cov_mat = uncertainties.covariance_matrix([x, y, z])

        std_devs = numpy.sqrt(numpy.array(cov_mat).diagonal())
        
        corr_mat = cov_mat/std_devs/std_devs[numpy.newaxis].T

        # We make sure that the correlation matrix is indeed diagonal:
        assert (corr_mat-corr_mat.T).max() <= 1e-15
        # We make sure that there are indeed ones on the diagonal:
        assert (corr_mat.diagonal()-1).max() <= 1e-15

        # We try to recover the correlated variables through the
        # correlation matrix (not through the covariance matrix):

        nominal_values = [v.nominal_value for v in (x, y, z)]
        std_devs = [v.std_dev for v in (x, y, z)]
        x2, y2, z2 = uncertainties.correlated_values_norm(
            zip(nominal_values, std_devs), corr_mat)
        
        # arrays_close() is used instead of numbers_close() because
        # it compares uncertainties too:

        # Test of individual variables:
        assert arrays_close(numpy.array([x]), numpy.array([x2]))
        assert arrays_close(numpy.array([y]), numpy.array([y2]))
        assert arrays_close(numpy.array([z]), numpy.array([z2]))

        # Partial correlation test:
        assert arrays_close(numpy.array([0]), numpy.array([z2-(-3*x2+y2)]))

        # Test of the full covariance matrix:
        assert arrays_close(
            numpy.array(cov_mat),
            numpy.array(uncertainties.covariance_matrix([x2, y2, z2])))