This file is indexed.

/usr/lib/python3/dist-packages/cffi/api.py is in python3-cffi 1.9.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
import sys, types
from .lock import allocate_lock

try:
    callable
except NameError:
    # Python 3.1
    from collections import Callable
    callable = lambda x: isinstance(x, Callable)

try:
    basestring
except NameError:
    # Python 3.x
    basestring = str


class FFIError(Exception):
    pass

class CDefError(Exception):
    def __str__(self):
        try:
            line = 'line %d: ' % (self.args[1].coord.line,)
        except (AttributeError, TypeError, IndexError):
            line = ''
        return '%s%s' % (line, self.args[0])


class FFI(object):
    r'''
    The main top-level class that you instantiate once, or once per module.

    Example usage:

        ffi = FFI()
        ffi.cdef("""
            int printf(const char *, ...);
        """)

        C = ffi.dlopen(None)   # standard library
        -or-
        C = ffi.verify()  # use a C compiler: verify the decl above is right

        C.printf("hello, %s!\n", ffi.new("char[]", "world"))
    '''

    def __init__(self, backend=None):
        """Create an FFI instance.  The 'backend' argument is used to
        select a non-default backend, mostly for tests.
        """
        from . import cparser, model
        if backend is None:
            # You need PyPy (>= 2.0 beta), or a CPython (>= 2.6) with
            # _cffi_backend.so compiled.
            import _cffi_backend as backend
            from . import __version__
            assert backend.__version__ == __version__, \
               "version mismatch, %s != %s" % (backend.__version__, __version__)
            # (If you insist you can also try to pass the option
            # 'backend=backend_ctypes.CTypesBackend()', but don't
            # rely on it!  It's probably not going to work well.)

        self._backend = backend
        self._lock = allocate_lock()
        self._parser = cparser.Parser()
        self._cached_btypes = {}
        self._parsed_types = types.ModuleType('parsed_types').__dict__
        self._new_types = types.ModuleType('new_types').__dict__
        self._function_caches = []
        self._libraries = []
        self._cdefsources = []
        self._included_ffis = []
        self._windows_unicode = None
        self._init_once_cache = {}
        self._cdef_version = None
        self._embedding = None
        if hasattr(backend, 'set_ffi'):
            backend.set_ffi(self)
        for name in backend.__dict__:
            if name.startswith('RTLD_'):
                setattr(self, name, getattr(backend, name))
        #
        with self._lock:
            self.BVoidP = self._get_cached_btype(model.voidp_type)
            self.BCharA = self._get_cached_btype(model.char_array_type)
        if isinstance(backend, types.ModuleType):
            # _cffi_backend: attach these constants to the class
            if not hasattr(FFI, 'NULL'):
                FFI.NULL = self.cast(self.BVoidP, 0)
                FFI.CData, FFI.CType = backend._get_types()
        else:
            # ctypes backend: attach these constants to the instance
            self.NULL = self.cast(self.BVoidP, 0)
            self.CData, self.CType = backend._get_types()

    def cdef(self, csource, override=False, packed=False):
        """Parse the given C source.  This registers all declared functions,
        types, and global variables.  The functions and global variables can
        then be accessed via either 'ffi.dlopen()' or 'ffi.verify()'.
        The types can be used in 'ffi.new()' and other functions.
        If 'packed' is specified as True, all structs declared inside this
        cdef are packed, i.e. laid out without any field alignment at all.
        """
        self._cdef(csource, override=override, packed=packed)

    def embedding_api(self, csource, packed=False):
        self._cdef(csource, packed=packed, dllexport=True)
        if self._embedding is None:
            self._embedding = ''

    def _cdef(self, csource, override=False, **options):
        if not isinstance(csource, str):    # unicode, on Python 2
            if not isinstance(csource, basestring):
                raise TypeError("cdef() argument must be a string")
            csource = csource.encode('ascii')
        with self._lock:
            self._cdef_version = object()
            self._parser.parse(csource, override=override, **options)
            self._cdefsources.append(csource)
            if override:
                for cache in self._function_caches:
                    cache.clear()
            finishlist = self._parser._recomplete
            if finishlist:
                self._parser._recomplete = []
                for tp in finishlist:
                    tp.finish_backend_type(self, finishlist)

    def dlopen(self, name, flags=0):
        """Load and return a dynamic library identified by 'name'.
        The standard C library can be loaded by passing None.
        Note that functions and types declared by 'ffi.cdef()' are not
        linked to a particular library, just like C headers; in the
        library we only look for the actual (untyped) symbols.
        """
        assert isinstance(name, basestring) or name is None
        with self._lock:
            lib, function_cache = _make_ffi_library(self, name, flags)
            self._function_caches.append(function_cache)
            self._libraries.append(lib)
        return lib

    def _typeof_locked(self, cdecl):
        # call me with the lock!
        key = cdecl
        if key in self._parsed_types:
            return self._parsed_types[key]
        #
        if not isinstance(cdecl, str):    # unicode, on Python 2
            cdecl = cdecl.encode('ascii')
        #
        type = self._parser.parse_type(cdecl)
        really_a_function_type = type.is_raw_function
        if really_a_function_type:
            type = type.as_function_pointer()
        btype = self._get_cached_btype(type)
        result = btype, really_a_function_type
        self._parsed_types[key] = result
        return result

    def _typeof(self, cdecl, consider_function_as_funcptr=False):
        # string -> ctype object
        try:
            result = self._parsed_types[cdecl]
        except KeyError:
            with self._lock:
                result = self._typeof_locked(cdecl)
        #
        btype, really_a_function_type = result
        if really_a_function_type and not consider_function_as_funcptr:
            raise CDefError("the type %r is a function type, not a "
                            "pointer-to-function type" % (cdecl,))
        return btype

    def typeof(self, cdecl):
        """Parse the C type given as a string and return the
        corresponding <ctype> object.
        It can also be used on 'cdata' instance to get its C type.
        """
        if isinstance(cdecl, basestring):
            return self._typeof(cdecl)
        if isinstance(cdecl, self.CData):
            return self._backend.typeof(cdecl)
        if isinstance(cdecl, types.BuiltinFunctionType):
            res = _builtin_function_type(cdecl)
            if res is not None:
                return res
        if (isinstance(cdecl, types.FunctionType)
                and hasattr(cdecl, '_cffi_base_type')):
            with self._lock:
                return self._get_cached_btype(cdecl._cffi_base_type)
        raise TypeError(type(cdecl))

    def sizeof(self, cdecl):
        """Return the size in bytes of the argument.  It can be a
        string naming a C type, or a 'cdata' instance.
        """
        if isinstance(cdecl, basestring):
            BType = self._typeof(cdecl)
            return self._backend.sizeof(BType)
        else:
            return self._backend.sizeof(cdecl)

    def alignof(self, cdecl):
        """Return the natural alignment size in bytes of the C type
        given as a string.
        """
        if isinstance(cdecl, basestring):
            cdecl = self._typeof(cdecl)
        return self._backend.alignof(cdecl)

    def offsetof(self, cdecl, *fields_or_indexes):
        """Return the offset of the named field inside the given
        structure or array, which must be given as a C type name.  
        You can give several field names in case of nested structures.
        You can also give numeric values which correspond to array
        items, in case of an array type.
        """
        if isinstance(cdecl, basestring):
            cdecl = self._typeof(cdecl)
        return self._typeoffsetof(cdecl, *fields_or_indexes)[1]

    def new(self, cdecl, init=None):
        """Allocate an instance according to the specified C type and
        return a pointer to it.  The specified C type must be either a
        pointer or an array: ``new('X *')`` allocates an X and returns
        a pointer to it, whereas ``new('X[n]')`` allocates an array of
        n X'es and returns an array referencing it (which works
        mostly like a pointer, like in C).  You can also use
        ``new('X[]', n)`` to allocate an array of a non-constant
        length n.

        The memory is initialized following the rules of declaring a
        global variable in C: by default it is zero-initialized, but
        an explicit initializer can be given which can be used to
        fill all or part of the memory.

        When the returned <cdata> object goes out of scope, the memory
        is freed.  In other words the returned <cdata> object has
        ownership of the value of type 'cdecl' that it points to.  This
        means that the raw data can be used as long as this object is
        kept alive, but must not be used for a longer time.  Be careful
        about that when copying the pointer to the memory somewhere
        else, e.g. into another structure.
        """
        if isinstance(cdecl, basestring):
            cdecl = self._typeof(cdecl)
        return self._backend.newp(cdecl, init)

    def new_allocator(self, alloc=None, free=None,
                      should_clear_after_alloc=True):
        """Return a new allocator, i.e. a function that behaves like ffi.new()
        but uses the provided low-level 'alloc' and 'free' functions.

        'alloc' is called with the size as argument.  If it returns NULL, a
        MemoryError is raised.  'free' is called with the result of 'alloc'
        as argument.  Both can be either Python function or directly C
        functions.  If 'free' is None, then no free function is called.
        If both 'alloc' and 'free' are None, the default is used.

        If 'should_clear_after_alloc' is set to False, then the memory
        returned by 'alloc' is assumed to be already cleared (or you are
        fine with garbage); otherwise CFFI will clear it.
        """
        compiled_ffi = self._backend.FFI()
        allocator = compiled_ffi.new_allocator(alloc, free,
                                               should_clear_after_alloc)
        def allocate(cdecl, init=None):
            if isinstance(cdecl, basestring):
                cdecl = self._typeof(cdecl)
            return allocator(cdecl, init)
        return allocate

    def cast(self, cdecl, source):
        """Similar to a C cast: returns an instance of the named C
        type initialized with the given 'source'.  The source is
        casted between integers or pointers of any type.
        """
        if isinstance(cdecl, basestring):
            cdecl = self._typeof(cdecl)
        return self._backend.cast(cdecl, source)

    def string(self, cdata, maxlen=-1):
        """Return a Python string (or unicode string) from the 'cdata'.
        If 'cdata' is a pointer or array of characters or bytes, returns
        the null-terminated string.  The returned string extends until
        the first null character, or at most 'maxlen' characters.  If
        'cdata' is an array then 'maxlen' defaults to its length.

        If 'cdata' is a pointer or array of wchar_t, returns a unicode
        string following the same rules.

        If 'cdata' is a single character or byte or a wchar_t, returns
        it as a string or unicode string.

        If 'cdata' is an enum, returns the value of the enumerator as a
        string, or 'NUMBER' if the value is out of range.
        """
        return self._backend.string(cdata, maxlen)

    def unpack(self, cdata, length):
        """Unpack an array of C data of the given length, 
        returning a Python string/unicode/list.

        If 'cdata' is a pointer to 'char', returns a byte string.
        It does not stop at the first null.  This is equivalent to:
        ffi.buffer(cdata, length)[:]

        If 'cdata' is a pointer to 'wchar_t', returns a unicode string.
        'length' is measured in wchar_t's; it is not the size in bytes.

        If 'cdata' is a pointer to anything else, returns a list of
        'length' items.  This is a faster equivalent to:
        [cdata[i] for i in range(length)]
        """
        return self._backend.unpack(cdata, length)

    def buffer(self, cdata, size=-1):
        """Return a read-write buffer object that references the raw C data
        pointed to by the given 'cdata'.  The 'cdata' must be a pointer or
        an array.  Can be passed to functions expecting a buffer, or directly
        manipulated with:

            buf[:]          get a copy of it in a regular string, or
            buf[idx]        as a single character
            buf[:] = ...
            buf[idx] = ...  change the content
        """
        return self._backend.buffer(cdata, size)

    def from_buffer(self, python_buffer):
        """Return a <cdata 'char[]'> that points to the data of the
        given Python object, which must support the buffer interface.
        Note that this is not meant to be used on the built-in types
        str or unicode (you can build 'char[]' arrays explicitly)
        but only on objects containing large quantities of raw data
        in some other format, like 'array.array' or numpy arrays.
        """
        return self._backend.from_buffer(self.BCharA, python_buffer)

    def memmove(self, dest, src, n):
        """ffi.memmove(dest, src, n) copies n bytes of memory from src to dest.

        Like the C function memmove(), the memory areas may overlap;
        apart from that it behaves like the C function memcpy().

        'src' can be any cdata ptr or array, or any Python buffer object.
        'dest' can be any cdata ptr or array, or a writable Python buffer
        object.  The size to copy, 'n', is always measured in bytes.

        Unlike other methods, this one supports all Python buffer including
        byte strings and bytearrays---but it still does not support
        non-contiguous buffers.
        """
        return self._backend.memmove(dest, src, n)

    def callback(self, cdecl, python_callable=None, error=None, onerror=None):
        """Return a callback object or a decorator making such a
        callback object.  'cdecl' must name a C function pointer type.
        The callback invokes the specified 'python_callable' (which may
        be provided either directly or via a decorator).  Important: the
        callback object must be manually kept alive for as long as the
        callback may be invoked from the C level.
        """
        def callback_decorator_wrap(python_callable):
            if not callable(python_callable):
                raise TypeError("the 'python_callable' argument "
                                "is not callable")
            return self._backend.callback(cdecl, python_callable,
                                          error, onerror)
        if isinstance(cdecl, basestring):
            cdecl = self._typeof(cdecl, consider_function_as_funcptr=True)
        if python_callable is None:
            return callback_decorator_wrap                # decorator mode
        else:
            return callback_decorator_wrap(python_callable)  # direct mode

    def getctype(self, cdecl, replace_with=''):
        """Return a string giving the C type 'cdecl', which may be itself
        a string or a <ctype> object.  If 'replace_with' is given, it gives
        extra text to append (or insert for more complicated C types), like
        a variable name, or '*' to get actually the C type 'pointer-to-cdecl'.
        """
        if isinstance(cdecl, basestring):
            cdecl = self._typeof(cdecl)
        replace_with = replace_with.strip()
        if (replace_with.startswith('*')
                and '&[' in self._backend.getcname(cdecl, '&')):
            replace_with = '(%s)' % replace_with
        elif replace_with and not replace_with[0] in '[(':
            replace_with = ' ' + replace_with
        return self._backend.getcname(cdecl, replace_with)

    def gc(self, cdata, destructor):
        """Return a new cdata object that points to the same
        data.  Later, when this new cdata object is garbage-collected,
        'destructor(old_cdata_object)' will be called.
        """
        return self._backend.gcp(cdata, destructor)

    def _get_cached_btype(self, type):
        assert self._lock.acquire(False) is False
        # call me with the lock!
        try:
            BType = self._cached_btypes[type]
        except KeyError:
            finishlist = []
            BType = type.get_cached_btype(self, finishlist)
            for type in finishlist:
                type.finish_backend_type(self, finishlist)
        return BType

    def verify(self, source='', tmpdir=None, **kwargs):
        """Verify that the current ffi signatures compile on this
        machine, and return a dynamic library object.  The dynamic
        library can be used to call functions and access global
        variables declared in this 'ffi'.  The library is compiled
        by the C compiler: it gives you C-level API compatibility
        (including calling macros).  This is unlike 'ffi.dlopen()',
        which requires binary compatibility in the signatures.
        """
        from .verifier import Verifier, _caller_dir_pycache
        #
        # If set_unicode(True) was called, insert the UNICODE and
        # _UNICODE macro declarations
        if self._windows_unicode:
            self._apply_windows_unicode(kwargs)
        #
        # Set the tmpdir here, and not in Verifier.__init__: it picks
        # up the caller's directory, which we want to be the caller of
        # ffi.verify(), as opposed to the caller of Veritier().
        tmpdir = tmpdir or _caller_dir_pycache()
        #
        # Make a Verifier() and use it to load the library.
        self.verifier = Verifier(self, source, tmpdir, **kwargs)
        lib = self.verifier.load_library()
        #
        # Save the loaded library for keep-alive purposes, even
        # if the caller doesn't keep it alive itself (it should).
        self._libraries.append(lib)
        return lib

    def _get_errno(self):
        return self._backend.get_errno()
    def _set_errno(self, errno):
        self._backend.set_errno(errno)
    errno = property(_get_errno, _set_errno, None,
                     "the value of 'errno' from/to the C calls")

    def getwinerror(self, code=-1):
        return self._backend.getwinerror(code)

    def _pointer_to(self, ctype):
        from . import model
        with self._lock:
            return model.pointer_cache(self, ctype)

    def addressof(self, cdata, *fields_or_indexes):
        """Return the address of a <cdata 'struct-or-union'>.
        If 'fields_or_indexes' are given, returns the address of that
        field or array item in the structure or array, recursively in
        case of nested structures.
        """
        ctype = self._backend.typeof(cdata)
        if fields_or_indexes:
            ctype, offset = self._typeoffsetof(ctype, *fields_or_indexes)
        else:
            if ctype.kind == "pointer":
                raise TypeError("addressof(pointer)")
            offset = 0
        ctypeptr = self._pointer_to(ctype)
        return self._backend.rawaddressof(ctypeptr, cdata, offset)

    def _typeoffsetof(self, ctype, field_or_index, *fields_or_indexes):
        ctype, offset = self._backend.typeoffsetof(ctype, field_or_index)
        for field1 in fields_or_indexes:
            ctype, offset1 = self._backend.typeoffsetof(ctype, field1, 1)
            offset += offset1
        return ctype, offset

    def include(self, ffi_to_include):
        """Includes the typedefs, structs, unions and enums defined
        in another FFI instance.  Usage is similar to a #include in C,
        where a part of the program might include types defined in
        another part for its own usage.  Note that the include()
        method has no effect on functions, constants and global
        variables, which must anyway be accessed directly from the
        lib object returned by the original FFI instance.
        """
        if not isinstance(ffi_to_include, FFI):
            raise TypeError("ffi.include() expects an argument that is also of"
                            " type cffi.FFI, not %r" % (
                                type(ffi_to_include).__name__,))
        if ffi_to_include is self:
            raise ValueError("self.include(self)")
        with ffi_to_include._lock:
            with self._lock:
                self._parser.include(ffi_to_include._parser)
                self._cdefsources.append('[')
                self._cdefsources.extend(ffi_to_include._cdefsources)
                self._cdefsources.append(']')
                self._included_ffis.append(ffi_to_include)

    def new_handle(self, x):
        return self._backend.newp_handle(self.BVoidP, x)

    def from_handle(self, x):
        return self._backend.from_handle(x)

    def set_unicode(self, enabled_flag):
        """Windows: if 'enabled_flag' is True, enable the UNICODE and
        _UNICODE defines in C, and declare the types like TCHAR and LPTCSTR
        to be (pointers to) wchar_t.  If 'enabled_flag' is False,
        declare these types to be (pointers to) plain 8-bit characters.
        This is mostly for backward compatibility; you usually want True.
        """
        if self._windows_unicode is not None:
            raise ValueError("set_unicode() can only be called once")
        enabled_flag = bool(enabled_flag)
        if enabled_flag:
            self.cdef("typedef wchar_t TBYTE;"
                      "typedef wchar_t TCHAR;"
                      "typedef const wchar_t *LPCTSTR;"
                      "typedef const wchar_t *PCTSTR;"
                      "typedef wchar_t *LPTSTR;"
                      "typedef wchar_t *PTSTR;"
                      "typedef TBYTE *PTBYTE;"
                      "typedef TCHAR *PTCHAR;")
        else:
            self.cdef("typedef char TBYTE;"
                      "typedef char TCHAR;"
                      "typedef const char *LPCTSTR;"
                      "typedef const char *PCTSTR;"
                      "typedef char *LPTSTR;"
                      "typedef char *PTSTR;"
                      "typedef TBYTE *PTBYTE;"
                      "typedef TCHAR *PTCHAR;")
        self._windows_unicode = enabled_flag

    def _apply_windows_unicode(self, kwds):
        defmacros = kwds.get('define_macros', ())
        if not isinstance(defmacros, (list, tuple)):
            raise TypeError("'define_macros' must be a list or tuple")
        defmacros = list(defmacros) + [('UNICODE', '1'),
                                       ('_UNICODE', '1')]
        kwds['define_macros'] = defmacros

    def _apply_embedding_fix(self, kwds):
        # must include an argument like "-lpython2.7" for the compiler
        def ensure(key, value):
            lst = kwds.setdefault(key, [])
            if value not in lst:
                lst.append(value)
        #
        if '__pypy__' in sys.builtin_module_names:
            import os
            if sys.platform == "win32":
                # we need 'libpypy-c.lib'.  Current distributions of
                # pypy (>= 4.1) contain it as 'libs/python27.lib'.
                pythonlib = "python27"
                if hasattr(sys, 'prefix'):
                    ensure('library_dirs', os.path.join(sys.prefix, 'libs'))
            else:
                # we need 'libpypy-c.{so,dylib}', which should be by
                # default located in 'sys.prefix/bin' for installed
                # systems.
                pythonlib = "pypy-c"
                if hasattr(sys, 'prefix'):
                    ensure('library_dirs', os.path.join(sys.prefix, 'bin'))
            # On uninstalled pypy's, the libpypy-c is typically found in
            # .../pypy/goal/.
            if hasattr(sys, 'prefix'):
                ensure('library_dirs', os.path.join(sys.prefix, 'pypy', 'goal'))
        else:
            if sys.platform == "win32":
                template = "python%d%d"
                if hasattr(sys, 'gettotalrefcount'):
                    template += '_d'
            else:
                try:
                    import sysconfig
                except ImportError:    # 2.6
                    from distutils import sysconfig
                template = "python%d.%d"
                if sysconfig.get_config_var('DEBUG_EXT'):
                    template += sysconfig.get_config_var('DEBUG_EXT')
            pythonlib = (template %
                    (sys.hexversion >> 24, (sys.hexversion >> 16) & 0xff))
            if hasattr(sys, 'abiflags'):
                pythonlib += sys.abiflags
        ensure('libraries', pythonlib)
        if sys.platform == "win32":
            ensure('extra_link_args', '/MANIFEST')

    def set_source(self, module_name, source, source_extension='.c', **kwds):
        if hasattr(self, '_assigned_source'):
            raise ValueError("set_source() cannot be called several times "
                             "per ffi object")
        if not isinstance(module_name, basestring):
            raise TypeError("'module_name' must be a string")
        self._assigned_source = (str(module_name), source,
                                 source_extension, kwds)

    def distutils_extension(self, tmpdir='build', verbose=True):
        from distutils.dir_util import mkpath
        from .recompiler import recompile
        #
        if not hasattr(self, '_assigned_source'):
            if hasattr(self, 'verifier'):     # fallback, 'tmpdir' ignored
                return self.verifier.get_extension()
            raise ValueError("set_source() must be called before"
                             " distutils_extension()")
        module_name, source, source_extension, kwds = self._assigned_source
        if source is None:
            raise TypeError("distutils_extension() is only for C extension "
                            "modules, not for dlopen()-style pure Python "
                            "modules")
        mkpath(tmpdir)
        ext, updated = recompile(self, module_name,
                                 source, tmpdir=tmpdir, extradir=tmpdir,
                                 source_extension=source_extension,
                                 call_c_compiler=False, **kwds)
        if verbose:
            if updated:
                sys.stderr.write("regenerated: %r\n" % (ext.sources[0],))
            else:
                sys.stderr.write("not modified: %r\n" % (ext.sources[0],))
        return ext

    def emit_c_code(self, filename):
        from .recompiler import recompile
        #
        if not hasattr(self, '_assigned_source'):
            raise ValueError("set_source() must be called before emit_c_code()")
        module_name, source, source_extension, kwds = self._assigned_source
        if source is None:
            raise TypeError("emit_c_code() is only for C extension modules, "
                            "not for dlopen()-style pure Python modules")
        recompile(self, module_name, source,
                  c_file=filename, call_c_compiler=False, **kwds)

    def emit_python_code(self, filename):
        from .recompiler import recompile
        #
        if not hasattr(self, '_assigned_source'):
            raise ValueError("set_source() must be called before emit_c_code()")
        module_name, source, source_extension, kwds = self._assigned_source
        if source is not None:
            raise TypeError("emit_python_code() is only for dlopen()-style "
                            "pure Python modules, not for C extension modules")
        recompile(self, module_name, source,
                  c_file=filename, call_c_compiler=False, **kwds)

    def compile(self, tmpdir='.', verbose=0, target=None, debug=None):
        """The 'target' argument gives the final file name of the
        compiled DLL.  Use '*' to force distutils' choice, suitable for
        regular CPython C API modules.  Use a file name ending in '.*'
        to ask for the system's default extension for dynamic libraries
        (.so/.dll/.dylib).

        The default is '*' when building a non-embedded C API extension,
        and (module_name + '.*') when building an embedded library.
        """
        from .recompiler import recompile
        #
        if not hasattr(self, '_assigned_source'):
            raise ValueError("set_source() must be called before compile()")
        module_name, source, source_extension, kwds = self._assigned_source
        return recompile(self, module_name, source, tmpdir=tmpdir,
                         target=target, source_extension=source_extension,
                         compiler_verbose=verbose, debug=debug, **kwds)

    def init_once(self, func, tag):
        # Read _init_once_cache[tag], which is either (False, lock) if
        # we're calling the function now in some thread, or (True, result).
        # Don't call setdefault() in most cases, to avoid allocating and
        # immediately freeing a lock; but still use setdefaut() to avoid
        # races.
        try:
            x = self._init_once_cache[tag]
        except KeyError:
            x = self._init_once_cache.setdefault(tag, (False, allocate_lock()))
        # Common case: we got (True, result), so we return the result.
        if x[0]:
            return x[1]
        # Else, it's a lock.  Acquire it to serialize the following tests.
        with x[1]:
            # Read again from _init_once_cache the current status.
            x = self._init_once_cache[tag]
            if x[0]:
                return x[1]
            # Call the function and store the result back.
            result = func()
            self._init_once_cache[tag] = (True, result)
        return result

    def embedding_init_code(self, pysource):
        if self._embedding:
            raise ValueError("embedding_init_code() can only be called once")
        # fix 'pysource' before it gets dumped into the C file:
        # - remove empty lines at the beginning, so it starts at "line 1"
        # - dedent, if all non-empty lines are indented
        # - check for SyntaxErrors
        import re
        match = re.match(r'\s*\n', pysource)
        if match:
            pysource = pysource[match.end():]
        lines = pysource.splitlines() or ['']
        prefix = re.match(r'\s*', lines[0]).group()
        for i in range(1, len(lines)):
            line = lines[i]
            if line.rstrip():
                while not line.startswith(prefix):
                    prefix = prefix[:-1]
        i = len(prefix)
        lines = [line[i:]+'\n' for line in lines]
        pysource = ''.join(lines)
        #
        compile(pysource, "cffi_init", "exec")
        #
        self._embedding = pysource

    def def_extern(self, *args, **kwds):
        raise ValueError("ffi.def_extern() is only available on API-mode FFI "
                         "objects")

    def list_types(self):
        """Returns the user type names known to this FFI instance.
        This returns a tuple containing three lists of names:
        (typedef_names, names_of_structs, names_of_unions)
        """
        typedefs = []
        structs = []
        unions = []
        for key in self._parser._declarations:
            if key.startswith('typedef '):
                typedefs.append(key[8:])
            elif key.startswith('struct '):
                structs.append(key[7:])
            elif key.startswith('union '):
                unions.append(key[6:])
        typedefs.sort()
        structs.sort()
        unions.sort()
        return (typedefs, structs, unions)


def _load_backend_lib(backend, name, flags):
    if name is None:
        if sys.platform != "win32":
            return backend.load_library(None, flags)
        name = "c"    # Windows: load_library(None) fails, but this works
                      # (backward compatibility hack only)
    try:
        if '.' not in name and '/' not in name:
            raise OSError("library not found: %r" % (name,))
        return backend.load_library(name, flags)
    except OSError:
        import ctypes.util
        path = ctypes.util.find_library(name)
        if path is None:
            raise     # propagate the original OSError
        return backend.load_library(path, flags)

def _make_ffi_library(ffi, libname, flags):
    import os
    backend = ffi._backend
    backendlib = _load_backend_lib(backend, libname, flags)
    #
    def accessor_function(name):
        key = 'function ' + name
        tp, _ = ffi._parser._declarations[key]
        BType = ffi._get_cached_btype(tp)
        try:
            value = backendlib.load_function(BType, name)
        except KeyError as e:
            raise AttributeError('%s: %s' % (name, e))
        library.__dict__[name] = value
    #
    def accessor_variable(name):
        key = 'variable ' + name
        tp, _ = ffi._parser._declarations[key]
        BType = ffi._get_cached_btype(tp)
        read_variable = backendlib.read_variable
        write_variable = backendlib.write_variable
        setattr(FFILibrary, name, property(
            lambda self: read_variable(BType, name),
            lambda self, value: write_variable(BType, name, value)))
    #
    def accessor_constant(name):
        raise NotImplementedError("non-integer constant '%s' cannot be "
                                  "accessed from a dlopen() library" % (name,))
    #
    def accessor_int_constant(name):
        library.__dict__[name] = ffi._parser._int_constants[name]
    #
    accessors = {}
    accessors_version = [False]
    #
    def update_accessors():
        if accessors_version[0] is ffi._cdef_version:
            return
        #
        from . import model
        for key, (tp, _) in ffi._parser._declarations.items():
            if not isinstance(tp, model.EnumType):
                tag, name = key.split(' ', 1)
                if tag == 'function':
                    accessors[name] = accessor_function
                elif tag == 'variable':
                    accessors[name] = accessor_variable
                elif tag == 'constant':
                    accessors[name] = accessor_constant
            else:
                for i, enumname in enumerate(tp.enumerators):
                    def accessor_enum(name, tp=tp, i=i):
                        tp.check_not_partial()
                        library.__dict__[name] = tp.enumvalues[i]
                    accessors[enumname] = accessor_enum
        for name in ffi._parser._int_constants:
            accessors.setdefault(name, accessor_int_constant)
        accessors_version[0] = ffi._cdef_version
    #
    def make_accessor(name):
        with ffi._lock:
            if name in library.__dict__ or name in FFILibrary.__dict__:
                return    # added by another thread while waiting for the lock
            if name not in accessors:
                update_accessors()
                if name not in accessors:
                    raise AttributeError(name)
            accessors[name](name)
    #
    class FFILibrary(object):
        def __getattr__(self, name):
            make_accessor(name)
            return getattr(self, name)
        def __setattr__(self, name, value):
            try:
                property = getattr(self.__class__, name)
            except AttributeError:
                make_accessor(name)
                setattr(self, name, value)
            else:
                property.__set__(self, value)
        def __dir__(self):
            with ffi._lock:
                update_accessors()
                return accessors.keys()
    #
    if libname is not None:
        try:
            if not isinstance(libname, str):    # unicode, on Python 2
                libname = libname.encode('utf-8')
            FFILibrary.__name__ = 'FFILibrary_%s' % libname
        except UnicodeError:
            pass
    library = FFILibrary()
    return library, library.__dict__

def _builtin_function_type(func):
    # a hack to make at least ffi.typeof(builtin_function) work,
    # if the builtin function was obtained by 'vengine_cpy'.
    import sys
    try:
        module = sys.modules[func.__module__]
        ffi = module._cffi_original_ffi
        types_of_builtin_funcs = module._cffi_types_of_builtin_funcs
        tp = types_of_builtin_funcs[func]
    except (KeyError, AttributeError, TypeError):
        return None
    else:
        with ffi._lock:
            return ffi._get_cached_btype(tp)