/usr/lib/python2.7/dist-packages/yappy/parser.py is in python-yappy 1.9.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 | # -*- coding: utf-8 -*-
"""
This is part of Yappy
parser.py -- Yet another parser for python...
A LR parser generator, based on Aho and al. 1986, C{Compilers}
(aho86:_compil).
It currently builds C{SLR}, C{LR(1)} and C{LALR(1)} parsing tables.
Copyright (C) 2000-2003 Rogério Reis & Nelma Moreira {rvr,nam}@ncc.up.pt
Version: $Id: parser.py,v 1.18 2006-07-19 09:52:06 rvr Exp $
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
@author: Rogério Reis & Nelma Moreira {rvr,nam}@ncc.up.pt
@var _DEBUG: if nonzero, display information during parser generation
or parsing.
@type _DEBUG: integer
"""
from types import *
import re, string
import sys, string, copy, time, operator
import os, os.path
import shelve, anydbm, whichdb
# set elements are mutable objects; we cannot use sets
import osets
#Globals
_DEBUG=0
_Version = "1.9.4"
NIL = ""
class Lexer:
"""Class for lexical analyser to use with the parser
@ivar rules: lexical rules
@ivar operators: precedence and associativity for operators
@type operators: dictionary
"""
def __init__(self,rules_list):
"""
By now lexer is kept as simple as possible, so order is really
essential: i.e. if a keyword is substring of another its rule
must appear after the larger keyword for the obvious
reasons...
@param rules_list: contains pairs C{(re,funct,op?)} where:
C{re}: is an uncompiled python regular expression
C{funct}: the name of
a funcion that returns the pair C{(TOKEN, SPECIAL_VALUE)}, where C{TOKEN}
is the token to be used by the parser and C{SPECIAL_VALUE} an eventual
associated value. The argument is the matched string. If
C{funct} equals C{""} the token is ignored. This can be
used for delimiters.
C{op}: if present, is a tuple with operador
information: C{(TOKEN,PRECEDENCE,ASSOC)} where C{PRECEDENCE} is an
integer and C{ASSOC} the string 'left' or 'right'.
"""
self.rules = []
rnumber = 1
for r in rules_list:
try:
rex = r[0]
funct = r[1]
except IndexError:
raise LexicalError(rnumber,r)
try: rec = re.compile(rex)
except TypeError:
raise LexicalRulesErrorRE(rex,rnumber)
try:
op,prec,assoc = r[2]
if not self.__dict__.has_key("operators"):
self.operators = {}
if not self.operators.has_key(op):
self.operators[op] = (prec,assoc)
except IndexError:
pass
self.rules.append((rec,funct))
rnumber = rnumber + 1
if _DEBUG and self.__dict__.has_key("operators"):
print "operators %s" %self.operators
def scan(self,string):
"""Performs the lexical analysis on C{string}
@return: a list of tokens (pairs C{(TOKEN , SPEcial_VALUE )}), for
recognized elements and C{("@UNK", string )} for the others"""
st = [string]
for r in self.rules:
st = self.scanOneRule(r,st)
return self.scanUnknown(st)
def scanOneRule(self,rule,st):
"""Scans space C{st} according only one rule
@param rule: one rule C{(re,fun,op)}
@param st: is a list of strings and already matched structures
"""
re = rule[0]
fun = rule[1]
st1 = []
for s in st:
if not isinstance(s, StringType):
st1.append(s)
else:
s1 = s
while True:
m = re.search(s1)
if not m:
st1.append(s1)
break
else:
if m.start() != 0:
st1.append(s1[0:m.start()])
# if fun == "":
# st1.append(("",s1[m.start():m.end()]))
# else:
if fun != "":
st1.append(apply(fun,[s1[m.start():m.end()]]))
if m.end() == len(s1):
break
else:
s1 = s1[m.end():]
return st1
def scanUnknown(self,st):
"""Scans the resulting structure making Unknown strings
Unknown parts will be of the form ("@UNK", string ) """
st1 = []
for s in st:
if isinstance(s, StringType):
st1.append(("@UNK",s))
else:
st1.append(s)
return st1
def readscan(self):
"""Scans a string read from stdin """
st = raw_input()
if not st:
raise IOError
if isinstance(st, StringType):
s = self.scan(st)
return s
class YappyError(Exception):
"""Class for all Yappy exceptions"""
pass
class StackUnderflow(YappyError):
pass
class LexicalError(YappyError):
"""Class for all Yappy Lexical analyser exceptions"""
def __init__(self,r,rule):
self.value = 'Error in rule number %s: %s'%(r,rule)
def __str__(self):
return "%s" % (self.value)
class LexicalRulesErrorRE(YappyError):
"""An error occured parsing the RE part of a lexical rule"""
def __init__(self,re,no=0):
self.value = 'Error in RE "%s" at rule n.%d'%(re,no)
self.rule = no
self.re = re
def __str__(self):
return "%s" % (self.value)
class GrammarError(YappyError):
"""Class for input grammar errors """
def __init__(self,rule):
self.value = 'Error in rule "%s" '%rule
def __str__(self):
return "%s" % (self.value)
class SLRConflictError(YappyError):
"""Confliting actions in building SLR parsing table. Grammar
is not SLR(0)"""
def __init__(self,i,a):
self.value = 'Confliting action[%d,%s] in SLR parsing table ' %(i,a)
self.item = i
self.symbol = a
def __str__(self):
return "%s" % (self.value)
class LRConflictError(YappyError):
"""Conflicting actions in building LR parsing table. Grammar
is not LR(1)"""
def __init__(self,i,a):
self.item = i
self.symbol = a
self.value = 'Confliting action[%d,%s] in LR(1) parsing table ' %(self.item,self.symbol)
def __str__(self):
return "%s" % (self.value)
class LRConflicts(YappyError):
"""Confliting actions in building LR parsing table. Grammar
is not LR(1)"""
def __init__(self):
self.value = """Warning>>> Several confliting actions. Please
consult self.Log for details"""
def __str__(self):
return "%s" % (self.value)
class LRParserError(YappyError):
"""An error occured in LR parsing program"""
def __init__(self,s,a):
self.item = s
self.symbol = a
self.value = 'Error in LR: (%s,%s) not found' %(self.item,self.symbol)
def __str__(self):
return "%s" %(self.value)
class SemanticError(YappyError):
"""An error occured in the application of a semantic action"""
def __init__(self,m,n=0,r=None):
self.value = m
self.nrule = n
self.rule = r
def __str__(self):
return "%s in semantic rule %d: %s" % (self.value,self.nrule,self.rule)
class TableError(YappyError):
"""Mismatch table version """
def __init__(self,t):
self.value = """A new table must be built.
Please remove table shelve %s or set no_table to 0""" %t
def __str__(self):
return "%s" % (self.value)
class CFGrammar:
""" Class for context-free grammars
@ivar rules: grammar rules
@ivar terminals: terminals symbols
@ivar nonterminals: nonterminals symbols
@ivar start: start symbol
@type start: string
@ivar ntr: dictionary of rules for each nonterminal
"""
def __init__(self,grammar):
"""
@param grammar: is a list for productions;
each production is a tuple C{(LeftHandside,RightHandside,SemFunc,Prec?)}
with C{LeftHandside} nonterminal, C{RightHandside} list of symbols,
C{SemFunc} syntax-direct semantics, if present
C{Prec (PRECEDENCE,ASSOC)} for ambiguous rules
First production is for start symbol
Special symbols: C{@S}, C{$}, C{#}
"""
""" MUST BE IN THIS ORDER"""
self.rules = grammar
self.makenonterminals()
self.maketerminals()
self.start = self.rules[0][0]
self.aug_start = "@S"
self.rules.append((self.aug_start,[self.start],DefaultSemRule))
self.endmark = '$'
self.dummy = '#'
self.terminals.append(self.endmark)
self.terminals.append(self.dummy)
self.nonterminals.append(self.aug_start)
""" ritems are only for control ... not needed """
self.ritems = []
""" ntr[A] is the set of rules which has A as left side"""
self.ntr = {}
i = 0
for r in self.rules:
if not self.ntr.has_key(r[0]):
self.ntr[r[0]] = [i]
else:
self.ntr[r[0]].append(i)
for j in range(len(r[1]) + 1):
self.ritems.append((i,j))
i = i + 1
def __str__(self):
"""Grammar rules
@return: a string representing the grammar rules
"""
s = ""
for n in range(len(self.rules)):
lhs = self.rules[n][0]
rhs = self.rules[n][1]
s = s + "%s | %s -> %s \n" %(n, lhs, string.join(rhs," "))
return "Grammar Rules:\n\n%s" % s
def makeFFN(self):
self.NULLABLE()
self.FIRST_ONE()
self.FOLLOW()
def maketerminals(self):
"""Extracts C{terminals} from the rules.
C{nonterminals} must already exist"""
self.terminals = []
for r in self.rules:
for s in r[1]:
if s not in self.nonterminals and s not in self.terminals:
self.terminals.append(s)
def makenonterminals(self):
"""Extracts C{nonterminals} from grammar rules."""
self.nonterminals = []
for r in self.rules:
if r[0] not in self.nonterminals:
self.nonterminals.append(r[0])
def NULLABLE(self):
"""Determines which nonterminals C{X ->* []} """
self.nullable = {}
for s in self.terminals:
self.nullable[s] = 0
for s in self.nonterminals:
self.nullable[s] = 0
if self.ntr.has_key(s):
for i in self.ntr[s]:
if not self.rules[i][1]:
self.nullable[s] = 1
break
k = 1
while k == 1:
k = 0
for r in self.rules:
e = 0
for i in r[1]:
if not self.nullable[i]:
e = 1
break
if e == 0 and not self.nullable[r[0]]:
self.nullable[r[0]] = 1
k = 1
def FIRST(self,s):
"""C{FIRST(s)} is the set of terminals that begin the strings
derived from s """
first = osets.Set([])
e = 0
for i in range(len(s)):
first.s_extend(self.first[s[i]])
if not self.nullable[s[i]]:
e = 1
break
if e == 0:
self.nullable[string.join(s)] = 1
else:
self.nullable[string.join(s)] = 0
return first
def FIRST_ONE(self):
"""Determines C{FIRST(s)}, for every symbol s, that is the set of
terminals that begin the strings derived from s """
self.first = {}
self.nd = {}
self.ms =Stack()
for s in self.terminals:
self.first[s] = osets.Set([s])
for s in self.nonterminals:
if self.ntr.has_key(s) and not self.first.has_key(s):
# self.FIRST_NT(s)
self.FIRST_TRA(s,1)
def FIRST_TRA(self,s,d):
"""Transitiv closure of C{FIRST(X)} """
self.ms.push(s)
self.nd[s] = d
""" calculating F1(s)"""
self.first[s] = osets.Set([])
for i in self.ntr[s]:
for y in self.rules[i][1]:
if self.nullable[y]:
continue
else:
if y in self.terminals:
self.first[s].append(y)
break
"""transitive closure"""
for i in self.ntr[s]:
for y in self.rules[i][1]:
if y in self.nonterminals:
if not self.first.has_key(y):
self.FIRST_TRA(y,d+1)
if self.nd.has_key(y) and self.nd[y] != -1:
self.nd[s] = min(self.nd[s],self.nd[y])
self.first[s].s_extend(self.first[y])
if self.nullable[y]:
continue
else:
break
else:
break
if self.nd[s] == d:
while 1:
y = self.ms.pop()
if y == s:
break
self.first[y] = self.first[s].copy()
self.nd[y] = -1
def FIRST_NT(self,s):
""" Recursivelly computes C{FIRST(X)} for a nonterminal X"""
if not self.ntr.has_key(s):
return
self.first[s] = osets.Set([])
for i in self.ntr[s]:
r = self.rules[i][1]
if r == []:
self.nullable[s] = 1
else:
e = 1
for y in r:
if not self.first.has_key(y):
self.FIRST_NT(y)
self.first[s].s_extend(self.first[y])
if not self.nullable[y]:
e = 0
break
if e == 1:
self.nullable[s] = 1
def FOLLOW(self):
"""computes C{FOLLOW(A)} for all nonterminals: the set of terminals a
that can appear immediately to the right of A in some sentential form."""
self.follow = {}
self.follow[self.start] = osets.Set([self.endmark])
for rule in self.rules:
r = rule[1]
for i in range(len(r)):
if r[i] in self.nonterminals:
if not self.follow.has_key(r[i]):
self.follow[r[i]] = osets.Set([])
j = i + 1
self.follow[r[i]].s_extend(self.FIRST(r[j:]))
e = 1
while e:
e = 0
for s in self.nonterminals:
for i in self.ntr[s]:
r = self.rules[i][1]
try:
b = r[len(r)-1]
if b in self.nonterminals and self.follow[b].s_extend(self.follow[s]):
e = 1
except IndexError: pass
except KeyError: pass
for k in range(len(r)-1):
j = k + 1
if r[k] in self.nonterminals and self.nullable[string.join(r[j:])]:
if self.follow[r[k]].s_extend(self.follow[s]):
e = 1
break
def TransClose(self):
"""For each nonterminal C{s} determines the set of nonterminals
a such that C{s ->* ar}, for some C{r}"""
self.close_nt = {}
self.nd = {}
self.ms =Stack()
for s in self.nonterminals:
if self.ntr.has_key(s) and not self.close_nt.has_key(s):
self.TRAVERSE(s,1)
def TRAVERSE(self,s,d):
""" """
self.ms.push(s)
self.nd[s] = d
""" calculating F1(s)"""
self.close_nt[s] = {s:osets.Set([[]])}
for i in self.ntr[s]:
if not self.rules[i][1]:
continue
else:
r = self.rules[i][1]
for j in range(len(r)):
if r[j+1:]:
f = self.FIRST(r[j+1:])
ns = self.nullable[string.join(r[j+1:])]
else:
f = []
ns = 1
if r[j] in self.nonterminals:
if not self.close_nt[s].has_key(r[j]):
self.close_nt[s][r[j]] = osets.Set([[]])
if r[j+1:]:
self.close_nt[s][r[j]].append((f,ns))
if not self.nullable[r[j]]:
break
else:
break
"""reflexive tansitive closure"""
for i in self.ntr[s]:
if not self.rules[i][1]:
continue
else:
r = self.rules[i][1]
for j in range(len(r)):
f = self.FIRST(r[j+1:])
ns = self.nullable[string.join(r[j+1:])]
if r[j] in self.nonterminals:
if not self.close_nt.has_key(r[j]):
self.TRAVERSE(r[j],d+1)
if self.nd.has_key(r[j]) and self.nd[r[j]] != -1:
self.nd[s] = min(self.nd[s],self.nd[r[j]])
for k in self.close_nt[r[j]].keys():
if not self.close_nt[s].has_key(k):
self.close_nt[s][k] = osets.Set([[]])
else:
for v in self.close_nt[s][k]:
if not v:
self.close_nt[s][k].append((f,ns))
else:
p, n = v
if n:
self.close_nt[s][k].append((p+f,ns))
else:
self.close_nt[s][k].append((p,n))
if not self.nullable[r[j]]:
break
else:
break
if self.nd[s] == d:
while 1:
y = self.ms.pop()
if y == s:
break
self.close_nt[y] = self.close_nt[s].copy()
self.nd[y] = -1
def DERIVE_NT(self):
"""For each nonterminal C{s} determines the set of nonterminals
a such that C{s ->* ar}, for some C{r}"""
self.derive_nt = {}
for s in self.nonterminals:
if self.ntr.has_key(s) and not self.derive_nt.has_key(s):
self.DERIVE_ONE_NT(s)
def DERIVE_ONE_NT(self,s):
"""For nonterminal C{s} determines the set of nonterminals
a such that C{s -> ar}, for some C{r} """
if not self.ntr.has_key(s):
return
self.derive_nt[s] = {s:osets.Set([None])}
for i in self.ntr[s]:
if not self.rules[i][1]:
continue
else:
r = self.rules[i][1]
for j in range(len(r)):
if r[j] in self.nonterminals:
if not self.derive_nt.has_key(r[j]):
self.DERIVE_ONE_NT(r[j])
for k in self.derive_nt[r[j]].keys():
if not self.derive_nt[s].has_key(k):
self.derive_nt[s][k] = osets.Set([])
for p in self.derive_nt[r[j]][k]:
if not p :
self.derive_nt[s][k].append(r[j+1:])
else:
self.derive_nt[s][k].append(r[j+1:].append(p))
if not self.nullable[r[j]]:
break
else:
break
def DERIVE_T(self):
""" """
self.derive_ter = {}
for s in self.terminals:
self.derive_ter[s] = osets.Set([s])
e = 1
while e:
e = 0
for s in self.nonterminals:
for i in self.ntr[s]:
r = self.rules[i][1]
if r == []:
continue
for i in range(len(r)):
if r[i] in self.terminals:
if i < len(r) -1:
if self.derive_ter.has_key(r[i+1]):
if not self.derive_ter.has_key(s):
self.derive_ter[s] = osets.Set([])
if self.derive_ter[s].s_append(r[i]):
e = 1
break
else:
if not self.derive_ter.has_key(s):
self.derive_ter[s] = osets.Set([])
if self.derive_ter[s].s_append(r[i]):
e = 1
break
else:
""" non-terminal"""
if self.derive_ter.has_key(r[i]):
if not self.derive_ter.has_key(s):
self.derive_ter[s] = osets.Set([])
if self.derive_ter[s].s_extend(self.derive_ter[r[i]]) == 1:
e = 1
if i > 0 and self.nullable[r[i]]:
continue
else:
break
class LRtable:
"""Class for construction of a C{LR} table
@ivar gr: a context-free grammar
@ivar operators: operators
@ivar Log: Log report for LR table construction
"""
def __init__(self,cfgr,operators=None,noconflicts=1,expect=0):
"""
@param cfgr: a context-free grammar
@param operators: operators
@param noconflicts: if 0 LRtable conflicts are not resolved,
unless for spcecial operator rules
@type noconflicts: integer
@param expect: exact number of expected LR shift/reduce conflicts
@type expect: integer
"""
self.gr = cfgr
self.gr.makeFFN()
self.operators = operators
self.precedence = None
# if self.operators:
self.rules_precedence()
self.Log=LogLR(noconflicts,expect)
self.make_action_goto()
def make_action_goto(self):
""" make C{action[i,X]} and C{goto[i,X]}
All pairs C{(i,s)} not in action and goto dictionaries are 'error' """
c = self.items()
if _DEBUG:
print self.print_items(c)
self.ACTION = {}
self.GOTO = {}
#shelve not working with osets
#self.Log.items = c
for i in range(len(c)):
for item in c[i]:
a = self.NextToDot(item)
if a in self.gr.terminals:
state = self.goto(c[i],a)
try:
j = c.index(state)
self.add_action(i,a,'shift',j)
except IndexError:
if _DEBUG: print "no state"
elif a == "":
""" Dot at right end """
l = self.gr.rules[item[0]][0]
if l != self.gr.aug_start :
self.dotatend(item,i)
else:
""" last rule """
self.add_action(i,self.gr.endmark,'accept',[])
for s in self.gr.nonterminals:
state = self.goto(c[i],s)
try:
j = c.index(state)
self.GOTO[(i,s)] = j
except ValueError:
pass
def rules_precedence(self):
"""Rule precedence obtained as the precedence of the right
most terminal. """
self.precedence={}
for i in range(len(self.gr.rules)):
if len(self.gr.rules[i]) == 4:
self.precedence[i] = self.gr.rules[i][3]
else:
self.precedence[i] = None
if self.operators:
self.gr.rules[i][1].reverse()
for s in self.gr.rules[i][1]:
if self.operators.has_key(s):
self.precedence[i] = self.operators[s]
break
self.gr.rules[i][1].reverse()
if _DEBUG:
print "Precedence %s" %self.precedence
def add_action(self,i,a,action,j):
"""Set C{(action,j)} for state C{i} and symbol C{a} or raise
conflict error. Conficts are resolved using the following
rules:
- shift/reduce: if precedence/assoc information is available
try to use it; otherwise conflict is resolved in favor of shift
- reduce/reduce: choosing the production rule listed first
"""
if self.ACTION.has_key((i,a)) and self.ACTION[(i,a)] != (action,j):
action1 , j1 = self.ACTION[(i,a)]
if _DEBUG:
print "LRconflit %s %s %s %s %s %s" %(action,j,action1,j1, i,a)
if action1 == 'shift' and action == 'reduce':
self.resolve_shift_reduce(i,a,j1,j)
elif action == 'shift' and action1 == 'reduce':
self.resolve_shift_reduce(i,a,j,j1)
elif action == 'reduce' and action1 == 'reduce':
if self.Log.noconflicts:
# RESOLVED by choosing first rule
if j > j1:
self.ACTION[(i,a)] = (action,j1)
else:
self.ACTION[(i,a)] = (action,j)
self.Log.add_conflict('rr',i,a,j1,j)
else:
raise LRConflictError(i,a)
else:
self.ACTION[(i,a)] = (action,j)
def resolve_shift_reduce(self,i,a,s,r):
"""Operators precedence resolution or standard option: shift
C{s}: rule for shift
C{r}: rule for reduce
"""
try:
if self.operators and self.operators.has_key(a) and self.precedence.has_key(r) and self.precedence[r]:
prec_op, assoc_op = self.operators[a]
if (self.precedence[r][0] > prec_op) or (self.precedence[r][0] == prec_op and self.precedence[r][1] =='left'):
self.ACTION[(i,a)] = ('reduce',r)
if _DEBUG: print "solved reduce %s" %r
else:
self.ACTION[(i,a)] = ('shift',s)
if _DEBUG: print "solved shift %s" %s
else:
self.ACTION[(i,a)] = ('shift',s)
if _DEBUG: print "solved shift %s" %s
except (AttributeError, TypeError, KeyError,NameError):
if self.Log.noconflicts:
# choose to shift
self.ACTION[(i,a)] = ('shift',s)
if _DEBUG: print "choose shift %s for action (%s,%s)" %(s,i,a)
self.Log.add_conflict('sr',i,a,s,r)
if _DEBUG: print " %s for action (%s,%s)" %(self.Log.conflicts,i,a)
else:
raise LRConflictError(i,a)
class SLRtable(LRtable):
"""Class for construction of a C{SLR} table
C{SLR} items represented by a pair of integers C{(number of
rule,position of dot)}
(aho86:_compil page 221)
"""
def dotatend(self,item,i):
n, k = item
l = self.gr.rules[item[0]][0]
for a in self.gr.follow[l]:
self.add_action(i,a,'reduce',n)
def closure(self,items):
"""The closure of a set of C{LR(0)} items C{I} is the set of
items constructed from C{I} by the two rules:
- every item of I is in closure(I)
- If A -> s.Bt in closure(I) and B -> r, then add B ->.r to closure(I)
(aho86:_compil page 223)
"""
added = {}
for l in self.gr.nonterminals:
added[l] = 0
close = items[:]
e = 1
while e:
e = 0
for i in close:
s = self.NextToDot(i)
if s in self.gr.nonterminals and added[s]==0 and self.gr.ntr.has_key(s):
for n in self.gr.ntr[s]:
close.append((n,0))
added[s] = 1
e = 1
return close
def goto(self,items,s):
""" goto(I,X) where I is a set of items and X a grammar symbol
is the closure of the set of all items A -> sX.r such that
A -> s.Xr is in I"""
valid = osets.Set([])
for item in items:
if self.NextToDot(item) == s:
n, i = item
valid.append((n, i + 1))
return self.closure(valid)
def items(self):
""" An LR(0) item of a grammar G is a production of G with a dot at
some position on the right hand side.
It is represented by the rule number and the position of
the dot
@return: a set of sets of items
"""
c = osets.Set([self.closure(osets.Set([(len(self.gr.rules) - 1,0)]))])
symbols = self.gr.terminals + self.gr.nonterminals
e = 1
while e:
e = 0
for i in c:
for s in symbols:
valid = self.goto(i,s)
if valid != [] and valid not in c:
c.append(valid)
e = 1
return c
def print_items(self,c):
"""Print SLR items """
s = ""
j = 0
for i in c:
s = s+ "I_%d: \n" %j
for item in i:
r, p = item
lhs = self.gr.rules[r][0]
rhs = self.gr.rules[r][1]
s = s + "\t %s -> %s . %s \n" %(lhs,
string.join(rhs[:p]," "), string.join(rhs[p:]," "))
j += 1
return s
def NextToDot(self,item):
""" returns symbol next to te dot or empty string"""
n, i = item
try:
s = self.gr.rules[n][1][i]
except IndexError:
s = ""
return s
class LR1table(LRtable):
"""
Class for construction of a LR1 table
Items are represented by a pair of integers (number of rule, position of dot)
"""
def closure(self,items):
"""The closure of a set of C{LR(1)} items C{I} is the set of items construted
from I by the two rules:
- every item of C{I} is in C{closure(I)}
- If C{[A -> s.Bt,a]} in C{closure(I)},for C{B ->r} and
each terminal C{b} in C{first(ta)}, add C{[B ->.r,b]}
to C{closure(I)}
"""
close = items
e = 1
while e:
e = 0
for i in close:
s = self.NextToDot(i)
sa = self.gr.FIRST(self.AfterDot(i))
if s in self.gr.nonterminals and self.gr.ntr.has_key(s):
for n in self.gr.ntr[s]:
for b in sa:
e = close.append((n,0,b))
return close
def goto(self,items,s):
""" goto(I,X) where I is a set of items and X a grammar symbol
is the closure of the set of all items (A -> sX.r,a) such that
(A -> s.Xr,a) in I"""
valid = osets.Set([])
for item in items:
if self.NextToDot(item) == s:
n, i, t = item
valid.append((n, i + 1,t))
return self.closure(valid)
def items(self):
""" An LR(1) item of a grammar G is a production of G with a dot at
some position of the right hand side and a terminal:
(rule_number,dot_position,terminal)
(aho86:_compil page 231)
"""
c = osets.Set([ self.closure(osets.Set([(len(self.gr.rules) - 1,0,self.gr.endmark)]))])
symbols = self.gr.terminals + self.gr.nonterminals
e = 1
while e:
e = 0
for i in c:
for s in symbols:
valid=self.goto(i,s)
if valid != [] :
if c.s_append(valid): e = 1
return c
def print_items(self,c):
"""Print C{LR(1)} items """
s = ""
j = 0
for i in c:
s = s+ "I_%d: \n" %j
for item in i:
r, p, t = item
lhs = self.gr.rules[r][0]
rhs = self.gr.rules[r][1]
s = s + "\t %s -> %s . %s , %s\n" %(lhs,
string.join(rhs[:p]," "), string.join(rhs[p:]," "),t)
j += 1
print s
return s
def NextToDot(self,item):
""" returns symbol next to the dot or empty string"""
n, i, t = item
try:
s = self.gr.rules[n][1][i]
except IndexError:
s = ""
return s
def AfterDot(self,item):
""" returns symbol next to the dot or empty string"""
n, i, t = item
try:
s = self.gr.rules[n][1][i+1:]
except IndexError:
s = []
s.append(t)
return s
def dotatend(self,item,i):
n, k, t = item
self.add_action(i,t,'reduce',n)
class LALRtable1(LRtable):
"""Class for construction of C{LALR(1)} tables"""
def make_action_goto(self):
""" Make C{action[i,X]} and C{goto[i,X]}
all pairs C{(i,s)} not in action and goto dictionaries are 'error' """
self.gr.DERIVE_NT()
c = self.items()
if _DEBUG:
print self.print_items(c)
self.ACTION = {}
self.GOTO = {}
#shelve not working with osets
#self.Log.items = c
for i in range(len(c)):
for item in c[i].keys():
a = self.NextToDot(item)
if a in self.gr.terminals:
state =self.goto(c[i],a)
j = self.get_union(c,state)
if j != -1:
self.add_action(i,a,'shift',j)
elif a == "":
""" Dot at right end """
l = self.gr.rules[item[0]][0]
if l != self.gr.aug_start :
self.dotatend(item,c,i)
else:
""" last rule """
self.add_action(i,self.gr.endmark,'accept',[])
for s in self.gr.nonterminals:
state = self.goto(c[i],s)
j = self.get_union(c,state)
if j != -1:
self.GOTO[(i,s)] = j
def items(self):
""" An C{LALR(1)} item of a grammar C{G} is a production of
C{G}with a dot at some position of the right hand side and a
list of terminals: is coded as a dictonary with key
C{(rule_number,dot_position)} and value a set of terminals
"""
i0 = {}
i0[(len(self.gr.rules) - 1,0)] = osets.Set([self.gr.endmark])
c = osets.Set([self.closure(i0)])
symbols = self.gr.terminals + self.gr.nonterminals
e = 1
while e:
e = 0
for i in c:
for s in symbols:
if self.core_merge(c,self.goto(i,s)) == 1:
e = 1
return c
def print_items(self,c):
"""Print C{LALR(1)} items """
s = ""
j = 0
for i in range(len(c)):
s = s+ "I_%d: \n" %i
for item in c[i].keys():
r, p = item
lhs = self.gr.rules[r][0]
rhs = self.gr.rules[r][1]
s = s + "\t %s -> %s . %s, %s \n" %(lhs,
string.join(rhs[:p]," "), string.join(rhs[p:]," "),c[i][item])
print s
return s
def goto(self,items,s):
""" C{goto(I,X)} where C{I} is a set of items and C{X} a grammar symbol
is the closure of the set of all items C{(A -> sX.r,a)} such that
C{(A -> s.Xr,a)} in C{I}"""
valid = {}
for (n,i) in items.keys():
if self.NextToDot((n,i)) == s:
if not valid.has_key((n,i+1)):
valid[(n,i + 1)] = osets.Set([])
for t in items[(n,i)]:
valid[(n, i + 1)].append(t)
return self.closure(valid)
def closure(self,items):
"""The closure of a set of C{LR(1)} items I is the set of items construted
from I by the two rules:
- every item of I is in closure(I)
- If [A -> s.Bt,a] in closure(I),for B ->r and each terminal b in
first(ta), add [B ->.r,b] to closure(I)
"""
e = 1
while e:
e = 0
for i in items.keys():
s = self.NextToDot(i)
if s in self.gr.nonterminals and self.gr.ntr.has_key(s):
l = self.AfterDot(i,items)
for n in self.gr.ntr[s]:
if not items.has_key((n,0)):
items[(n,0)] = osets.Set([])
if items[(n,0)].s_extend(l) == 1 :
e = 1
return items
def get_union(self,c,j):
""" """
for i in c:
if i.keys() == j.keys():
return c.index(i)
return -1
def core_merge(self,c,j):
""" """
if j == {} or j in c : return 0
e = 2
for i in c:
if i.keys() == j.keys():
e = 0
for k in j.keys():
if i[k].s_extend(j[k]) == 1:
e = 1
break
if e == 2:
e = c.s_append(j)
return e
def NextToDot(self,item):
""" returns symbol next to the dot or empty string"""
n, i = item
try:
s = self.gr.rules[n][1][i]
except IndexError:
s = ""
return s
def AfterDot(self,item,items):
""" returns FIRST of strings after the dot concatenated with lookahead"""
n, i = item
try:
s = self.gr.rules[n][1][i+1:]
except IndexError:
s = []
sa = osets.Set([])
for a in items[item]:
s.append(a)
sa.s_extend(self.gr.FIRST(s))
del s[len(s)-1]
return sa
def dotatend(self,item,c,i):
n, k = item
for a in c[i][item]:
self.add_action(i,a,'reduce',n)
class LALRtable(LALRtable1):
"""Class for construction of LALR tables """
def make_action_goto(self):
""" collection of LR(0) items """
self.gr.DERIVE_T()
self.gr.TransClose()
c = self.items()
if _DEBUG:
print self.print_items(c)
""" make action[i,X] and goto[i,X]
all pairs (i,s) not in action and goto dictionaries are 'error' """
self.ACTION = {}
self.GOTO = {}
#shelve not working with osets
#self.Log.items = c
for i in range(len(c)):
for item in c[i].keys():
C = self.NextToDot(item)
if C in self.gr.nonterminals:
if self.gr.derive_ter.has_key(C):
for a in self.gr.derive_ter[C]:
if self.goto_ref.has_key((i,a)):
j = self.goto_ref[(i,a)]
self.add_action(i,a,'shift',j)
if self.gr.close_nt.has_key(C):
for A in self.gr.close_nt[C].keys():
"""Error: ignores end string s in C->*As"""
for p in self.gr.close_nt[C][A]:
r = self.AfterDotTer(item,c[i],p)
if self.gr.ntr.has_key(A):
for k in self.gr.ntr[A]:
if self.gr.rules[k][1] == []:
for a in r:
self.add_action(i,a,'reduce',k)
elif C in self.gr.terminals:
if self.goto_ref.has_key((i,C)):
j = self.goto_ref[(i,C)]
self.add_action(i,C,'shift',j)
else:
""" Dot at right end """
l = self.gr.rules[item[0]][0]
if l != self.gr.aug_start:
self.dotatend(item,c,i)
else:
""" last rule """
self.add_action(i,self.gr.endmark,'accept',[])
for s in self.gr.nonterminals:
state = self.goto(c[i],s)
j = self.get_union(c,state)
if j != -1:
self.GOTO[(i,s)] = j
def items(self):
""" An C{LALR(1)} kernel item of a grammar C{G} is a
production of C{G} with a
dot at some position of the right hand side (except the first) and a list
of terminals: is coded as a dictionary with key
C{(rule_number,dot_position)} and value a set of terminals.
"""
i0 = {}
i0[(len(self.gr.rules) - 1,0)] = osets.Set([self.gr.endmark])
c= osets.Set([i0])
symbols = self.gr.terminals + self.gr.nonterminals
""" kernel LR(0) items """
self.goto_ref = {}
e = 1
while e:
e = 0
for i in c:
for s in symbols:
valid = self.goto(i,s)
if valid != {}:
if c.s_append(valid): e = 1
self.goto_ref[(c.index(i),s)] = c.index(valid)
""" Discovering propagated and spontaneous lookaheads for
kernel items k and grammar symbol s"""
lh={}
for k in c:
nk = c.index(k)
lh[nk] = {} #osets.Set([])
for (n,i) in k.keys():
lh[nk][(n,i)] = osets.Set([])
j = {}
j[(n,i)]=osets.Set([(self.gr.dummy)])
j = self.closure(j)
for s in symbols:
for (m1,j1) in j.keys():
if self.NextToDot((m1,j1)) == s:
for a in j[(m1,j1)]:
if a == self.gr.dummy:
lh[nk][(n,i)].append((self.goto_ref[(nk,s)],m1,j1+1))
else:
c[self.goto_ref[(nk,s)]][(m1,j1+1)].append(a)
del j
""" Propagate lookaheads """
# c[0][(len(self.gr.rules) - 1,0)].s_append(self.gr.endmark)
e = 1
while e:
e = 0
for k in c:
nk = c.index(k)
for (n,i) in k.keys():
for (m,n1,i1) in lh[nk][(n,i)]:
if c[m][(n1,i1)].s_extend(k[(n,i)]) == 1:
e = 1
return c
def goto(self,items,s):
""" C{goto(I,X)} where I is a set of kernel items and X a
grammar symbol is the closure of the set of all items (A
-> sX.r,a) such that (A -> s.Xr,a) is in I"""
valid = {}
for (n,i) in items.keys():
x = self.NextToDot((n,i))
if x == s:
if not valid.has_key((n,i+1)):
valid[(n,i + 1)] = osets.Set([])
if self.gr.close_nt.has_key(x):
for a in self.gr.close_nt[x].keys():
if self.gr.ntr.has_key(a):
for k in self.gr.ntr[a]:
if self.gr.rules[k][1] != [] and self.gr.rules[k][1][0] == s:
valid[(k,1)] = osets.Set([])
return valid
def NextToDot(self,item):
""" returns symbol next to the dot or empty string"""
n, i = item
try:
s = self.gr.rules[n][1][i]
except IndexError:
s = ""
return s
def AfterDotTer(self,item,items,path):
""" returns FIRST of strings after the dot
concatenated with lookahead"""
if path:
p, n = path
if not n:
return p
l, i = item
try:
f= self.gr.FIRST(self.gr.rules[l][1][i+1:])
ns = self.gr.nullable[string.join(self.gr.rules[l][1][i+1:])]
except IndexError:
f = []
ns = 1
if ns:
return items[item]
else:
return f
class LogLR:
"""Class for LR table construction report:
@ivar expect: number of shit/reduce conflicts expected
@type expect: integer
@ivar items: set of LR items
@ivar conflicts: dictionary of conflicts occurred in LR table
construction: 'rr' and 'sr'
"""
def __init__(self,noconflicts,expect):
self.noconflicts = noconflicts
self.expect = expect
self.conflicts = {}
self.items = None
def add_conflict(self,type,i,a,value1,value2):
try:
self.conflicts[type].append((i,a,value1,value2))
except KeyError:
self.conflicts[type] = [(i,a,value1,value2)]
class LRparser:
"""Class for LR parser
@ivar cfgr: context free grammar
@ivar rules: grammar rules
@ivar terminals: grammar terminals
@ivar nonterminals: grammar nonterminals
@ivar table: LR parsing table
@ivar ACTION: Action function
@ivar GOTO: Goto function
@ivar tokens: tokens to be parsed
@ivar context: computational context
@ivar output: list of grammar rules used for parsing C{tokens}
(right derivation in reverse)
@ivar stack: LR stack with pairs C{(state,token)}
"""
def __init__(self,grammar,table_shelve,no_table=1,tabletype=LALRtable,operators=None,noconflicts=1,expect=0,**args):
"""
@param grammar: is a list for productions;
each production is a tuple C{(LeftHandside,RightHandside,SemFunc,Prec?)}
with C{LeftHandside} nonterminal, C{RightHandside} list of symbols,
C{SemFunc} syntax-direct semantics, if present
C{Prec (PRECEDENCE,ASSOC)} for ambiguous rules
First production is for start symbol
@param table_shelve: file where parser is saved
@type table_shelve: string
@param tabletype: type of LR table: C{SLR}, C{LR1}, C{LALR}
@type tabletype: LRtable class
@param no_table: if 0 table_shelve is created anyway
@type no_table: integer
@param operators: precedence and associativity for operators
@type operators: dictionary
@param noconflicts: if 0 LRtable conflicts are not resolved,
unless spcecial operator rules
@type noconflicts: integer
@param expect: exact number of expected LR shift/reduce conflicts
@type expect: integer
@param args: extra arguments; key C{nosemrules} if 1 no
semantic rules are applied
@type args: dictionary
"""
self.cfgr = CFGrammar(grammar)
self.rules = self.cfgr.rules
self.terminals = self.cfgr.terminals
self.nonterminals = self.cfgr.nonterminals
self.endmark = self.cfgr.endmark
if args.has_key('nosemrules'):
self.nosemrules=args['nosemrules']
else:
self.nosemrules = 0
db=whichdb.whichdb(table_shelve)
if not(db==None or db=="" or no_table==0):
try:
d = shelve.open(table_shelve,'w')
self.ACTION = d['action']
self.GOTO = d['goto']
if d.has_key('version'):
if d['version'] < _Version:
raise TableError(table_shelve)
try:
self.Log = d['log']
except KeyError:
raise TableError(table_shelve)
d.close()
except Exception:
if os.access(table_shelve,os.W_OK):
os.remove(table_shelve)
else: raise TableError(table_shelve)
else:
d = shelve.open(table_shelve,'n')
self.table = tabletype(self.cfgr,operators,noconflicts,expect)
d['version'] = _Version
d['action'] = self.ACTION = self.table.ACTION
d['goto'] = self.GOTO = self.table.GOTO
d['log'] = self.Log = self.table.Log
d.close()
def __str__(self):
"""@return: the LR parsing table showing for each state the
action and goto function """
l = (map(lambda x: x[0],self.ACTION.keys()))
l.sort()
a1="\nState\n"
if len(self.terminals) < 20:
for a in self.terminals:
a1=a1+" \t%s" %a
for i in osets.Set(l):
a3="\n%s" % i
for a in self.terminals:
if self.ACTION.has_key((i,a)):
if self.ACTION[i,a][0]=="shift": x="s"
else: x="r"
a2="\t%s%s" %(x,self.ACTION[i,a][1])
else:
a2="\t"
a3=a3+a2
a1="%s%s" %(a1,a3)
ac=a1
else:
for i in osets.Set(l):
a3="%s\n" % i
for a in self.terminals:
if self.ACTION.has_key((i,a)):
if self.ACTION[i,a][0]=="shift": x="s"
else: x="r"
a3= a3+"%s = %s%s\n" %(a,x,self.ACTION[i,a][1])
a1="%s%s" %(a1,a3)
ac=a1
l = (map(lambda x: x[0],self.GOTO.keys()))
l.sort()
a1 = "\nState\n"
if len(self.nonterminals) < 20:
for a in self.nonterminals:
a1 = a1 + " \t%s" %a
for i in osets.Set(l):
a3 = "\n%s" % i
for a in self.nonterminals:
if self.GOTO.has_key((i,a)):
a2 = "\t%s" %self.GOTO[(i,a)]
else:
a2 = "\t"
a3 = a3 + a2
a1 = "%s%s" %(a1,a3)
else:
for i in osets.Set(l):
a3 = "%s\n" % i
for a in self.nonterminals:
if self.GOTO.has_key((i,a)):
a3 = a3 + "%s = %s\n" %(a,self.GOTO[(i,a)])
a1 = "%s%s" %(a1,a3)
go = a1
return "Action table:\n %s\n Goto table:%s\n" % (ac,go)
def parsing(self,tokens,context = None):
"""LR Parsing Algorithm (aho86:_compil, page 218)
@param tokens: pairs (TOKEN, SPECIAL_VALUE)
@param context: a computational context for semantic actions
@return: parsed result
"""
self.stack = Stack()
self.stack.push((0,[]))
self.tokens = tokens
self.tokens.append((self.endmark,self.endmark))
self.context = context
self.output = []
self.ip = 0
while 1:
s = self.stack.top()[0]
a = self.tokens[self.ip][0]
if _DEBUG:
print "Input: %s\nState: %s" %(map(lambda x:x[0],self.tokens[self.ip:]),s)
print "Stack: %s" %self.stack
try:
if self.ACTION[s,a][0] == 'shift':
if _DEBUG: print "Action: shift\n"
self.stack.push((self.ACTION[s,a][1], self.tokens[self.ip][1]))
self.ip = self.ip + 1
elif self.ACTION[s,a][0] == 'reduce':
n = self.ACTION[s,a][1]
if _DEBUG: print "Action: reduce %s %s\n" %(n,str(self.rules[n]))
semargs = [self.stack.pop()[1] for i in range(len(self.rules[n][1]))]
semargs.reverse()
if self.nosemrules:
reduce = []
else:
reduce = Reduction(self.rules[n][2],semargs,self.context)
del semargs
s1 = self.stack.top()[0]
a = self.rules[n][0]
self.stack.push((self.GOTO[s1,a],reduce))
self.output.append(n)
elif self.ACTION[s,a] == ('accept', []):
break
else:
raise LRParserError(s,a)
except KeyError:
if _DEBUG: print "Error in action: %s" %self.ACTION
raise LRParserError(s,a)
except SemanticError, m:
if _DEBUG: print "Semantic Rule %d %s" %(n,self.rules[n][2])
raise SemanticError(m,n,self.rules[n][2])
return self.stack.top()[1]
def parse_grammar(self,st,context,args):
"""
Transforms a string into a grammar description
@param st: is a string representing the grammar rules, with
default symbols as below. Fisrt rule for start.
I{Example}::
reg -> reg + reg E{lb}E{lb} self.OrSemRule E{rb}E{rb}
// priority 'left'|
( reg ) E{lb}E{lb}self.ParSemRuleE{rb}E{rb} ;
where:
- rulesym="->" production symbol
- rhssep='' RHS symbols separator
- opsym='//' operator definition separator
- semsym=E{lb}E{lb} semantic rule start marker
- csemsym=E{rb}E{rb} semantic rule end marker
- rulesep='|' separator for multiple rules for a LHS
- ruleend=';' end marker for one LHS rule"""
self.pg=Yappy_grammar(**args)
self.pg.input(st,context)
return self.pg.context['rules']
def gsrules(self,rulestr, **sym):
"""
Transforms a string in a grammar description
@param rulestr: is a string representing the grammar rules, with
default symbols as below.
@param sym: Dictionary with symbols used. Default ones:
- rulesym="->" production symbol
- rhssep='' RHS symbols separator
- opsym='//' operator definition separator
- semsym=E{lb}E{lb} semantic rule start marker
- csemsym=E{rb}E{rb} semantic rule end marker
- rulesep='|' separator for multiple rules for a LHS
- ruleend=';' end marker for one LHS rule
Example:
reg -> reg + reg E{lb}E{lb} self.OrSemRule // (priority,'left') E{rb}E{rb} |
( reg ) E{lb}E{lb}self.ParSemRuleE{rb}E{rb} ;
"""
if not sym:
sym = Dict(rulesym="->",
rhssep='',
opsym='//',
semsym='{{',
csemsym='}}',
rulesep='|',
ruleend=';')
gr = []
rl = string.split(rulestr,sym['ruleend'])
for l in rl:
m = re.compile(sym['rulesym']).search(l)
if not m: continue
else:
if m.start() == 0:
raise GrammarError(l)
else: lhs = l[0:m.start()].strip()
if m.end() == len(l):
raise GrammarError(l)
else:
rhss = string.strip(l[m.end():])
if rhss == "[]":
rhs = []
sem = EmptySemRule
op = None
else:
rhss = string.split(l[m.end():],sym['rulesep'])
for rest in rhss:
rest=string.strip(rest)
if rhss == "[]":
rhs = []
sem = EmptySemRule
op = None
else:
m=re.search(sym['semsym']+'(?P<opsem>.*)'+sym['csemsym'],rest)
if not m:
rhs = string.split(rest,None)
sem = DefaultSemRule
op = None
else:
if m.start() == 0:
raise GrammarError(rest)
else: rhs = string.split(rest[0:m.start()].strip())
if m.group('opsem'):
opsem = string.split(m.group('opsem'),sym['opsym'])
if len(opsem) == 1:
sem = string.strip(opsem[0])
op = None
elif len(opsem) == 2:
sem = string.strip(opsem[0])
op = string.strip(opsem[1])
else:
raise GrammarError(rest)
else:
sem = DefaultSemRule
op = None
if op == None:
gr.append((lhs,rhs,eval(sem)))
else:
gr.append((lhs,rhs,eval(sem),eval(op)))
return gr
class LRBuildparser:
"""Class for LR parser: without shelve and semantic rules(obsolete)
"""
def __init__(self,grammar):
"""
"""
self.table = LALRtable(grammar)
def parsing(self,tokens):
"""LR Parsing Algorithm
"""
self.stack = Stack()
self.stack.push(0)
self.input = tokens
self.input.append(self.table.gr.endmark)
self.output = []
self.ip = 0
while 1:
s = self.stack.top()
a = self.input[self.ip]
if not self.table.ACTION.has_key((s,a)):
raise LRParserError(s,a)
elif self.table.ACTION[s,a][0] == 'shift':
# self.stack.push(a)
self.stack.push(self.table.ACTION[s,a][1])
self.ip = self.ip + 1
elif self.table.ACTION[s,a][0] == 'reduce':
n = self.table.ACTION[s,a][1]
for i in range(len(self.table.gr.rules[n][1])):
self.stack.pop()
s1 = self.stack.top()
a = self.table.gr.rules[n][0]
# self.stack.push(a)
if not self.table.GOTO.has_key((s1,a)):
raise LRParserError(s1,a)
else:
self.stack.push(self.table.GOTO[s1,a])
self.output.append(n)
elif self.table.ACTION[s,a] == ('accept', []):
break
else:
raise LRParserError()
############# Auxiliares ##################
def Dict(**entries):
"""Create a dict out of the argument=value arguments"""
return entries
def grules(rules_list,rulesym="->",rhssep=None):
"""
Transforms a list of rules in a grammar description. If a rule has
no semantic rules, C{DefaultSemRule} is assumed.
@param rules_list: is a list of pairs (rule,sem)
where rule is a string of the form:
- Word rulesym Word1 ... Word2
- Word rulesym []
@param rulesym: LHS and RHS rule separator
@param rhssep: RHS values separator (None for white chars)
@return: a grammar description
"""
gr = []
sep = re.compile(rulesym)
for r in rules_list:
if type(r) is StringType:
rule = r
else:
rule = r[0]
m = sep.search(rule)
if not m: continue
else:
if m.start() == 0:
raise GrammarError(rule)
else: lhs = rule[0:m.start()].strip()
if m.end() == len(rule):
raise GrammarError(rule)
else:
rest=string.strip(rule[m.end():])
if rest == "[]":
rhs = []
else:
rhs = string.split(rest,rhssep)
if type(r) is StringType:
gr.append((lhs,rhs,DefaultSemRule))
elif len(r)==3:
gr.append((lhs,rhs,r[1],r[2]))
elif len(r)==2:
gr.append((lhs,rhs,r[1]))
else:
raise GrammarError(r)
return gr
#######################################################
class Yappy(LRparser):
""" A basic class for parsing.
@ivar lex: a Lexer object
"""
def __init__(self,tokenize,grammar, table='YappyTab',no_table=1,
tabletype=LALRtable,noconflicts=1,expect=0,**args):
"""@param tokenize: same as for L{Lexer}
@param grammar: if a string C{parse_grammar} is called
@param table: and no_table, tabletype same as for L{LRparser}
@param args: dictionary where:
- key C{tmpdir} is the directory where the parse table used by the Yappy Grammar is stored;
- key C{usrdir} is the directory where the user tables are stored
- key C{nosemrules} if 1 semantic actions are not applied"""
self.lex = Lexer(tokenize)
operators = None
if self.lex.__dict__.has_key("operators"):
operators = self.lex.operators
if type(grammar) is StringType:
grammar = self.parse_grammar(grammar,{'locals':locals()},args)
if args.has_key('usrdir') and os.path.isdir(args['usrdir']):
table = string.rstrip(args['usrdir']) + '/' + table
if os.path.dirname(table)=="" or os.path.exists(os.path.dirname(table)):
LRparser.__init__(self,grammar,table,no_table,tabletype,operators,noconflicts,expect,**args)
else:
sys.stderr.write("Directory %s do not exist\n" %table)
sys.exit()
if (self.Log.noconflicts and ((self.Log.conflicts.has_key('sr') and
len(self.Log.conflicts['sr'])!=
self.Log.expect) or self.Log.conflicts.has_key('rr'))):
print "LR conflicts: number %s value %s" %(len(self.Log.conflicts['sr']),self.Log.conflicts)
print """If it is Ok, set expect to the number of conflicts and build table again"""
def input(self,str=None,context={},lexer=0):
""" Reads from stdin or string and retuns parsed result
@param str: String to be parsed. If not given, reads from
C{stdin}.
@param context: some initial computational context
@param lexer: if 1 only lexical analisys is performed
@return: a tuple C{(parsed result,context)} or
only the C{parsed result}
"""
if str:
self.tokens = self.lex.scan(str)
else:
print "Input: ",
self.tokens = self.lex.readscan()
if lexer:
return self.tokens
self.context = context
return self.parsing(self.tokens,self.context)
def inputfile(self,FileName,context={}):
"""Reads input from file """
try: file = open(FileName,"r")
except IOError: raise YappyError()
return self.input(file.read(),context)
def parse_tree(self):
"""To be defined using output"""
pass
def test(self):
"""A test for each class"""
pass
######### Semantic Grammar Rules ##############
def expandSemRule(strargs,strfun):
regargs = re.compile(r'\$(\d+)')
matchargs = regargs.finditer(strfun)
for i in [(x.group(0),strargs+x.group(1)+"]") for x in matchargs]:
strfun = string.replace(strfun,i[0],i[1])
return strfun
def Reduction(fun,sargs,context={}):
"""Reduction function for semantic rules:
- C{fun} can be:
-- a function
-- or a string with positional arguments C{$n} that is expanded
and evaluated with C{eval}
"""
if callable(fun):
return apply(fun,[sargs, context])
elif type(fun) is StringType:
a = expandSemRule("sargs[",fun)
l = context.get('locals',{})
l.update(locals())
return eval(a,context.get('globals',{}),l)
else:
raise SemanticError,'Wrong type: %s' %fun
def DefaultSemRule(sargs,context={}):
"""Default semantic rule"""
return sargs[0]
def EmptySemRule(sargs,context={}):
return []
######Parser f,grammars ##################
class Yappy_grammar(Yappy):
""" A parser for grammar rules. See C{test()} for an example. """
def __init__(self,no_table=1, table='yappypar.tab',tabletype=LR1table,**args):
grammar= grules([
("G -> RULE G",self.GRule),
("G -> []",EmptySemRule),
("RULE -> ID rulesym MULTI ruleend",self.RULERule) ,
("MULTI -> RHS rulesep MULTI",self.MULTIRule),
("MULTI -> RHS",self.MULTIRule),
("RHS -> []",EmptySemRule), #RHS->OPSEM not allowed; epsilon-rule
("RHS -> RH OPSEM",self.RHSRule),
("RH -> ID RH",self.RHRule),
("RH -> ID",self.RHRule),
("OPSEM -> []",self.OPSEMRule),
# ("OPSEM -> semsym ID csemsym",self.OPSEMRule),#OPSEM->OP not allowed
# ("OPSEM -> semsym ID OP csemsym",self.OPSEMRule),
("OPSEM -> IDS",self.OPSEMRule1),
("OPSEM -> IDS OP",self.OPSEMRule1),
("OP -> opsym OPV",self.OPRule),
("OPV -> ID ID ", self.OPVRule)
])
tokenize = [
("\{\{.*\}\}",lambda x: ("IDS",string.strip(x[2:-2]))),
("\s+",""),
("->",lambda x: ("rulesym",x)),
("\|",lambda x: ("rulesep",x)),
(";",lambda x: ("ruleend",x)),
# ("}}",lambda x: ("csemsym",x)),
# ("{{",lambda x: ("semsym",x)),
("//",lambda x: ("opsym",x)),
(".*",lambda x: ("ID",x))]
if args.has_key('tmpdir'):
args1 = {'usrdir':string.rstrip(args['tmpdir'],'/')}
else:
args1 = {}
Yappy.__init__(self,tokenize,grammar,table,no_table,**args1)
def OPVRule(self,arg,context):
""" """
try:
int(arg[0])
except ValueError:
raise SemanticError("Precedence must be an integer: %s given" %arg[0])
if arg[1]!= 'left' and arg[1]!= 'right' and arg[1]!= 'noassoc':
raise SemanticError("Associativity must be 'left' or 'right' or 'noassoc': %s\
given" %arg[1])
return (int(arg[0]),arg[1])
def OPRule(self,arg,context):
return arg[1]
def OPSEMRule(self,arg,context):
if len(arg) == 4:
return (arg[1],arg[2])
if len(arg) == 3:
return arg[1]
if len(arg) == 0:
return 'DefaultSemRule'
def OPSEMRule1(self,arg,context):
if len(arg) == 2:
return (arg[0],arg[1])
if len(arg) == 1:
return arg[0]
if len(arg) == 0:
return 'DefaultSemRule'
def RHRule(self,arg,context):
if len(arg) == 1:
return [arg[0]]
if len(arg) == 2:
return [arg[0]]+arg[1]
def RHSRule(self,arg,context):
return (arg[0],arg[1])
def MULTIRule(self,arg,context):
if len(arg) == 1:
return [arg[0]]
else:
return [arg[0]]+arg[2]
def RULERule(self,arg,context):
lhs=arg[0]
def grule(self,l):
if l == []: return (lhs,[],EmptySemRule)
if type(l[1]) is TupleType:
return (lhs,l[0],eval(l[1][0],globals(),context['locals']),l[1][1])
else:
return (lhs,l[0],eval(l[1],globals(),context['locals']))
return map(lambda l:grule(self,l) ,arg[2])
def GRule(self,args,context):
if context.has_key('rules'):
context['rules']= args[0]+context['rules']
else:
context['rules'] = args[0]
return []
def test(self):
st = """
reg -> reg + reg {{DefaultSemRule}} // 200 left |
reg reg {{DefaultSemRule}} // 200 left |
reg * {{DefaultSemRule}} |
( reg ) {{DefaultSemRule}} |
id {{lambda l,c:l[0]}};
reg -> ;
a -> reg | reg ;
"""
st1 = """
reg -> reg + reg {{DefaultSemRule // 200 left}} |
reg reg {{DefaultSemRule // 200 left}} |
reg * {{DefaultSemRule}} |
( reg ) {{DefaultSemRule}} |
id {{DefaultSemRule}};
reg -> ;
a -> reg | reg ;
"""
self.input(st,{'locals':locals()})
return self.context['rules']
class Stack:
""" A simple class to implement stacks"""
def __init__(self, start=[]):
"""Reverse initial stack objects"""
self.stack = []
for x in start: self.push(x)
self.stack.reverse()
def push(self, object):
self.stack = [object] + self.stack
def pop(self):
if not self.stack:
raise StackUnderflow()
top, self.stack = self.stack[0], self.stack[1:]
return top
def top(self):
""" Returns top of stack (not poping it)"""
if not self.stack:
raise StackUnderflow()
return self.stack[0]
def empty(self):
""" Tests if stack is empty"""
return not self.stack
def popall(self):
""" Empties stack"""
self.stack=[]
def __repr__(self):
return '[Stack:%s]' % self.stack
def __cmp__(self, other):
return cmp(self.stack, other.stack)
def __len__(self):
return len(self.stack)
def __add__(self, other):
return Stack(self.stack + other.stack)
def __mul__(self, reps):
return Stack(self.stack * reps)
def __getitem__(self, offset):
return self.stack[offset]
def __getslice__(self, low, high):
return Stack(self.stack[low : high])
def __getattr__(self, name):
return getattr(self.stack, name)
|