/usr/lib/python2.7/dist-packages/whisper.py is in python-whisper 0.9.15-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 | # Copyright 2008 Orbitz WorldWide
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# This module is an implementation of the Whisper database API
# Here is the basic layout of a whisper data file
#
# File = Header,Data
# Header = Metadata,ArchiveInfo+
# Metadata = aggregationType,maxRetention,xFilesFactor,archiveCount
# ArchiveInfo = Offset,SecondsPerPoint,Points
# Data = Archive+
# Archive = Point+
# Point = timestamp,value
import os, struct, time, operator, itertools
from errno import ENOSPC
try:
import fcntl
CAN_LOCK = True
except ImportError:
CAN_LOCK = False
try:
import ctypes
import ctypes.util
CAN_FALLOCATE = True
except ImportError:
CAN_FALLOCATE = False
fallocate = None
if CAN_FALLOCATE:
libc_name = ctypes.util.find_library('c')
libc = ctypes.CDLL(libc_name)
c_off64_t = ctypes.c_int64
c_off_t = ctypes.c_int
try:
_fallocate = libc.posix_fallocate64
_fallocate.restype = ctypes.c_int
_fallocate.argtypes = [ctypes.c_int, c_off64_t, c_off64_t]
except AttributeError, e:
try:
_fallocate = libc.posix_fallocate
_fallocate.restype = ctypes.c_int
_fallocate.argtypes = [ctypes.c_int, c_off_t, c_off_t]
except AttributeError, e:
CAN_FALLOCATE = False
if CAN_FALLOCATE:
def _py_fallocate(fd, offset, len_):
res = _fallocate(fd.fileno(), offset, len_)
if res != 0:
raise IOError(res, 'fallocate')
fallocate = _py_fallocate
del libc
del libc_name
LOCK = False
CACHE_HEADERS = False
AUTOFLUSH = False
__headerCache = {}
longFormat = "!L"
longSize = struct.calcsize(longFormat)
floatFormat = "!f"
floatSize = struct.calcsize(floatFormat)
valueFormat = "!d"
valueSize = struct.calcsize(valueFormat)
pointFormat = "!Ld"
pointSize = struct.calcsize(pointFormat)
metadataFormat = "!2LfL"
metadataSize = struct.calcsize(metadataFormat)
archiveInfoFormat = "!3L"
archiveInfoSize = struct.calcsize(archiveInfoFormat)
aggregationTypeToMethod = dict({
1: 'average',
2: 'sum',
3: 'last',
4: 'max',
5: 'min'
})
aggregationMethodToType = dict([[v,k] for k,v in aggregationTypeToMethod.items()])
aggregationMethods = aggregationTypeToMethod.values()
debug = startBlock = endBlock = lambda *a,**k: None
UnitMultipliers = {
'seconds' : 1,
'minutes' : 60,
'hours' : 3600,
'days' : 86400,
'weeks' : 86400 * 7,
'years' : 86400 * 365
}
def getUnitString(s):
if 'seconds'.startswith(s): return 'seconds'
if 'minutes'.startswith(s): return 'minutes'
if 'hours'.startswith(s): return 'hours'
if 'days'.startswith(s): return 'days'
if 'weeks'.startswith(s): return 'weeks'
if 'years'.startswith(s): return 'years'
raise ValueError("Invalid unit '%s'" % s)
def parseRetentionDef(retentionDef):
import re
(precision, points) = retentionDef.strip().split(':')
if precision.isdigit():
precision = int(precision) * UnitMultipliers[getUnitString('s')]
else:
precision_re = re.compile(r'^(\d+)([a-z]+)$')
match = precision_re.match(precision)
if match:
precision = int(match.group(1)) * UnitMultipliers[getUnitString(match.group(2))]
else:
raise ValueError("Invalid precision specification '%s'" % precision)
if points.isdigit():
points = int(points)
else:
points_re = re.compile(r'^(\d+)([a-z]+)$')
match = points_re.match(points)
if match:
points = int(match.group(1)) * UnitMultipliers[getUnitString(match.group(2))] / precision
else:
raise ValueError("Invalid retention specification '%s'" % points)
return (precision, points)
class WhisperException(Exception):
"""Base class for whisper exceptions."""
class InvalidConfiguration(WhisperException):
"""Invalid configuration."""
class InvalidAggregationMethod(WhisperException):
"""Invalid aggregation method."""
class InvalidTimeInterval(WhisperException):
"""Invalid time interval."""
class TimestampNotCovered(WhisperException):
"""Timestamp not covered by any archives in this database."""
class CorruptWhisperFile(WhisperException):
def __init__(self, error, path):
Exception.__init__(self, error)
self.error = error
self.path = path
def __repr__(self):
return "<CorruptWhisperFile[%s] %s>" % (self.path, self.error)
def __str__(self):
return "%s (%s)" % (self.error, self.path)
def enableDebug():
global open, debug, startBlock, endBlock
class open(file):
def __init__(self,*args,**kwargs):
file.__init__(self,*args,**kwargs)
self.writeCount = 0
self.readCount = 0
def write(self,data):
self.writeCount += 1
debug('WRITE %d bytes #%d' % (len(data),self.writeCount))
return file.write(self,data)
def read(self,bytes):
self.readCount += 1
debug('READ %d bytes #%d' % (bytes,self.readCount))
return file.read(self,bytes)
def debug(message):
print 'DEBUG :: %s' % message
__timingBlocks = {}
def startBlock(name):
__timingBlocks[name] = time.time()
def endBlock(name):
debug("%s took %.5f seconds" % (name,time.time() - __timingBlocks.pop(name)))
def __readHeader(fh):
info = __headerCache.get(fh.name)
if info:
return info
originalOffset = fh.tell()
fh.seek(0)
packedMetadata = fh.read(metadataSize)
try:
(aggregationType,maxRetention,xff,archiveCount) = struct.unpack(metadataFormat,packedMetadata)
except:
raise CorruptWhisperFile("Unable to read header", fh.name)
archives = []
for i in xrange(archiveCount):
packedArchiveInfo = fh.read(archiveInfoSize)
try:
(offset,secondsPerPoint,points) = struct.unpack(archiveInfoFormat,packedArchiveInfo)
except:
raise CorruptWhisperFile("Unable to read archive%d metadata" % i, fh.name)
archiveInfo = {
'offset' : offset,
'secondsPerPoint' : secondsPerPoint,
'points' : points,
'retention' : secondsPerPoint * points,
'size' : points * pointSize,
}
archives.append(archiveInfo)
fh.seek(originalOffset)
info = {
'aggregationMethod' : aggregationTypeToMethod.get(aggregationType, 'average'),
'maxRetention' : maxRetention,
'xFilesFactor' : xff,
'archives' : archives,
}
if CACHE_HEADERS:
__headerCache[fh.name] = info
return info
def setAggregationMethod(path, aggregationMethod):
"""setAggregationMethod(path,aggregationMethod)
path is a string
aggregationMethod specifies the method to use when propogating data (see ``whisper.aggregationMethods``)
"""
with open(path,'r+b') as fh:
if LOCK:
fcntl.flock( fh.fileno(), fcntl.LOCK_EX )
packedMetadata = fh.read(metadataSize)
try:
(aggregationType,maxRetention,xff,archiveCount) = struct.unpack(metadataFormat,packedMetadata)
except:
raise CorruptWhisperFile("Unable to read header", fh.name)
try:
newAggregationType = struct.pack( longFormat, aggregationMethodToType[aggregationMethod] )
except KeyError:
raise InvalidAggregationMethod("Unrecognized aggregation method: %s" %
aggregationMethod)
fh.seek(0)
fh.write(newAggregationType)
if AUTOFLUSH:
fh.flush()
os.fsync(fh.fileno())
if CACHE_HEADERS and fh.name in __headerCache:
del __headerCache[fh.name]
return aggregationTypeToMethod.get(aggregationType, 'average')
def validateArchiveList(archiveList):
""" Validates an archiveList.
An ArchiveList must:
1. Have at least one archive config. Example: (60, 86400)
2. No archive may be a duplicate of another.
3. Higher precision archives' precision must evenly divide all lower precision archives' precision.
4. Lower precision archives must cover larger time intervals than higher precision archives.
5. Each archive must have at least enough points to consolidate to the next archive
Returns True or False
"""
if not archiveList:
raise InvalidConfiguration("You must specify at least one archive configuration!")
archiveList.sort(key=lambda a: a[0]) #sort by precision (secondsPerPoint)
for i,archive in enumerate(archiveList):
if i == len(archiveList) - 1:
break
nextArchive = archiveList[i+1]
if not archive[0] < nextArchive[0]:
raise InvalidConfiguration("A Whisper database may not configured having"
"two archives with the same precision (archive%d: %s, archive%d: %s)" %
(i, archive, i + 1, nextArchive))
if nextArchive[0] % archive[0] != 0:
raise InvalidConfiguration("Higher precision archives' precision "
"must evenly divide all lower precision archives' precision "
"(archive%d: %s, archive%d: %s)" %
(i, archive[0], i + 1, nextArchive[0]))
retention = archive[0] * archive[1]
nextRetention = nextArchive[0] * nextArchive[1]
if not nextRetention > retention:
raise InvalidConfiguration("Lower precision archives must cover "
"larger time intervals than higher precision archives "
"(archive%d: %s seconds, archive%d: %s seconds)" %
(i, retention, i + 1, nextRetention))
archivePoints = archive[1]
pointsPerConsolidation = nextArchive[0] / archive[0]
if not archivePoints >= pointsPerConsolidation:
raise InvalidConfiguration("Each archive must have at least enough points "
"to consolidate to the next archive (archive%d consolidates %d of "
"archive%d's points but it has only %d total points)" %
(i + 1, pointsPerConsolidation, i, archivePoints))
def create(path,archiveList,xFilesFactor=None,aggregationMethod=None,sparse=False,useFallocate=False):
"""create(path,archiveList,xFilesFactor=0.5,aggregationMethod='average')
path is a string
archiveList is a list of archives, each of which is of the form (secondsPerPoint,numberOfPoints)
xFilesFactor specifies the fraction of data points in a propagation interval that must have known values for a propagation to occur
aggregationMethod specifies the function to use when propogating data (see ``whisper.aggregationMethods``)
"""
# Set default params
if xFilesFactor is None:
xFilesFactor = 0.5
if aggregationMethod is None:
aggregationMethod = 'average'
#Validate archive configurations...
validateArchiveList(archiveList)
#Looks good, now we create the file and write the header
if os.path.exists(path):
raise InvalidConfiguration("File %s already exists!" % path)
with open(path,'wb') as fh:
try:
if LOCK:
fcntl.flock( fh.fileno(), fcntl.LOCK_EX )
aggregationType = struct.pack( longFormat, aggregationMethodToType.get(aggregationMethod, 1) )
oldest = max([secondsPerPoint * points for secondsPerPoint,points in archiveList])
maxRetention = struct.pack( longFormat, oldest )
xFilesFactor = struct.pack( floatFormat, float(xFilesFactor) )
archiveCount = struct.pack(longFormat, len(archiveList))
packedMetadata = aggregationType + maxRetention + xFilesFactor + archiveCount
fh.write(packedMetadata)
headerSize = metadataSize + (archiveInfoSize * len(archiveList))
archiveOffsetPointer = headerSize
for secondsPerPoint,points in archiveList:
archiveInfo = struct.pack(archiveInfoFormat, archiveOffsetPointer, secondsPerPoint, points)
fh.write(archiveInfo)
archiveOffsetPointer += (points * pointSize)
#If configured to use fallocate and capable of fallocate use that, else
#attempt sparse if configure or zero pre-allocate if sparse isn't configured.
if CAN_FALLOCATE and useFallocate:
remaining = archiveOffsetPointer - headerSize
fallocate(fh, headerSize, remaining)
elif sparse:
fh.seek(archiveOffsetPointer - 1)
fh.write('\x00')
else:
remaining = archiveOffsetPointer - headerSize
chunksize = 16384
zeroes = '\x00' * chunksize
while remaining > chunksize:
fh.write(zeroes)
remaining -= chunksize
fh.write(zeroes[:remaining])
if AUTOFLUSH:
fh.flush()
os.fsync(fh.fileno())
fh.close()
except IOError, e:
try:
# if we got an IOError above, the file is either empty or half created.
# Better off deleting it to avoid surprises later
os.unlink(fh.name)
finally:
# double close is ok - the first one is needed to catch ENOSPC on close
# This one closes the file if we caught an IOError higher up
fh.close()
raise
def aggregate(aggregationMethod, knownValues):
if aggregationMethod == 'average':
return float(sum(knownValues)) / float(len(knownValues))
elif aggregationMethod == 'sum':
return float(sum(knownValues))
elif aggregationMethod == 'last':
return knownValues[len(knownValues)-1]
elif aggregationMethod == 'max':
return max(knownValues)
elif aggregationMethod == 'min':
return min(knownValues)
else:
raise InvalidAggregationMethod("Unrecognized aggregation method %s" %
aggregationMethod)
def __propagate(fh,header,timestamp,higher,lower):
aggregationMethod = header['aggregationMethod']
xff = header['xFilesFactor']
lowerIntervalStart = timestamp - (timestamp % lower['secondsPerPoint'])
lowerIntervalEnd = lowerIntervalStart + lower['secondsPerPoint']
fh.seek(higher['offset'])
packedPoint = fh.read(pointSize)
(higherBaseInterval,higherBaseValue) = struct.unpack(pointFormat,packedPoint)
if higherBaseInterval == 0:
higherFirstOffset = higher['offset']
else:
timeDistance = lowerIntervalStart - higherBaseInterval
pointDistance = timeDistance / higher['secondsPerPoint']
byteDistance = pointDistance * pointSize
higherFirstOffset = higher['offset'] + (byteDistance % higher['size'])
higherPoints = lower['secondsPerPoint'] / higher['secondsPerPoint']
higherSize = higherPoints * pointSize
relativeFirstOffset = higherFirstOffset - higher['offset']
relativeLastOffset = (relativeFirstOffset + higherSize) % higher['size']
higherLastOffset = relativeLastOffset + higher['offset']
fh.seek(higherFirstOffset)
if higherFirstOffset < higherLastOffset: #we don't wrap the archive
seriesString = fh.read(higherLastOffset - higherFirstOffset)
else: #We do wrap the archive
higherEnd = higher['offset'] + higher['size']
seriesString = fh.read(higherEnd - higherFirstOffset)
fh.seek(higher['offset'])
seriesString += fh.read(higherLastOffset - higher['offset'])
#Now we unpack the series data we just read
byteOrder,pointTypes = pointFormat[0],pointFormat[1:]
points = len(seriesString) / pointSize
seriesFormat = byteOrder + (pointTypes * points)
unpackedSeries = struct.unpack(seriesFormat, seriesString)
#And finally we construct a list of values
neighborValues = [None] * points
currentInterval = lowerIntervalStart
step = higher['secondsPerPoint']
for i in xrange(0,len(unpackedSeries),2):
pointTime = unpackedSeries[i]
if pointTime == currentInterval:
neighborValues[i/2] = unpackedSeries[i+1]
currentInterval += step
#Propagate aggregateValue to propagate from neighborValues if we have enough known points
knownValues = [v for v in neighborValues if v is not None]
if not knownValues:
return False
knownPercent = float(len(knownValues)) / float(len(neighborValues))
if knownPercent >= xff: #we have enough data to propagate a value!
aggregateValue = aggregate(aggregationMethod, knownValues)
myPackedPoint = struct.pack(pointFormat,lowerIntervalStart,aggregateValue)
fh.seek(lower['offset'])
packedPoint = fh.read(pointSize)
(lowerBaseInterval,lowerBaseValue) = struct.unpack(pointFormat,packedPoint)
if lowerBaseInterval == 0: #First propagated update to this lower archive
fh.seek(lower['offset'])
fh.write(myPackedPoint)
else: #Not our first propagated update to this lower archive
timeDistance = lowerIntervalStart - lowerBaseInterval
pointDistance = timeDistance / lower['secondsPerPoint']
byteDistance = pointDistance * pointSize
lowerOffset = lower['offset'] + (byteDistance % lower['size'])
fh.seek(lowerOffset)
fh.write(myPackedPoint)
return True
else:
return False
def update(path,value,timestamp=None):
"""update(path,value,timestamp=None)
path is a string
value is a float
timestamp is either an int or float
"""
value = float(value)
with open(path,'r+b') as fh:
return file_update(fh, value, timestamp)
def file_update(fh, value, timestamp):
if LOCK:
fcntl.flock( fh.fileno(), fcntl.LOCK_EX )
header = __readHeader(fh)
now = int( time.time() )
if timestamp is None:
timestamp = now
timestamp = int(timestamp)
diff = now - timestamp
if not ((diff < header['maxRetention']) and diff >= 0):
raise TimestampNotCovered("Timestamp not covered by any archives in "
"this database.")
for i,archive in enumerate(header['archives']): #Find the highest-precision archive that covers timestamp
if archive['retention'] < diff: continue
lowerArchives = header['archives'][i+1:] #We'll pass on the update to these lower precision archives later
break
#First we update the highest-precision archive
myInterval = timestamp - (timestamp % archive['secondsPerPoint'])
myPackedPoint = struct.pack(pointFormat,myInterval,value)
fh.seek(archive['offset'])
packedPoint = fh.read(pointSize)
(baseInterval,baseValue) = struct.unpack(pointFormat,packedPoint)
if baseInterval == 0: #This file's first update
fh.seek(archive['offset'])
fh.write(myPackedPoint)
baseInterval,baseValue = myInterval,value
else: #Not our first update
timeDistance = myInterval - baseInterval
pointDistance = timeDistance / archive['secondsPerPoint']
byteDistance = pointDistance * pointSize
myOffset = archive['offset'] + (byteDistance % archive['size'])
fh.seek(myOffset)
fh.write(myPackedPoint)
#Now we propagate the update to lower-precision archives
higher = archive
for lower in lowerArchives:
if not __propagate(fh, header, myInterval, higher, lower):
break
higher = lower
if AUTOFLUSH:
fh.flush()
os.fsync(fh.fileno())
def update_many(path,points):
"""update_many(path,points)
path is a string
points is a list of (timestamp,value) points
"""
if not points: return
points = [ (int(t),float(v)) for (t,v) in points]
points.sort(key=lambda p: p[0],reverse=True) #order points by timestamp, newest first
with open(path,'r+b') as fh:
return file_update_many(fh, points)
def file_update_many(fh, points):
if LOCK:
fcntl.flock( fh.fileno(), fcntl.LOCK_EX )
header = __readHeader(fh)
now = int( time.time() )
archives = iter( header['archives'] )
currentArchive = archives.next()
currentPoints = []
for point in points:
age = now - point[0]
while currentArchive['retention'] < age: #we can't fit any more points in this archive
if currentPoints: #commit all the points we've found that it can fit
currentPoints.reverse() #put points in chronological order
__archive_update_many(fh,header,currentArchive,currentPoints)
currentPoints = []
try:
currentArchive = archives.next()
except StopIteration:
currentArchive = None
break
if not currentArchive:
break #drop remaining points that don't fit in the database
currentPoints.append(point)
if currentArchive and currentPoints: #don't forget to commit after we've checked all the archives
currentPoints.reverse()
__archive_update_many(fh,header,currentArchive,currentPoints)
if AUTOFLUSH:
fh.flush()
os.fsync(fh.fileno())
def __archive_update_many(fh,header,archive,points):
step = archive['secondsPerPoint']
alignedPoints = [ (timestamp - (timestamp % step), value)
for (timestamp,value) in points ]
#Create a packed string for each contiguous sequence of points
packedStrings = []
previousInterval = None
currentString = ""
lenAlignedPoints = len(alignedPoints)
for i in xrange(0,lenAlignedPoints):
#take last point in run of points with duplicate intervals
if i+1 < lenAlignedPoints and alignedPoints[i][0] == alignedPoints[i+1][0]:
continue
(interval,value) = alignedPoints[i]
if (not previousInterval) or (interval == previousInterval + step):
currentString += struct.pack(pointFormat,interval,value)
previousInterval = interval
else:
numberOfPoints = len(currentString) / pointSize
startInterval = previousInterval - (step * (numberOfPoints-1))
packedStrings.append( (startInterval,currentString) )
currentString = struct.pack(pointFormat,interval,value)
previousInterval = interval
if currentString:
numberOfPoints = len(currentString) / pointSize
startInterval = previousInterval - (step * (numberOfPoints-1))
packedStrings.append( (startInterval,currentString) )
#Read base point and determine where our writes will start
fh.seek(archive['offset'])
packedBasePoint = fh.read(pointSize)
(baseInterval,baseValue) = struct.unpack(pointFormat,packedBasePoint)
if baseInterval == 0: #This file's first update
baseInterval = packedStrings[0][0] #use our first string as the base, so we start at the start
#Write all of our packed strings in locations determined by the baseInterval
for (interval,packedString) in packedStrings:
timeDistance = interval - baseInterval
pointDistance = timeDistance / step
byteDistance = pointDistance * pointSize
myOffset = archive['offset'] + (byteDistance % archive['size'])
fh.seek(myOffset)
archiveEnd = archive['offset'] + archive['size']
bytesBeyond = (myOffset + len(packedString)) - archiveEnd
if bytesBeyond > 0:
fh.write( packedString[:-bytesBeyond] )
assert fh.tell() == archiveEnd, "archiveEnd=%d fh.tell=%d bytesBeyond=%d len(packedString)=%d" % (archiveEnd,fh.tell(),bytesBeyond,len(packedString))
fh.seek( archive['offset'] )
fh.write( packedString[-bytesBeyond:] ) #safe because it can't exceed the archive (retention checking logic above)
else:
fh.write(packedString)
#Now we propagate the updates to lower-precision archives
higher = archive
lowerArchives = [arc for arc in header['archives'] if arc['secondsPerPoint'] > archive['secondsPerPoint']]
for lower in lowerArchives:
fit = lambda i: i - (i % lower['secondsPerPoint'])
lowerIntervals = [fit(p[0]) for p in alignedPoints]
uniqueLowerIntervals = set(lowerIntervals)
propagateFurther = False
for interval in uniqueLowerIntervals:
if __propagate(fh, header, interval, higher, lower):
propagateFurther = True
if not propagateFurther:
break
higher = lower
def info(path):
"""info(path)
path is a string
"""
with open(path,'rb') as fh:
info = __readHeader(fh)
return info
def fetch(path,fromTime,untilTime=None,now=None):
"""fetch(path,fromTime,untilTime=None)
path is a string
fromTime is an epoch time
untilTime is also an epoch time, but defaults to now.
Returns a tuple of (timeInfo, valueList)
where timeInfo is itself a tuple of (fromTime, untilTime, step)
Returns None if no data can be returned
"""
with open(path,'rb') as fh:
return file_fetch(fh, fromTime, untilTime, now)
def file_fetch(fh, fromTime, untilTime, now = None):
header = __readHeader(fh)
if now is None:
now = int( time.time() )
if untilTime is None:
untilTime = now
fromTime = int(fromTime)
untilTime = int(untilTime)
# Here we try and be flexible and return as much data as we can.
# If the range of data is from too far in the past or fully in the future, we
# return nothing
if (fromTime > untilTime):
raise InvalidTimeInterval("Invalid time interval: from time '%s' is after until time '%s'" % (fromTime, untilTime))
oldestTime = now - header['maxRetention']
# Range is in the future
if fromTime > now:
return None
# Range is beyond retention
if untilTime < oldestTime:
return None
# Range requested is partially beyond retention, adjust
if fromTime < oldestTime:
fromTime = oldestTime
# Range is partially in the future, adjust
if untilTime > now:
untilTime = now
diff = now - fromTime
for archive in header['archives']:
if archive['retention'] >= diff:
break
fromInterval = int( fromTime - (fromTime % archive['secondsPerPoint']) ) + archive['secondsPerPoint']
untilInterval = int( untilTime - (untilTime % archive['secondsPerPoint']) ) + archive['secondsPerPoint']
if fromInterval == untilInterval:
# Check for zero-length time rages and always include the next point
untilInterval = untilInterval + archive['secondsPerPoint']
fh.seek(archive['offset'])
packedPoint = fh.read(pointSize)
(baseInterval,baseValue) = struct.unpack(pointFormat,packedPoint)
if baseInterval == 0:
step = archive['secondsPerPoint']
points = (untilInterval - fromInterval) / step
timeInfo = (fromInterval,untilInterval,step)
valueList = [None] * points
return (timeInfo,valueList)
#Determine fromOffset
timeDistance = fromInterval - baseInterval
pointDistance = timeDistance / archive['secondsPerPoint']
byteDistance = pointDistance * pointSize
fromOffset = archive['offset'] + (byteDistance % archive['size'])
#Determine untilOffset
timeDistance = untilInterval - baseInterval
pointDistance = timeDistance / archive['secondsPerPoint']
byteDistance = pointDistance * pointSize
untilOffset = archive['offset'] + (byteDistance % archive['size'])
#Read all the points in the interval
fh.seek(fromOffset)
if fromOffset < untilOffset: #If we don't wrap around the archive
seriesString = fh.read(untilOffset - fromOffset)
else: #We do wrap around the archive, so we need two reads
archiveEnd = archive['offset'] + archive['size']
seriesString = fh.read(archiveEnd - fromOffset)
fh.seek(archive['offset'])
seriesString += fh.read(untilOffset - archive['offset'])
#Now we unpack the series data we just read (anything faster than unpack?)
byteOrder,pointTypes = pointFormat[0],pointFormat[1:]
points = len(seriesString) / pointSize
seriesFormat = byteOrder + (pointTypes * points)
unpackedSeries = struct.unpack(seriesFormat, seriesString)
#And finally we construct a list of values (optimize this!)
valueList = [None] * points #pre-allocate entire list for speed
currentInterval = fromInterval
step = archive['secondsPerPoint']
for i in xrange(0,len(unpackedSeries),2):
pointTime = unpackedSeries[i]
if pointTime == currentInterval:
pointValue = unpackedSeries[i+1]
valueList[i/2] = pointValue #in-place reassignment is faster than append()
currentInterval += step
timeInfo = (fromInterval,untilInterval,step)
return (timeInfo,valueList)
def merge(path_from, path_to, step=1<<12):
headerFrom = info(path_from)
archives = headerFrom['archives']
archives.sort(key=operator.itemgetter('retention'), reverse=True)
# Start from maxRetention of the oldest file, and skip forward at max 'step'
# points at a time.
fromTime = int(time.time()) - headerFrom['maxRetention']
for archive in archives:
pointsRemaining = archive['points']
while pointsRemaining:
pointsToRead = step
if pointsRemaining < step:
pointsToRead = pointsRemaining
pointsRemaining -= pointsToRead
untilTime = fromTime + (pointsToRead * archive['secondsPerPoint'])
(timeInfo, values) = fetch(path_from, fromTime, untilTime)
(start, end, archive_step) = timeInfo
pointsToWrite = list(itertools.ifilter(
lambda points: points[1] is not None,
itertools.izip(xrange(start, end, archive_step), values)))
pointsToWrite.sort(key=lambda p: p[0],reverse=True) #order points by timestamp, newest first
update_many(path_to, pointsToWrite)
fromTime = untilTime
def diff(path_from, path_to, ignore_empty = False):
""" Compare two whisper databases. Each file must have the same archive configuration """
fh_from = open(path_from, 'rb')
fh_to = open(path_to, 'rb')
diffs = file_diff(fh_from, fh_to, ignore_empty)
fh_to.close()
fh_from.close()
return diffs
def file_diff(fh_from, fh_to, ignore_empty = False):
headerFrom = __readHeader(fh_from)
headerTo = __readHeader(fh_to)
if headerFrom['archives'] != headerTo['archives']:
raise NotImplementedError("%s and %s archive configurations are unalike. " \
"Resize the input before diffing" % (fh_from.name, fh_to.name))
archives = headerFrom['archives']
archives.sort(key=operator.itemgetter('retention'))
archive_diffs = []
now = int(time.time())
untilTime = now
for archive_number, archive in enumerate(archives):
diffs = []
startTime = now - archive['retention']
(fromTimeInfo, fromValues) = __archive_fetch(fh_from, archive, startTime, untilTime)
(toTimeInfo, toValues) = __archive_fetch(fh_to, archive, startTime, untilTime)
(start, end, archive_step) = ( min(fromTimeInfo[0],toTimeInfo[0]), max(fromTimeInfo[1],toTimeInfo[1]), min(fromTimeInfo[2],toTimeInfo[2]) )
points = map(lambda s: (s * archive_step + start,fromValues[s],toValues[s]), range(0,(end - start) / archive_step))
if ignore_empty:
points = [p for p in points if p[1] != None and p[2] != None]
else:
points = [p for p in points if p[1] != None or p[2] != None]
diffs = [p for p in points if p[1] != p[2]]
archive_diffs.append( (archive_number, diffs, points.__len__()) )
untilTime = startTime
return archive_diffs
#!/usr/bin/env python
|