This file is indexed.

/usr/lib/python3/dist-packages/astroML/density_estimation/bayesian_blocks.py is in python3-astroml 0.3-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
"""
Bayesian Block implementation
=============================

Dynamic programming algorithm for finding the optimal adaptive-width histogram.

Based on Scargle et al 2012 [1]_

References
----------
.. [1] http://adsabs.harvard.edu/abs/2012arXiv1207.5578S
"""
import numpy as np
# TODO: implement other fitness functions from appendix B of Scargle 2012


class FitnessFunc(object):
    """Base class for fitness functions

    Each fitness function class has the following:
    - fitness(...) : compute fitness function.
       Arguments accepted by fitness must be among [T_k, N_k, a_k, b_k, c_k]
    - prior(N, Ntot) : compute prior on N given a total number of points Ntot
    """
    def __init__(self, p0=0.05, gamma=None):
        self.p0 = p0
        self.gamma = gamma

    def validate_input(self, t, x, sigma):
        """Check that input is valid"""
        pass

    def fitness(**kwargs):
        raise NotImplementedError()

    def prior(self, N, Ntot):
        if self.gamma is None:
            return self.p0_prior(N, Ntot)
        else:
            return self.gamma_prior(N, Ntot)

    def p0_prior(self, N, Ntot):
        # eq. 21 from Scargle 2012
        return 4 - np.log(73.53 * self.p0 * (N ** -0.478))

    def gamma_prior(self, N, Ntot):
        """Basic prior, parametrized by gamma (eq. 3 in Scargle 2012)"""
        if self.gamma == 1:
            return 0
        else:
            return (np.log(1 - self.gamma)
                    - np.log(1 - self.gamma ** (Ntot + 1))
                    + N * np.log(self.gamma))

    # the fitness_args property will return the list of arguments accepted by
    # the method fitness().  This allows more efficient computation below.
    @property
    def args(self):
        try:
            # Python 2
            return self.fitness.func_code.co_varnames[1:]
        except AttributeError:
            return self.fitness.__code__.co_varnames[1:]


class Events(FitnessFunc):
    """Fitness for binned or unbinned events

    Parameters
    ----------
    p0 : float
        False alarm probability, used to compute the prior on N
        (see eq. 21 of Scargle 2012).  Default prior is for p0 = 0.
    gamma : float or None
        If specified, then use this gamma to compute the general prior form,
        p ~ gamma^N.  If gamma is specified, p0 is ignored.
    """
    def fitness(self, N_k, T_k):
        # eq. 19 from Scargle 2012
        return N_k * (np.log(N_k) - np.log(T_k))

    def prior(self, N, Ntot):
        if self.gamma is not None:
            return self.gamma_prior(N, Ntot)
        else:
            # eq. 21 from Scargle 2012
            return 4 - np.log(73.53 * self.p0 * (N ** -0.478))


class RegularEvents(FitnessFunc):
    """Fitness for regular events

    This is for data which has a fundamental "tick" length, so that all
    measured values are multiples of this tick length.  In each tick, there
    are either zero or one counts.

    Parameters
    ----------
    dt : float
        tick rate for data
    gamma : float
        specifies the prior on the number of bins: p ~ gamma^N
    """
    def __init__(self, dt, p0=0.05, gamma=None):
        self.dt = dt
        self.p0 = p0
        self.gamma = gamma

    def validate_input(self, t, x, sigma):
        unique_x = np.unique(x)
        if list(unique_x) not in ([0], [1], [0, 1]):
            raise ValueError("Regular events must have only 0 and 1 in x")

    def fitness(self, T_k, N_k):
        # Eq. 75 of Scargle 2012
        M_k = T_k / self.dt
        N_over_M = N_k * 1. / M_k

        eps = 1E-8
        if np.any(N_over_M > 1 + eps):
            import warnings
            warnings.warn('regular events: N/M > 1.  '
                          'Is the time step correct?')

        one_m_NM = 1 - N_over_M
        N_over_M[N_over_M <= 0] = 1
        one_m_NM[one_m_NM <= 0] = 1

        return N_k * np.log(N_over_M) + (M_k - N_k) * np.log(one_m_NM)


class PointMeasures(FitnessFunc):
    """Fitness for point measures

    Parameters
    ----------
    gamma : float
        specifies the prior on the number of bins: p ~ gamma^N
        if gamma is not specified, then a prior based on simulations
        will be used (see sec 3.3 of Scargle 2012)
    """
    def __init__(self, p0=None, gamma=None):
        self.p0 = p0
        self.gamma = gamma

    def fitness(self, a_k, b_k):
        # eq. 41 from Scargle 2012
        return (b_k * b_k) / (4 * a_k)

    def prior(self, N, Ntot):
        if self.gamma is not None:
            return self.gamma_prior(N, Ntot)
        elif self.p0 is not None:
            return self.p0_prior(N, Ntot)
        else:
            # eq. at end of sec 3.3 in Scargle 2012
            return 1.32 + 0.577 * np.log10(N)


def bayesian_blocks(t, x=None, sigma=None,
                    fitness='events', **kwargs):
    """Bayesian Blocks Implementation

    This is a flexible implementation of the Bayesian Blocks algorithm
    described in Scargle 2012 [1]_

    Parameters
    ----------
    t : array_like
        data times (one dimensional, length N)
    x : array_like (optional)
        data values
    sigma : array_like or float (optional)
        data errors
    fitness : str or object
        the fitness function to use.
        If a string, the following options are supported:

        - 'events' : binned or unbinned event data
            extra arguments are `p0`, which gives the false alarm probability
            to compute the prior, or `gamma` which gives the slope of the
            prior on the number of bins.
        - 'regular_events' : non-overlapping events measured at multiples
            of a fundamental tick rate, `dt`, which must be specified as an
            additional argument.  The prior can be specified through `gamma`,
            which gives the slope of the prior on the number of bins.
        - 'measures' : fitness for a measured sequence with Gaussian errors
            The prior can be specified using `gamma`, which gives the slope
            of the prior on the number of bins.  If `gamma` is not specified,
            then a simulation-derived prior will be used.

        Alternatively, the fitness can be a user-specified object of
        type derived from the FitnessFunc class.

    Returns
    -------
    edges : ndarray
        array containing the (N+1) bin edges

    Examples
    --------
    Event data:

    >>> t = np.random.normal(size=100)
    >>> bins = bayesian_blocks(t, fitness='events', p0=0.01)

    Event data with repeats:

    >>> t = np.random.normal(size=100)
    >>> t[80:] = t[:20]
    >>> bins = bayesian_blocks(t, fitness='events', p0=0.01)

    Regular event data:

    >>> dt = 0.01
    >>> t = dt * np.arange(1000)
    >>> x = np.zeros(len(t))
    >>> x[np.random.randint(0, len(t), len(t) / 10)] = 1
    >>> bins = bayesian_blocks(t, fitness='regular_events', dt=dt, gamma=0.9)

    Measured point data with errors:

    >>> t = 100 * np.random.random(100)
    >>> x = np.exp(-0.5 * (t - 50) ** 2)
    >>> sigma = 0.1
    >>> x_obs = np.random.normal(x, sigma)
    >>> bins = bayesian_blocks(t, fitness='measures')

    References
    ----------
    .. [1] Scargle, J `et al.` (2012)
           http://adsabs.harvard.edu/abs/2012arXiv1207.5578S

    See Also
    --------
    astroML.plotting.hist : histogram plotting function which can make use
                            of bayesian blocks.
    """
    # validate array input
    t = np.asarray(t, dtype=float)
    if x is not None:
        x = np.asarray(x)
    if sigma is not None:
        sigma = np.asarray(sigma)

    # verify the fitness function
    if fitness == 'events':
        if x is not None and np.any(x % 1 > 0):
            raise ValueError("x must be integer counts for fitness='events'")
        fitfunc = Events(**kwargs)
    elif fitness == 'regular_events':
        if x is not None and (np.any(x % 1 > 0) or np.any(x > 1)):
            raise ValueError("x must be 0 or 1 for fitness='regular_events'")
        fitfunc = RegularEvents(**kwargs)
    elif fitness == 'measures':
        if x is None:
            raise ValueError("x must be specified for fitness='measures'")
        fitfunc = PointMeasures(**kwargs)
    else:
        if not (hasattr(fitness, 'args') and
                hasattr(fitness, 'fitness') and
                hasattr(fitness, 'prior')):
            raise ValueError("fitness not understood")
        fitfunc = fitness

    # find unique values of t
    t = np.array(t, dtype=float)
    assert t.ndim == 1
    unq_t, unq_ind, unq_inv = np.unique(t, return_index=True,
                                        return_inverse=True)

    # if x is not specified, x will be counts at each time
    if x is None:
        if sigma is not None:
            raise ValueError("If sigma is specified, x must be specified")

        if len(unq_t) == len(t):
            x = np.ones_like(t)
        else:
            x = np.bincount(unq_inv)

        t = unq_t
        sigma = 1

    # if x is specified, then we need to sort t and x together
    else:
        x = np.asarray(x)

        if len(t) != len(x):
            raise ValueError("Size of t and x does not match")

        if len(unq_t) != len(t):
            raise ValueError("Repeated values in t not supported when "
                             "x is specified")
        t = unq_t
        x = x[unq_ind]

    # verify the given sigma value
    N = t.size
    if sigma is not None:
        sigma = np.asarray(sigma)
        if sigma.shape not in [(), (1,), (N,)]:
            raise ValueError('sigma does not match the shape of x')
    else:
        sigma = 1

    # validate the input
    fitfunc.validate_input(t, x, sigma)

    # compute values needed for computation, below
    if 'a_k' in fitfunc.args:
        ak_raw = np.ones_like(x) / sigma / sigma
    if 'b_k' in fitfunc.args:
        bk_raw = x / sigma / sigma
    if 'c_k' in fitfunc.args:
        ck_raw = x * x / sigma / sigma

    # create length-(N + 1) array of cell edges
    edges = np.concatenate([t[:1],
                            0.5 * (t[1:] + t[:-1]),
                            t[-1:]])
    block_length = t[-1] - edges

    # arrays to store the best configuration
    best = np.zeros(N, dtype=float)
    last = np.zeros(N, dtype=int)

    #-----------------------------------------------------------------
    # Start with first data cell; add one cell at each iteration
    #-----------------------------------------------------------------
    for R in range(N):
        # Compute fit_vec : fitness of putative last block (end at R)
        kwds = {}

        # T_k: width/duration of each block
        if 'T_k' in fitfunc.args:
            kwds['T_k'] = block_length[:R + 1] - block_length[R + 1]

        # N_k: number of elements in each block
        if 'N_k' in fitfunc.args:
            kwds['N_k'] = np.cumsum(x[:R + 1][::-1])[::-1]

        # a_k: eq. 31
        if 'a_k' in fitfunc.args:
            kwds['a_k'] = 0.5 * np.cumsum(ak_raw[:R + 1][::-1])[::-1]

        # b_k: eq. 32
        if 'b_k' in fitfunc.args:
            kwds['b_k'] = - np.cumsum(bk_raw[:R + 1][::-1])[::-1]

        # c_k: eq. 33
        if 'c_k' in fitfunc.args:
            kwds['c_k'] = 0.5 * np.cumsum(ck_raw[:R + 1][::-1])[::-1]

        # evaluate fitness function
        fit_vec = fitfunc.fitness(**kwds)

        A_R = fit_vec - fitfunc.prior(R + 1, N)
        A_R[1:] += best[:R]

        i_max = np.argmax(A_R)
        last[R] = i_max
        best[R] = A_R[i_max]

    #-----------------------------------------------------------------
    # Now find changepoints by iteratively peeling off the last block
    #-----------------------------------------------------------------
    change_points = np.zeros(N, dtype=int)
    i_cp = N
    ind = N
    while True:
        i_cp -= 1
        change_points[i_cp] = ind
        if ind == 0:
            break
        ind = last[ind - 1]
    change_points = change_points[i_cp:]

    return edges[change_points]