This file is indexed.

/usr/lib/python3/dist-packages/csb/bio/nmr/__init__.py is in python3-csb 1.2.3+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
"""
NMR related objects.
"""

import os
import numpy.linalg
import xml.dom.minidom

import csb.io.tsv
import csb.core as pu

from csb.statistics.pdf import GeneralizedNormal
from csb.bio.sequence import ProteinAlphabet
from csb.bio.structure import ChemElements


class InvalidResidueError(ValueError):
    pass

class EntityNotSupportedError(KeyError):
    pass


class RandomCoil(object):
    """
    Utility class containing all necessary data and methods for computing
    secondary chemical shifts.
    
    @note: You are supposed to obtain an instance of this object only via
           the dedicated factory (see L{RandomCoil.get}). The factory
           ensures a "singleton with lazy instantiation" behavior. This is
           needed since this object loads static data from the file system.
    """
    
    RESOURCES = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'resources')
    
    _instance = None    

    
    @staticmethod
    def get():
        """
        Get the current L{RandomCoil} instance (and create it, if this
        method is called for the first time).
        """
        if RandomCoil._instance is None:
            RandomCoil._instance = RandomCoil()
        
        return RandomCoil._instance  
        
    def __init__(self):
        
        if RandomCoil._instance is not None:
            raise NotImplementedError("Can't instantiate a singleton")

        RandomCoil._instance = self

        self._offsets = (-2, -1, 1, 2)
        self._reference = {}
        self._corrections = {}
        
        self._initialize()
    
    def _initialize(self):
     
        ref = os.path.join(RandomCoil.RESOURCES, 'RandomCoil.Reference.tsv')            
        cor = os.path.join(RandomCoil.RESOURCES, 'RandomCoil.Corrections.tsv')

        self._load(ref, cor)            

    def _load(self, ref, cor):

        self._reference = {}
        self._corrections = {}
                                
        header = 'Residue:str Nucleus:str Value:float'
        
        for row in csb.io.tsv.Table.from_tsv(ref, header):
            residue = pu.Enum.parsename(ProteinAlphabet, row[0])
            nucleus, value = row[1:]
            
            if residue not in self._reference:
                self._reference[residue] = {}
            
            self._reference[residue][nucleus] = value
        
        header = 'Residue:str Nucleus:str CS1:float CS2:float CS3:float CS4:float'
        
        for row in csb.io.tsv.Table.from_tsv(cor, header):   
            residue = pu.Enum.parsename(ProteinAlphabet, row[0])
            nucleus = row[1]
            values = row[2:]
            
            if residue not in self._corrections:
                self._corrections[residue] = {}
            
            self._corrections[residue][nucleus] = dict(zip(self._offsets, values))
    
    def simple_secondary_shift(self, residue, nucleus, value):
        """
        Compute a secondary shift given a raw shift C{value}.
        Residue neighborhood is not taken into account.
        
        @param residue: residue type (amino acid code)
        @type residue: str or L{EnumItem}
        @param nucleus: atom name (PDB format)
        @type nucleus: str
        @param value: raw chemical shift value
        @type value: float
        
        @return: float
        
        @raise EntityNotSupportedError: on unsupported residue or nucleus 
        """
                   
        try:
            if isinstance(residue, pu.string):
                if len(residue) == 1:
                    residue = pu.Enum.parse(ProteinAlphabet, residue)
                else:
                    residue = pu.Enum.parsename(ProteinAlphabet, residue)
            else:
                if residue.enum is not ProteinAlphabet:
                    raise TypeError(residue)
                                              
            return value - self._reference[residue][nucleus]
        
        except (pu.EnumValueError, pu.EnumMemberError):
            raise InvalidResidueError('{0} is not a protein residue'.format(residue))
        
        except KeyError as ke:
            raise EntityNotSupportedError('{0!s}, context: {1!r} {2}'.format(ke, residue, nucleus))

    def secondary_shift(self, chain, residue, nucleus, value):
        """
        Compute a secondary shift given a raw shift C{value} for a specific
        residue and its neighboring residues.
        
        @param chain: the protein chain containing the C{nucleus}
        @type chain: L{Chain}
        @param residue: the residue containing the C{nucleus}. This can be
                        a residue object, id (sequence number + insertion
                        code, string) or rank (integer, 1-based)
        @type residue: L{Residue}, str or int
        @param nucleus: atom name (PDB format)
        @type nucleus: str
        @param value: raw chemical shift value
        @type value: float            
        """
        try:
            if isinstance(residue, int):
                residue = chain.residues[residue]
            elif isinstance(residue, pu.string):
                residue = chain.find(residue)
            else:
                residue = chain.residues[residue.rank]
        except (pu.ItemNotFoundError, pu.CollectionIndexError):
            raise InvalidResidueError("Can't find residue {0} in {1}".format(residue, chain))
            
        shift = self.simple_secondary_shift(residue.type, nucleus, value)
        
        for offset in self._offsets:
            
            if 1 <= (residue.rank + offset) <= chain.length:
                try:
                    neighbor = chain.residues[residue.rank + offset]
                    shift -= self._corrections[neighbor.type][nucleus][offset * -1]
                                     
                except KeyError:
                    continue     
        
        return shift


class AtomConnectivity(object):
    
    RESOURCES = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'resources')
    
    _instance = None
    
    @staticmethod
    def get():
        """
        Get the current L{AtomConnectivity} instance (and create it if this
        method is invoked for the first time).
        @rtype: L{AtomConnectivity}
        """
        if AtomConnectivity._instance is None:
            AtomConnectivity._instance = AtomConnectivity()
        return AtomConnectivity._instance
    
    def __init__(self):
        
        self._table = {}
        self._initialize()
        
    def _initialize(self):
        
        resource = os.path.join(AtomConnectivity.RESOURCES, 'AtomConnectivity.xml')
        root = xml.dom.minidom.parse(resource)
        
        for r in root.documentElement.getElementsByTagName('residue'):
            residue = pu.Enum.parsename(ProteinAlphabet, r.getAttribute('type'))
            self._table[residue] = {}
            
            for a in r.getElementsByTagName('atom'):
                atom = a.getAttribute('name')
                self._table[residue][atom] = set()
            
            for b in r.getElementsByTagName('bond'):
                atom1 = b.getAttribute('atom1')
                atom2 = b.getAttribute('atom2')
                self._table[residue][atom1].add(atom2)
                self._table[residue][atom2].add(atom1)
                
    def connected(self, residue, atom1, atom2):
        """
        Return True if C{atom1} is covalently connected to C{atom2} in C{residue}
        
        @param residue: residue type (a member of L{ProteinAlphabet})
        @type residue: L{EnumItem} 
        @param atom1: first atom name (IUPAC)
        @type atom1: str
        @param atom2: second atom name (IUPAC)
        @type atom2: str
        
        @rtype: boolean
        """
        if residue in self._table:
            r = self._table[residue]
            if atom1 in r:
                return atom2 in r[atom1]
        
        return False
    
    def connected_atoms(self, residue, atom):
        """
        Return all atoms covalently connected to C{atom} in C{residue}.

        @param residue: residue type (a member of L{ProteinAlphabet})
        @type residue: L{EnumItem}         
        @param atom: source atom name (IUPAC)
        @type atom: str
        
        @rtype: tuple of str
        """
        if residue in self._table:
            r = self._table[residue]
            if atom in r:
                return tuple(r[atom])
        
        return tuple()
    
    def contains(self, residue, atom):
        """
        Return True if C{atom} name is contained in C{residue}.
        
        @param residue: residue type (a member of L{ProteinAlphabet})
        @type residue: L{EnumItem}  
        @param atom: atom name (IUPAC)
        @type atom: str
        
        @rtype: bool        
        """
        if residue in self._table:
            return atom in self._table[residue]
        
        return False        
    
    def get_atoms(self, residue, prefix=''):
        """
        Get all atoms contained in C{residue}.

        @param residue: residue type (a member of L{ProteinAlphabet})
        @type residue: L{EnumItem}         
        @param prefix: atom name prefix wildcard (IUPAC)
        @type prefix: str
        
        @return: set of atom names
        @rtype: frozenset of str
        """
        t = self._table[residue]
        if residue in self._table:
            return frozenset(a for a in t if a.startswith(prefix))
        
        return frozenset()
    
    
class Filters(object):
    """
    Pre-built atom filters for L{ContactMap}s. 
    """

    @staticmethod
    def ALL(a):
        return True
        
    @staticmethod
    def HYDROGENS(a):
        return a.element == ChemElements.H
    
    @staticmethod
    def CARBONS(a):
        return a.element == ChemElements.C
    
    @staticmethod
    def CALPHAS(a):
        return a.name == 'CA'

class ContactMap(object):
    """
    Describes a protein contact map. Atoms positioned at distance below
    a given cutoff are considered to be in contact.
    
    @param chain: source protein chain
    @type chain: L{csb.bio.structure.Chain} 
    @param cutoff: distance cutoff in angstroms
    @type cutoff: float
    @param filter: a callable with signature 'bool def(csb.bio.structure.Atom)',
                   invoked for every atom, which determines whether a given atom 
                   should be skipped (False) or considered (True). See L{Filters}
    @type filter: lambda 
    """
    
    DISTANCE_CUTOFF = 6.0 
    
    @staticmethod
    def load(filename):
        """
        Deserialize from a pickle.
        """
        with open(filename, 'rb') as stream:
            return csb.io.Pickle.load(stream)
    
    def __init__(self, chain, cutoff=DISTANCE_CUTOFF, filter=None):
        
        self._cutoff = float(cutoff)
        self._chain = chain
        self._atoms = []
        self._atomset = set()
        self._map = {}
        self._coords = {}
        
        if filter is None:
            filter = lambda i: True
        
        for residue in chain.residues:
            self._coords[residue.rank] = {}
            atoms = [a for a in residue.items if filter(a)]
            
            if len(atoms) == 0:
                continue
            
            step = 1.0 / len(atoms)
            n = 0
            
            for atom in atoms:
                self._atoms.append(atom)
                self._atomset.add(atom)
                self._coords[residue.rank][atom.name] = residue.rank + n * step
                n += 1        
                        
    def __iter__(self):
        return self.contacts
        
    def __contains__(self, atom):
        return atom in self._atomset
        
    @property
    def cutoff(self):
        """
        Distance cutoff in Angstroms
        @rtype: float
        """
        return self._cutoff
    
    @property
    def chain(self):
        """
        Source protein chain
        @rtype: L{Chain}        
        """        
        return self._chain
    
    @property
    def atoms(self):
        """
        All atoms involved in this map, sorted by residue number
        @rtype: tuple of L{Atom}
        """
        return tuple(self._atoms)
    
    @property
    def contacts(self):
        """
        All atom contacts: an iterator over all contacting 
        (L{Atom}, L{Atom}) pairs.
        @rtype: iterator of 2-tuples   
        """
        visited = set()
        
        for a1 in self._map:
            for a2 in self._map[a1]:
                if (a1, a2) not in visited:
                    visited.add((a1, a2))
                    visited.add((a2, a1))
                    yield (a1, a2)        
    
    def build(self):
        """
        Extract all contacts from the chain using the current distance cutoff.
        """
        
        self._map = {}
        
        for atom1 in self._atoms:
            for atom2 in self._atoms:
                if atom1 is not atom2:
                    distance = numpy.linalg.norm(atom1.vector - atom2.vector)
                    if distance <= self._cutoff:
                        self._connect(atom1, atom2)
                        
    def connect(self, atom1, atom2):
        """
        Define a contact between C{atom1} and C{atom2}.
        
        @param atom1: first atom
        @type atom1: L{Atom}
        @param atom2: second atom
        @type atom2: L{Atom}        
        """
        for atom in [atom1, atom2]:
            if atom not in self._atomset:
                raise ValueError("No such atom in contact map: {0}".format(atom))        
        
        self._connect(atom1, atom2)        
                        
    def _connect(self, atom1, atom2):
        
        if atom1 not in self._map:
            self._map[atom1] = set()
        self._map[atom1].add(atom2)
        
        if atom2 not in self._map:
            self._map[atom2] = set()
        self._map[atom2].add(atom1)
        
    def connected(self, atom1, atom2):
        """
        Return True if the specified atoms are in contact.
        
        @param atom1: first atom
        @type atom1: L{Atom}
        @param atom2: second atom
        @type atom2: L{Atom}   
        """
        if atom1 in self._map:
            return atom2 in self._map[atom1]
        return False    
        
    def atom_contacts(self, atom):
        """
        Return all atoms within C{self.cutoff} angstroms of C{atom}.
        
        @param atom: anchor atom
        @type atom: L{Atom}
        
        @rtype: frozenset of L{Atom}
        """
        
        if atom in self._map:
            return frozenset(self._map[atom])
        else:
            return frozenset()
        
    def residue_contacts(self, residue):
        """
        Return all residues, having neighboring atoms within C{self.cutoff}
        angstroms from any of the C{residue}'s atoms.
        
        @param residue: anchor residue
        @type residue: L{Residue}
        
        @rtype: frozenset of L{Residue}
        """        
        
        partners = set()
        
        for atom in residue.items:
            if atom in self._map:
                for partner in self._map[atom]:
                    partners.add(partner.residue)
                    
        return frozenset(partners)
    
    def position(self, rank, atom_name):
        """
        Compute the location of C{atom} on the contact map.
        
        @param rank: residue rank (1-based)
        @type rank: int 
        @param atom_name: atom name
        @type atom_name: str
        
        @rtype: float
        """
        residue = self._chain.residues[rank]
        atom = residue.atoms[atom_name]
                
        try:
            return self._coords[residue.rank][atom.name]
        except KeyError:
            msg = "No atom {0} at #{1} in contact map: {2}"
            raise ValueError(msg.format(atom_name, rank, self._coords[residue.rank].values()))
        
    def atom_matrix(self):
        """
        Build a 2D binary contact matrix (0=no contact, 1=contact). The order of elements
        in each dimension will match the order of atoms in the contact map
        (see L{ContactMap.atoms} and iter(L{ContactMap}). That means, the atoms in
        each dimension are sorted by residue number first.
        
        @deprecated: This method can be removed in future versions
        
        @rtype: numpy.array (2D) 
        """
        
        matrix = []
            
        for i, atom1 in enumerate(self.atoms):
            matrix.append([])
            
            for atom2 in self.atoms:
                if atom1 in self._map and atom2 in self._map[atom1]:
                    matrix[i].append(1)
                else:
                    matrix[i].append(0)
                    
        return numpy.array(matrix)
    
    def draw(self, plot, color="black"):
        """
        Visualize this contact map.
        
        @param plot: L{csb.io.plots.Chart}'s plot to draw on
        @type plot: matplotlib.AxesSubplot
        @param color: pixel color (must be a matplotlib color constant)
        @type color: str
        """
        
        x, y = [], []
        
        for atom1 in self.atoms:
            for atom2 in self.atom_contacts(atom1):
                pos1 = self.position(atom1.residue.rank, atom1.name)
                pos2 = self.position(atom2.residue.rank, atom2.name)
            
                assert None not in (pos1, pos2), (atom1, atom2)
                x.append(pos1)
                y.append(pos2)
                    
        plot.plot(x, y, color=color, marker=",", linestyle='none')
                
        plot.set_xlim(0, self.chain.length)
        plot.set_ylim(0, self.chain.length)
        
        return plot      
    
    @staticmethod
    def compare(query, reference, min_distance=0):
        """
        Compare a query contact map against a reference.
        
        @type query: L{ContactMap}
        @type reference: L{ContactMap}
        
        @param min_distance: consider only contacts between atoms, separated by
                             the given minimum number of residues
        @type min_distance: int
        
        @return: precision and coverage
        @rtype: L{ContactMapComparisonInfo}  
        """
        if query.chain is not reference.chain:
            raise ValueError("Contact maps are not comparable")
        if not query._map and not reference._map:
            raise ValueError("Can't compare empty contact maps")
        
        true_pos = 0.0
        false_pos = 0.0
        false_neg = 0.0
        
        for a1, a2 in query.contacts:
            if abs(a1.residue.rank - a2.residue.rank) >= min_distance: 
                if reference.connected(a1, a2):
                    true_pos += 1.0
                else:
                    false_pos += 1.0

        for a1, a2 in reference.contacts:
            if abs(a1.residue.rank - a2.residue.rank) >= min_distance:            
                if not query.connected(a1, a2):
                    false_neg += 1.0
        
        try:
            precision = true_pos / (true_pos + false_pos)
            coverage = true_pos / (true_pos + false_neg)
            return ContactMapComparisonInfo(precision, coverage)
        
        except ZeroDivisionError:
            return ContactMapComparisonInfo(0, 0)
        
class ContactMapComparisonInfo(object):
    
    def __init__(self, precision, coverage):
        
        self.precision = precision
        self.coverage = coverage
        
        
class Label(object):
    """
    Utility class for working with chemical shift labels.
    
    @param residue: residue type
    @type residue: L{EnumItem}
    @param rank: residue position (1-based)
    @type rank: int
    @param atom_name: nucleus name
    @type atom_name: str 
    """
    
    @staticmethod
    def build(residue_type, position, atom_name):
        """
        Build a new string label by specifying its components.
        @rtype: str        
        """
        return '{0!s}#{1}:{2}'.format(residue_type, position, atom_name)

    @staticmethod    
    def from_shift(shift):
        """
        Build a new string label from a L{ChemShiftInfo}.
        @rtype: str        
        """
        return Label.build(shift.residue, shift.position, shift.name)

    @staticmethod    
    def from_atom(atom):
        """
        Build a new string label from an L{Atom}.
        @rtype: str        
        """        
        return Label.build(atom.residue.type, atom.residue.rank, atom.name)
    
    @staticmethod
    def match(shift, atom):
        """
        Return True if the labels of a L{ChemShiftInfo} and an L{Atom} match.
        @rtype: bool        
        """          
        
        l = Label.from_shift(shift)
        r = Label.from_atom(atom)
        
        return r == l
    
    @staticmethod
    def get_atom(chain, label):
        """
        Get the L{Atom} in a L{Chain}, designated by a given string label.
        @rtype: L{Atom}
        """
        dummy, rank, atom = Label.parse(label)
        return chain.residues[rank].atoms[atom]

    @staticmethod    
    def parse(label):
        """
        Parse the components of a string nucleus label.
        @return: (residue, rank, atom)
        @rtype: 3-tuple
        """        
        parts = label.split("#")
        residue = parts[0]
        
        subparts = parts[1].split(":")
        rank = int(subparts[0])
        atom = subparts[1]
        
        return (residue, rank, atom)
    
    @staticmethod
    def from_string(label):
        """
        Parse the a string nucleus label and create a new L{Label}.
        @rtype: L{Label}
        """           
        residue, rank, atom = Label.parse(label)
        return Label(residue, rank, atom)
    
    def __init__(self, residue, rank, atom_name):
        
        self._residue = residue
        self._rank = rank
        self._atom = atom_name
        
    @property
    def residue(self):
        """
        Residue type (a L{ProteinAlphabet} member)
        """
        return self._residue
    
    @property
    def rank(self):
        """
        Residue rank (1-based)
        """
        return self._rank
    
    @property
    def atom_name(self):
        """
        Nucleus name
        """        
        return self._atom
    
    def __str__(self):
        return Label.build(self._residue, self._rank, self._atom)
    

class ChemShiftInfo(object):
    """
    Chemical shift struct.
    
    @param position: residue rank (1-based)
    @type position: int
    @param residue: amino acid type (a member of L{ProteinAlphabet})
    @type residue: str or L{EnumItem}
    @param name: nucleus label
    @type name: str
    @param element: nucleus type (a member of L{ChemElements})
    @type element: str or L{EnumItem}
    @param shift: chemical shift value
    @type shift: float
    """
    
    def __init__(self, position, residue, name, element, shift):
        
        if not isinstance(residue, pu.EnumItem) or residue.enum is not ProteinAlphabet:
            residue = pu.Enum.parsename(ProteinAlphabet, str(residue))
            
        if not isinstance(element, pu.EnumItem) or element.enum is not ChemElements:
            element = pu.Enum.parsename(ChemElements, str(element))            
        
        self.position = int(position)
        self.residue = residue
        self.name = str(name)
        self.element = element
        self.shift = float(shift)
        
    def clone(self, name):
        """
        Clone the current shift and create a new one with the specified
        nucleus label.
        
        @rtype: L{ChemShiftInfo}
        """
        ni = self
        return ChemShiftInfo(ni.position, repr(ni.residue), name, repr(ni.element), ni.shift)
        
    def __str__(self):
        return "{0!s}#{1}:{2}".format(self.residue, self.position, self.name)
    
    @property
    def label(self):
        """
        String label representation
        @rtype: str
        """
        return str(self)

class ChemicalShiftNetwork(object):
    """
    Describes a network of covalently connected, chemical shift visible nuclei.
    
    @param shifts: chemical shift instances
    @type shifts: iterable of L{ChemShiftInfo}
    """
    
    def __init__(self, shifts):

        self._neighbors = {}
 
        labels = {}
        
        for cs in shifts:
            self._neighbors[cs] = set()
            id = Label.from_shift(cs)
            labels[id] = cs
        
        conn = AtomConnectivity.get()
        
        for cs in shifts:
            for atom_name in conn.connected_atoms(cs.residue, cs.name):
                target = Label.build(cs.residue, cs.position, atom_name)
                if target in labels:
                    self.connect(cs, labels[target])
    
    def connect(self, cs1, cs2):
        """
        Connect two nuclei.
        
        @param cs1: first chemical shift instance
        @type cs1: L{ChemShiftInfo}
        @param cs2: second chemical shift instance         
        @type cs2: L{ChemShiftInfo}
        """
        
        try:
            self._neighbors[cs1].add(cs2)
            self._neighbors[cs2].add(cs1)
        except KeyError:
            raise ValueError("Unknown chemical shift")
        
    def connected_shifts(self, source, element=None):
        """
        Return an iterator over all covalently connected neuclei to a given
        C{source}.
        
        @param source: source chemical shift
        @type source: L{ChemShiftInfo}
        
        @rtype: iterator of L{ChemShiftInfo}
        """
        
        
        if source not in self._neighbors:
            raise ValueError("No such chemical shift in this network")

        for cs in self._neighbors[source]:
            if element is None or cs.element == element:
                yield cs
                
    def __iter__(self):
        return iter(self._neighbors)
    
class ChemShiftScoringModel(object):
    """
    Chemical shift similarity scoring model. See C{ScoringModel.NUCLEI} for
    a list of supported chemical shift types. 
    """

    NUCLEI = ('CA', 'CB', 'C', 'N', 'HA')

    
    def __init__(self):
        
        self._pos = {}
        self._neg = {}
        
        self._pos['CA'] = GeneralizedNormal(0.02, 1.32, 1.1)
        self._neg['CA'] = GeneralizedNormal(-0.08, 4.23, 2.2)
                
        self._pos['CB'] = GeneralizedNormal(0.06, 1.32, 1.0)
        self._neg['CB'] = GeneralizedNormal(0.08, 2.41, 1.2)
                
        self._pos['C']  = GeneralizedNormal(0.12, 1.52, 1.4)
        self._neg['C']  = GeneralizedNormal(-0.13, 3.42, 2.1)
        
        self._pos['N']  = GeneralizedNormal(0.23, 4.39, 1.4)
        self._neg['N']  = GeneralizedNormal(0.17, 7.08, 1.9)
                
        self._pos['HA'] = GeneralizedNormal(0.00, 0.27, 1.0)
        self._neg['HA'] = GeneralizedNormal(-0.01, 0.66, 1.4)
        
        assert set(self._pos) == set(ChemShiftScoringModel.NUCLEI)
        assert set(self._neg) == set(ChemShiftScoringModel.NUCLEI) 

    def positive(self, nucleus, deltas):
        """
        Return the probability that a given chemical shift difference
        indicates structural similarity (true positive match).
        
        @param nucleus: chemical shift (a member of C{ScoringModel.NUCLEI})
        @type nucleus:  str
        @param deltas: chemical shift difference(s): q-s
        @type deltas:  float or list of floats
        
        @return: the raw value of the probability density function
        @rtype: float or array of floats
        """
        results = self._pos[nucleus].evaluate([deltas]) 
        return results[0]

    def negative(self, nucleus, deltas):
        """
        Return the probability that a given chemical shift difference
        indicates no structural similarity (true negative match).
        
        @param nucleus: chemical shift (a member of C{ScoringModel.NUCLEI})
        @type nucleus:  str
        @param deltas: chemical shift difference(s): q-s
        @type deltas:  float or list of floats
        
        @return: the raw value of the probability density function
        @rtype: float or array of floats
        """        
        results = self._neg[nucleus].evaluate([deltas]) 
        return results[0]
            
    def score(self, nucleus, deltas):
        """
        Return the bit score for a given chemical shift difference.
        
        @param nucleus: chemical shift (a member of C{ScoringModel.NUCLEI})
        @type nucleus:  str
        @param deltas: chemical shift difference(s): q-s
        @type deltas:  float or list of floats
        
        @return: bit score
        @rtype: float or array of floats
        """
        pos = self.positive(nucleus, deltas)
        neg = self.negative(nucleus, deltas)
        
        return numpy.log2(pos / neg)

            
class NOEPeak(object):
    """
    Describes a single NOE peak.
    
    @param intensity: peak intensity
    @type intensity: float
    @param dimensions: list of dimension values
    @type dimensions: iterable of float
    @param spectrum: owning NOE spectrum
    @type spectrum: L{NOESpectrum}
    """
    
    def __init__(self, intensity, dimensions, spectrum):
        
        self._dimensions = list(dimensions)
        self._intensity = float(intensity)
        self._spectrum = spectrum
        
    @property
    def intensity(self):
        """
        Peak intensity
        @rtype: float
        """
        return self._intensity
    
    @property
    def num_dimensions(self):
        """
        Number of dimensions
        @rtype: int
        """        
        return len(self._dimensions)
    
    def has_element(self, e):
        """
        Return True if the owning spectrum contains a dimension of the specified type
        
        @param e: element (dimension) type (see L{ChemElements})
        @type e: L{EnumItem}
        
        @rtype: bool
        """        
        return self._spectrum.has_element(e) 
    
    def __getitem__(self, column):
        return self.get(column)
    
    def __iter__(self):
        return iter(self._dimensions)
    
    def __str__(self):
        return '<NOEPeak: {0}, I={1}>'.format(self._dimensions, self._intensity)
    
    def element(self, i):
        """
        Return the dimension (nucleus) type at dimension index i
        
        @param i: dimension index (0-based)
        @type i: int
        
        @return: nucleus type
        @rtype: L{EnumItem}
        """
        return self._spectrum.element(i)
    
    def get(self, column):
        """
        Get the value of the specified dimension. 
        
        @param column: dimension index (0-based)
        @type column: int
        
        @return: dimension value        
        @rtype: float
        """
        if 0 <= column < len(self._dimensions):  
            return self._dimensions[column]
        else:
            raise IndexError("Dimension index out of range")
        
    def has_connected_dimensions(self, i):
        """
        Return True of dimension index C{i} has covalently connected dimensions.
        
        @param i: dimension index (0-based)
        @type i: int
        
        @rtype: bool
        """
        return self._spectrum.has_connected_dimensions(i)
        
    def connected_dimensions(self, i):
        """
        Return a list of all dimension indices, covalently connected to
        dimension C{i}.

        @param i: dimension index (0-based)
        @type i: int
        
        @rtype: iterable of L{EnumItem}         
        """
        return self._spectrum.connected_dimensions(i)


class NOESpectrum(object):
    """
    Describes an NOE spectrum.
    
    @param elements: list of dimension (nucleus) types for each dimension
    @type elements: iterable of L{EnumItem} (L{ChemElements}) or str 
    """
    def __init__(self, elements):
        
        self._elements = []
        self._elemset = set()        
        self._connected = {}
        self._protondim = set() 
        self._peaks = []
        self._min = float("inf")
        self._max = float("-inf")
        
        for i, n in enumerate(elements):
            
            if not isinstance(n, pu.EnumItem) or n.enum is not ChemElements:
                element = pu.Enum.parsename(ChemElements, n)
            else:
                element = n
            self._elements.append(element)
            
            if element == ChemElements.H:
                self._protondim.add(i)
            
        self._elemset = set(self._elements) 
        
    @staticmethod
    def join(spectrum, *spectra):
        """
        Merge multiple L{NOESpectrum} instances. All C{spectra} must have matching
        dimensions according to the master C{spectrum}.
        
        @return: merged spectrum
        @rtype: L{NOESpectrum}
        """
        elements = tuple(spectrum.dimensions)
        joint = NOESpectrum(map(repr, elements))
        
        for i, dummy in enumerate(elements):
            for j in spectrum.connected_dimensions(i):
                joint.connect(i, j)
        
        for s in [spectrum] + list(spectra):
            if tuple(s.dimensions) != elements:
                raise ValueError("Incompatible spectrum: {0}".format(s))
            for p in s: 
                joint.add(p.intensity, list(p))
                
        return joint 
    
        
    def __iter__(self):
        return iter(self._peaks)
    
    def __len__(self):
        return len(self._peaks)
    
    def __str__(self):
        return '<NOESpectrum: {0}>'.format(self._elements)
    
    def __getitem__(self, i):
        try:
            return self._peaks[i]
        except IndexError:
            raise IndexError("Peak index out of range")
    
    @property
    def min_intensity(self):
        """
        Minimum intensity
        @rtype: float
        """
        return self._min

    @property
    def max_intensity(self):
        """
        Maximum intensity
        @rtype: float
        """
        return self._max
            
    @property
    def dimensions(self):
        """
        Tuple of all dimensions (nucleus types)
        @rtype: tuple of L{EnumItem}
        """
        return tuple(self._elements)
    
    @property
    def proton_dimensions(self):
        """
        Tuple of all proton dimension indices
        @rtype: tuple of int
        """
        return tuple(self._protondim)    

    @property    
    def num_dimensions(self):
        """
        Number of dimensions
        @rtype: int
        """        
        return len(self._elements)
    
    @property    
    def num_proton_dimensions(self):
        """
        Number of proton dimensions
        @rtype: int
        """             
        return len(self._protondim)    
    
    def has_element(self, e):
        """
        Return True if the spectrum contains a dimension of the specified type
        
        @param e: element (dimension) type (see L{ChemElements})
        @type e: L{EnumItem}
        
        @rtype: bool
        """          
        return e in self._elemset
    
    def connect(self, i1, i2):
        """
        Mark dimensions with indices C{i1} and C{i2} as covalently connected.
        
        @param i1: dimension index 1 (0-based)
        @type i1: int
        @param i2: dimension index 2 (0-based)
        @type i2: int         
        """

        for i in [i1, i2]:
            if not 0 <= i < self.num_dimensions:
                raise IndexError("Dimension index out of range")
            
        if i1 == i2:
            raise ValueError("Can't connect a dimension to itself")
        if not self._can_connect(i1, i2):
            raise ValueError("Only proton-nonproton bonds are allowed")        
            
        self._connected.setdefault(i1, set()).add(i2)
        self._connected.setdefault(i2, set()).add(i1)
        
    def _can_connect(self, i1, i2):
        
        pair = set()

        for i in [i1, i2]:
            is_proton = self.element(i) == ChemElements.H
            pair.add(is_proton)
            
        if True in pair and False in pair:
            return True
        
        return False        
        
    def has_connected_dimensions(self, i):
        """
        Return True of dimension index C{i} has covalently connected dimensions.
        
        @param i: dimension index (0-based)
        @type i: int
        
        @rtype: bool
        """
        if i in self._connected:
            return len(self._connected[i]) > 0
        
        return False
        
    def connected_dimensions(self, i):
        """
        Return a list of all dimension indices, covalently connected to
        dimension C{i}.

        @param i: dimension index (0-based)
        @type i: int
        
        @rtype: iterable of int        
        """        
        if i in self._connected:
            return tuple(self._connected[i])
        
        return tuple()    
        
    def add(self, intensity, dimensions):
        """
        Add a new NOE peak.
        
        @param intensity: peak intensity
        @type intensity: float
        @param dimensions: list of dimension values
        @param dimensions: iterable of float
        """
        
        dimensions = list(dimensions)       
        if len(dimensions) != self.num_dimensions:
            raise ValueError("Invalid number of dimensions")
        
        peak = NOEPeak(intensity, dimensions, self)
        self._peaks.append(peak)
        
        if peak.intensity < self._min:
            self._min = peak.intensity            
        if peak.intensity > self._max:
            self._max = peak.intensity            
        
    def element(self, i):
        """
        Return the chemical element (nucleus) type at dimension index C{i}.
        @rtype: L{EnumItem}
        """
        return self._elements[i]