This file is indexed.

/usr/lib/python3/dist-packages/csb/statistics/mixtures.py is in python3-csb 1.2.3+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
"""
Mixture models for multi-dimensional data.

Reference: Hirsch M, Habeck M. - Bioinformatics. 2008 Oct 1;24(19):2184-92
"""
import numpy

from abc import ABCMeta, abstractmethod


class GaussianMixture(object):
    """
    Gaussian mixture model for multi-dimensional data.
    """
    _axis = None

    # prior for variance (inverse Gamma distribution)
    ALPHA_SIGMA = 0.0001
    BETA_SIGMA = 0.01
    MIN_SIGMA = 0.0

    use_cache = True

    def __init__(self, X, K, train=True, axis=None):
        """
        @param X: multi dimensional input vector with samples along first axis
        @type X: (M,...) numpy array

        @param K: number of components
        @type K: int

        @param train: train model
        @type train: bool

        @param axis: component axis in C{X}
        @type axis: int
        """
        if self._axis is not None:
            if axis is not None and axis != self._axis:
                raise ValueError('axis is fixed for {0}'.format(type(self).__name__))
            axis = self._axis
        elif axis is None:
            axis = 0
        self._axis = axis

        N = X.shape[axis]
        self._X = X
        self._dimension = numpy.prod(X.shape) / N

        c = numpy.linspace(0, K, N, False).astype(int)
        self._scales = numpy.equal.outer(range(K), c).astype(float)
        self._means = numpy.zeros((K,) + X.shape[1:])
        self.del_cache()

        if train:
            self.em()

    @property
    def K(self):
        """
        Number of components
        @rtype: int
        """
        return len(self.means)

    @property
    def N(self):
        """
        Length of component axis
        @rtype: int
        """
        return self._scales.shape[1]

    @property
    def M(self):
        """
        Number of data points
        @rtype: int
        """
        return len(self._X)

    def del_cache(self):
        """Clear model parameter cache (force recalculation)"""
        self._w = None
        self._sigma = None
        self._delta = None

    @property
    def dimension(self):
        """
        Dimensionality of the mixture domain
        @rtype: int
        """
        return self._dimension

    @property
    def means(self):
        """
        @rtype: (K, ...) numpy array
        """
        return self._means

    @means.setter
    def means(self, means):
        if means.shape != self._means.shape:
            raise ValueError('shape mismatch')
        self._means = means
        self.del_cache()

    @property
    def scales(self):
        """
        @rtype: (K, N) numpy array
        """
        return self._scales

    @scales.setter
    def scales(self, scales):
        if scales.shape != self._scales.shape:
            raise ValueError('shape mismatch')
        self._scales = scales
        self.del_cache()

    @property
    def w(self):
        """
        Component weights
        @rtype: (K,) numpy array
        """
        if not self.use_cache or self._w is None:
            self._w = self.scales.mean(1)
        return self._w

    @property
    def sigma(self):
        """
        Component variations
        @rtype: (K,) numpy array
        """
        if not self.use_cache or self._sigma is None:
            alpha = self.dimension * self.scales.sum(1) + self.ALPHA_SIGMA
            beta = (self.delta * self.scales.T).sum(0) + self.BETA_SIGMA
            self._sigma = numpy.sqrt(beta / alpha).clip(self.MIN_SIGMA)
        return self._sigma

    @property
    def delta(self):
        """
        Squared "distances" between data and components
        @rtype: (N, K) numpy array
        """
        if not self.use_cache or self._delta is None:
            self._delta = numpy.transpose([[d.sum()
                for d in numpy.swapaxes([(self.means[k] - self.datapoint(m, k)) ** 2
                    for m in range(self.M)], 0, self._axis)]
                for k in range(self.K)])
        return self._delta

    @property
    def log_likelihood_reduced(self):
        """
        Log-likelihood of the marginalized model (no auxiliary indicator variables)
        @rtype: float
        """
        from csb.numeric import log, log_sum_exp
        s_sq = (self.sigma ** 2).clip(1e-300, 1e300)
        log_p = log(self.w) - 0.5 * \
                (self.delta / s_sq + self.dimension * log(2 * numpy.pi * s_sq))
        return log_sum_exp(log_p.T).sum()

    @property
    def log_likelihood(self):
        """
        Log-likelihood of the extended model (with indicators)
        @rtype: float
        """
        from csb.numeric import log
        from numpy import pi, sum
        n = self.scales.sum(1)
        N = self.dimension
        Z = self.scales.T
        s_sq = (self.sigma ** 2).clip(1e-300, 1e300)
        return sum(n * log(self.w)) - 0.5 * \
                (sum(Z * self.delta / s_sq) + N * sum(n * log(2 * pi * s_sq)) + sum(log(s_sq)))

    def datapoint(self, m, k):
        """
        Training point number C{m} as if it would belong to component C{k}
        @rtype: numpy array
        """
        return self._X[m]

    def estimate_means(self):
        """
        Update means from current model and samples
        """
        n = self.scales.sum(1)
        self.means = numpy.array([numpy.sum([self.scales[k, m] * self.datapoint(m, k)
            for m in range(self.M)], 0) / n[k]
            for k in range(self.K)])

    def estimate_scales(self, beta=1.0):
        """
        Update scales from current model and samples
        @param beta: inverse temperature
        @type beta: float
        """
        from csb.numeric import log, log_sum_exp, exp
        s_sq = (self.sigma ** 2).clip(1e-300, 1e300)
        Z = (log(self.w) - 0.5 * (self.delta / s_sq + self.dimension * log(s_sq))) * beta
        self.scales = exp(Z.T - log_sum_exp(Z.T))

    def randomize_means(self):
        """
        Pick C{K} samples from C{X} as means
        """
        import random
        self.means = numpy.asarray(random.sample(self._X, self.K))
        self.estimate_scales()

    def randomize_scales(self, ordered=True):
        """
        Random C{scales} initialization
        """
        from numpy.random import random, multinomial
        if ordered:
            K, N = self.scales.shape
            Ks = numpy.arange(K)
            w = random(K) + (5. * K / N) # with pseudocounts
            c = numpy.repeat(Ks, multinomial(N, w / w.sum()))
            self.scales = numpy.equal.outer(Ks, c).astype(float)
        else:
            s = random(self.scales.shape)
            self.scales = s / s.sum(0)

        if 0.0 in self.w:
            self.randomize_scales(ordered)
            return

        self.estimate_means()

    def e_step(self, beta=1.0):
        """
        Expectation step for EM
        @param beta: inverse temperature
        @type beta: float
        """
        self.estimate_scales(beta)

    def m_step(self):
        """
        Maximization step for EM
        """
        self.estimate_means()

    def em(self, n_iter=100, eps=1e-30):
        """
        Expectation maximization

        @param n_iter: maximum number of iteration steps
        @type n_iter: int

        @param eps: log-likelihood convergence criterion
        @type eps: float
        """
        LL_prev = -numpy.inf
        for i in range(n_iter):
            self.m_step()
            self.e_step()

            if eps is not None:
                LL = self.log_likelihood
                if abs(LL - LL_prev) < eps:
                    break
                LL_prev = LL

    def anneal(self, betas):
        """
        Deterministic annealing

        @param betas: sequence of inverse temperatures
        @type betas: iterable of floats
        """
        for beta in betas:
            self.m_step()
            self.e_step(beta)

    def increment_K(self, train=True):
        """
        Split component with largest sigma

        @returns: new instance of mixture with incremented C{K}
        @rtype: L{GaussianMixture} subclass
        """
        i = self.sigma.argmax()

        # duplicate column
        Z = numpy.vstack([self.scales, self.scales[i]])

        # mask disjoint equal sized parts
        mask = Z[i].cumsum() / Z[i].sum() > 0.5
        Z[i, mask] *= 0.0
        Z[-1, ~mask] *= 0.0

        new = type(self)(self._X, self.K + 1, False, self._axis)
        new.scales = Z
        new.m_step()
        if train:
            new.em()

        return new

    @classmethod
    def series(cls, X, start=1, stop=9):
        """
        Iterator with mixture instances for C{K in range(start, stop)}

        @type X: (M,...) numpy array
        @type start: int
        @type stop: int
        @rtype: generator
        """
        mixture = cls(X, start)
        yield mixture

        for K in range(start + 1, stop):                        #@UnusedVariable
            mixture = mixture.increment_K()
            yield mixture

    @classmethod
    def new(cls, X, K=0):
        """
        Factory method with optional C{K}. If C{K=0}, guess best C{K} according
        to L{BIC<GaussianMixture.BIC>}.

        @param X: multi dimensional input vector with samples along first axis
        @type X: (M,...) numpy array

        @return: Mixture instance
        @rtype: L{GaussianMixture} subclass
        """
        if K > 0:
            return cls(X, K)

        mixture_it = cls.series(X)
        mixture = next(mixture_it)

        # increase K as long as next candidate looks better
        for candidate in mixture_it:
            if candidate.BIC >= mixture.BIC:
                break
            mixture = candidate

        return mixture

    @property
    def BIC(self):
        """
        Bayesian information criterion, calculated as
        BIC = M * ln(sigma_e^2) + K * ln(M)

        @rtype: float
        """
        from numpy import log

        n = self.M
        k = self.K
        error_variance = sum(self.sigma ** 2 * self.w)

        return n * log(error_variance) + k * log(n)

    @property
    def membership(self):
        """
        Membership array
        @rtype: (N,) numpy array
        """
        return self.scales.argmax(0)

    def overlap(self, other):
        """
        Similarity of two mixtures measured in membership overlap

        @param other: Mixture or membership array
        @type other: L{GaussianMixture} or sequence

        @return: segmentation overlap
        @rtype: float in interval [0.0, 1.0]
        """
        if isinstance(other, GaussianMixture):
            other_w = other.membership
            K = min(self.K, other.K)
        elif isinstance(other, (list, tuple, numpy.ndarray)):
            other_w = other
            K = min(self.K, len(set(other)))
        else:
            raise TypeError('other')

        self_w = self.membership
        if len(self_w) != len(other_w):
            raise ValueError('self.N != other.N')

        # position numbers might be permutated, so count equal pairs
        ww = tuple(zip(self_w, other_w))
        same = sum(sorted(ww.count(i) for i in set(ww))[-K:])

        return float(same) / len(ww)

class AbstractStructureMixture(GaussianMixture):
    """
    Abstract mixture model for protein structure ensembles.
    """
    __metaclass__ = ABCMeta

    def __init__(self, X, K, *args, **kwargs):
        if len(X.shape) != 3 or X.shape[-1] != 3:
            raise ValueError('X must be array of shape (M,N,3)')

        self._R = numpy.zeros((len(X), K, 3, 3))
        self._t = numpy.zeros((len(X), K, 3))

        super(AbstractStructureMixture, self).__init__(X, K, *args, **kwargs)

    @property
    def R(self):
        """
        Rotation matrices
        @rtype: (M,K,3,3) numpy array
        """
        return self._R

    @property
    def t(self):
        """
        Translation vectors
        @rtype: (M,K,3) numpy array
        """
        return self._t

    def datapoint(self, m, k):
        return numpy.dot(self._X[m] - self._t[m, k], self._R[m, k])

    def m_step(self):
        self.estimate_means()
        self.estimate_T()

    @abstractmethod
    def estimate_T(self):
        """
        Estimate superpositions
        """
        raise NotImplementedError

class SegmentMixture(AbstractStructureMixture):
    """
    Gaussian mixture model for protein structure ensembles using a set of segments

    If C{X} is the coordinate array of a protein structure ensemble which
    can be decomposed into 2 rigid segments, the segmentation will be found by:

    >>> mixture = SegmentMixture(X, 2)

    The segment membership of each atom is given by:

    >>> mixture.membership
    array([0, 0, 0, ..., 1, 1, 1])
    """
    _axis = 1

    def estimate_T(self):
        from csb.bio.utils import wfit
        for m in range(self.M):
            for k in range(self.K):
                self._R[m, k], self._t[m, k] = wfit(self._X[m], self.means[k], self.scales[k])

    def estimate_means(self):
        # superpositions are weighted, so do unweighted mean here
        self.means = numpy.mean([[self.datapoint(m, k)
            for m in range(self.M)]
            for k in range(self.K)], 1)

class ConformerMixture(AbstractStructureMixture):
    """
    Gaussian mixture model for protein structure ensembles using a set of conformers

    If C{mixture} is a trained model, the ensemble coordinate array of
    structures from C{X} which belong to conformation C{k} is given by:

    >>> indices = numpy.where(mixture.membership == k)[0]
    >>> conformer = [mixture.datapoint(m, k) for m in indices]
    """
    _axis = 0

    def estimate_T(self):
        from csb.bio.utils import fit
        for m in range(self.M):
            for k in range(self.K):
                self._R[m, k], self._t[m, k] = fit(self._X[m], self.means[k])

# vi:expandtab:smarttab:sw=4