This file is indexed.

/usr/lib/python3/dist-packages/astroML/density_estimation/xdeconv.py is in python3-astroml 0.3-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""
Extreme deconvolution solver

This follows Bovy et al.
http://arxiv.org/pdf/0905.2979v2.pdf

Arbitrary mixing matrices R are not yet implemented: currently, this only
works with R = I.
"""
from __future__ import print_function, division

from time import time

import numpy as np
from scipy import linalg

from sklearn.mixture import GMM
from ..utils import logsumexp, log_multivariate_gaussian, check_random_state


class XDGMM(object):
    """Extreme Deconvolution

    Fit an extreme deconvolution (XD) model to the data

    Parameters
    ----------
    n_components: integer
        number of gaussian components to fit to the data
    n_iter: integer (optional)
        number of EM iterations to perform (default=100)
    tol: float (optional)
        stopping criterion for EM iterations (default=1E-5)

    Notes
    -----
    This implementation follows Bovy et al. arXiv 0905.2979
    """
    def __init__(self, n_components, n_iter=100, tol=1E-5, verbose=False,
                 random_state = None):
        self.n_components = n_components
        self.n_iter = n_iter
        self.tol = tol
        self.verbose = verbose
        self.random_state = random_state

        # model parameters: these are set by the fit() method
        self.V = None
        self.mu = None
        self.alpha = None

    def fit(self, X, Xerr, R=None):
        """Fit the XD model to data

        Parameters
        ----------
        X: array_like
            Input data. shape = (n_samples, n_features)
        Xerr: array_like
            Error on input data.  shape = (n_samples, n_features, n_features)
        R : array_like
            (TODO: not implemented)
            Transformation matrix from underlying to observed data.  If
            unspecified, then it is assumed to be the identity matrix.
        """
        if R is not None:
            raise NotImplementedError("mixing matrix R is not yet implemented")

        X = np.asarray(X)
        Xerr = np.asarray(Xerr)
        n_samples, n_features = X.shape

        # assume full covariances of data
        assert Xerr.shape == (n_samples, n_features, n_features)

        # initialize components via a few steps of GMM
        # this doesn't take into account errors, but is a fast first-guess
        gmm = GMM(self.n_components, n_iter=10, covariance_type='full',
                  random_state=self.random_state).fit(X)
        self.mu = gmm.means_
        self.alpha = gmm.weights_
        self.V = gmm.covars_

        logL = self.logL(X, Xerr)

        for i in range(self.n_iter):
            t0 = time()
            self._EMstep(X, Xerr)
            logL_next = self.logL(X, Xerr)
            t1 = time()

            if self.verbose:
                print("%i: log(L) = %.5g" % (i + 1, logL_next))
                print("    (%.2g sec)" % (t1 - t0))

            if logL_next < logL + self.tol:
                break
            logL = logL_next

        return self

    def logprob_a(self, X, Xerr):
        """
        Evaluate the probability for a set of points

        Parameters
        ----------
        X: array_like
            Input data. shape = (n_samples, n_features)
        Xerr: array_like
            Error on input data.  shape = (n_samples, n_features, n_features)

        Returns
        -------
        p: ndarray
            Probabilities.  shape = (n_samples,)
        """
        X = np.asarray(X)
        Xerr = np.asarray(Xerr)
        n_samples, n_features = X.shape

        # assume full covariances of data
        assert Xerr.shape == (n_samples, n_features, n_features)

        X = X[:, np.newaxis, :]
        Xerr = Xerr[:, np.newaxis, :, :]
        T = Xerr + self.V

        return log_multivariate_gaussian(X, self.mu, T)

    def logL(self, X, Xerr):
        """Compute the log-likelihood of data given the model

        Parameters
        ----------
        X: array_like
            data, shape = (n_samples, n_features)
        Xerr: array_like
            errors, shape = (n_samples, n_features, n_features)

        Returns
        -------
        logL : float
            log-likelihood
        """
        return np.sum(logsumexp(self.logprob_a(X, Xerr), -1))

    def _EMstep(self, X, Xerr):
        """
        Perform the E-step (eq 16 of Bovy et al)
        """
        n_samples, n_features = X.shape

        X = X[:, np.newaxis, :]
        Xerr = Xerr[:, np.newaxis, :, :]

        w_m = X - self.mu

        T = Xerr + self.V

        #------------------------------------------------------------
        # compute inverse of each covariance matrix T
        Tshape = T.shape
        T = T.reshape([n_samples * self.n_components,
                       n_features, n_features])
        Tinv = np.array([linalg.inv(T[i])
                         for i in range(T.shape[0])]).reshape(Tshape)
        T = T.reshape(Tshape)

        #------------------------------------------------------------
        # evaluate each mixture at each point
        N = np.exp(log_multivariate_gaussian(X, self.mu, T, Vinv=Tinv))

        #------------------------------------------------------------
        # E-step:
        #  compute q_ij, b_ij, and B_ij
        q = (N * self.alpha) / np.dot(N, self.alpha)[:, None]

        tmp = np.sum(Tinv * w_m[:, :, np.newaxis, :], -1)
        b = self.mu + np.sum(self.V * tmp[:, :, np.newaxis, :], -1)

        tmp = np.sum(Tinv[:, :, :, :, np.newaxis]
                     * self.V[:, np.newaxis, :, :], -2)
        B = self.V - np.sum(self.V[:, :, :, np.newaxis]
                            * tmp[:, :, np.newaxis, :, :], -2)

        #------------------------------------------------------------
        # M-step:
        #  compute alpha, m, V
        qj = q.sum(0)

        self.alpha = qj / n_samples

        self.mu = np.sum(q[:, :, np.newaxis] * b, 0) / qj[:, np.newaxis]

        m_b = self.mu - b
        tmp = m_b[:, :, np.newaxis, :] * m_b[:, :, :, np.newaxis]
        tmp += B
        tmp *= q[:, :, np.newaxis, np.newaxis]
        self.V = tmp.sum(0) / qj[:, np.newaxis, np.newaxis]

    def sample(self, size=1, random_state=None):
        if random_state is None:
            random_state = self.random_state
        rng = check_random_state(random_state)
        shape = tuple(np.atleast_1d(size)) + (self.mu.shape[1],)
        npts = np.prod(size)

        alpha_cs = np.cumsum(self.alpha)
        r = np.atleast_1d(np.random.random(size))
        r.sort()

        ind = r.searchsorted(alpha_cs)
        ind = np.concatenate(([0], ind))
        if ind[-1] != size:
            ind[-1] = size

        draw = np.vstack([np.random.multivariate_normal(self.mu[i],
                                                        self.V[i],
                                                        (ind[i + 1] - ind[i],))
                          for i in range(len(self.alpha))])

        return draw.reshape(shape)