This file is indexed.

/usr/lib/python3/dist-packages/csb/test/cases/statistics/pdf/parameterized.py is in python3-csb 1.2.3+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import numpy
import csb.test as test

from csb.numeric import log

from csb.statistics.pdf.parameterized import ParameterizedDensity
from csb.statistics.pdf.parameterized import ParameterValueError, ParameterizationError
from csb.statistics.pdf.parameterized import AbstractParameter, Parameter, NonVirtualParameter



class Location(NonVirtualParameter):
    
    def _validate(self, value):
        return float(value)

class Scale(Parameter):    
       
    def _validate(self, value):
        return float(value)
    
    def _compute(self, base_value):
        
        if base_value == 0.0:
            return numpy.inf
        else:
            return 1.0 / base_value ** 0.5
        
    def bind_to(self, base):
        
        if base.name != "precision":
            raise ValueError(base)
                
        super(Scale, self).bind_to(base)
        
class DoubleScale(Parameter):    
       
    def _validate(self, value):
        return float(value)
    
    def _compute(self, base_value):
        return base_value * 2.0     
    
class Precision(Parameter):

    def _validate(self, value):
        
        if value < 0:
            raise ParameterValueError(self.name, value)
        return float(value)
    
                
class FancyGaussian(ParameterizedDensity):        
        
    def __init__(self, mu=0, precision=1):
        
        super(FancyGaussian, self).__init__()
        
        self._register('mu')
        self._register('sigma')
        self._register('precision')
        
        loc = Location(mu)
        prec = Precision(precision) 
        sigma = Scale(0)
        sigma.bind_to(prec)
        
        self.set_params(mu=loc, sigma=sigma, precision=prec)

    @property
    def mu(self):
        return self['mu'].value

    @property
    def sigma(self):
        return self['sigma'].value
        
    @property
    def precision(self):
        return self['precision'].value  
            
    def log_prob(self, x):

        mu = self.mu
        sigma = self.sigma
        
        return log(1.0 / numpy.sqrt(2 * numpy.pi * sigma ** 2)) - (x - mu) ** 2 / (2 * sigma ** 2)


@test.unit
class TestAbstractGenericParameter(test.Case):
    """
    Use AbstractParameter as a generic class which accepts values 
    of any type.
    """
    
    def setUp(self):
        
        class Value(object):
            pass
        
        class Param(AbstractParameter):
            
            def _validate(self, value):
                if not isinstance(value, Value):
                    raise TypeError(value)
                return value
            
        self.value = Value()        
        self.param = Param(self.value)
        
    def testValue(self):
        self.assertIs(self.param.value, self.value)
        
    def testSet(self):
        self.assertRaises(TypeError, self.param.set, 3)

        
@test.unit
class TestParameter(test.Case):
    """
    This is the main test case with complete coverage for AbstractParameter's
    methods and behavior. Covers also Parameter.
    
              computed -- leaf
             /
        base -- computed2
            \
             computed3
    """
    
    def setUp(self):        
        self.base = Precision(1.2)
        self.computed = Scale(100, base=self.base)
        self.computed2 = Scale(200, base=self.base)
        self.computed3 = Scale(300, base=self.base)
        self.leaf = DoubleScale(400, base=self.computed)
        
    def testConstrucor(self):
        # make sure newly constructed parameters are left in a consistent state 
        # to avoid unnecessary consistency updates 
        self.assertTrue(self.base._consistent)
        self.assertTrue(Scale(1)._consistent)

    def testName(self):
        
        self.assertEqual(self.base.name, "precision")
        self.assertEqual(self.computed.name, "scale")
        self.assertEqual(Scale(name="TesT").name, "TesT")
        
    def testValue(self):
        
        self.assertEqual(self.base.value, 1.2)
        self.assertEqual(self.computed.value, 1.0 / numpy.sqrt(self.base.value))
        self.assertEqual(self.computed2.value, 1.0 / numpy.sqrt(self.base.value))
        self.assertEqual(self.leaf.value, self.computed.value * 2)
        
        # turn self.base into a virtual parameter
        self.base.bind_to(Precision(12.2))
        self.assertEqual(self.base.value, 12.2)        
        
    def testIsVirtual(self):
        
        self.assertFalse(self.base.is_virtual)
        self.assertTrue(self.computed.is_virtual)
        
        self.base.bind_to(Precision(12.2))
        self.assertTrue(self.base.is_virtual)
        
    def testSet(self):
        
        base_initial_value = self.base._value
        
        # recompute all derivatives from the initial value of base
        self.assertEqual(self.computed._value, 100)
        self.leaf._ensure_consistency()
        self.computed2._ensure_consistency()
        self.computed3._ensure_consistency()
        
        # set self.base - it should remain consistent because it is not computed
        self.assertTrue(self.base._consistent)
        self.base.set(2.2)
        self.assertTrue(self.base._consistent)        
        self.assertEqual(self.base.value, 2.2)
        
        # self.computed and self.leaf should be inconsistent now that their base is updated
        self.assertFalse(self.computed._consistent)   
        self.assertFalse(self.leaf._consistent)
        self.assertEqual(self.computed._value, 1.0 / numpy.sqrt(base_initial_value))
        self.assertEqual(self.leaf._value, 2.0 / numpy.sqrt(base_initial_value))
        # retrieving self.computed's value should trigger updates up to self.computed
        recomputed = self.computed.value
        self.assertTrue(self.computed._consistent)
        self.assertEqual(recomputed, 1.0 / numpy.sqrt(self.base._value))
        # self.leaf is still inconsistent
        self.assertFalse(self.leaf._consistent)
        self.assertEqual(self.leaf._value, 2.0 / numpy.sqrt(base_initial_value))
        self.assertIs(self.leaf._nearest_consistent_base()[-1], self.computed)
        # until we request its value       
        recomputed = self.leaf.value
        self.assertTrue(self.leaf._consistent)
        self.assertEqual(recomputed, 2.0 / numpy.sqrt(self.base._value))
        self.assertEqual(recomputed, 2.0 * self.computed._value)
        # make sure the other two branches are still inconsistent
        initial_value = 1.0 / numpy.sqrt(base_initial_value)
        self.assertEqual(self.computed2._value, initial_value)
        self.assertEqual(self.computed3._value, initial_value)
        # until they get used
        recomputed = self.computed2.value
        self.assertTrue(self.computed2._consistent)
        self.assertEqual(recomputed, 1.0 / numpy.sqrt(self.base._value))               
        
        # attempt to set self.computed - not allowed
        self.assertRaises(ParameterizationError, self.computed.set, 2)

        # attempt to set a negative Precision        
        self.assertRaises(ParameterValueError, self.base.set, -2)
        # attempt to assigned non-float - not allowed in the Parameter specialization        
        self.assertRaises(ParameterValueError, Parameter().set, object())
        
    def testBindTo(self):
                
        # can't bind self.base to itself
        self.assertRaises(ParameterizationError, self.base.bind_to, self.base)
        # deeper circular dependency 
        self.assertRaises(ParameterizationError, self.base.bind_to, self.computed)        

        # self.base is not virtual and therefore must be consistent        
        self.assertTrue(self.base._consistent)
        
        # make it virtual - should get inconsistent now
        self.base.bind_to(Precision(12.2))
        self.assertFalse(self.base._consistent)
        self.assertTrue(self.base.is_virtual)
        
        # retrieving its value should trigger the consistency cascade
        self.assertEqual(self.base.value, 12.2)
        self.assertTrue(self.base._consistent)
        
    def testFindBaseParameter(self):

        self.assertIs(self.base.find_base_parameter(), self.base)        
        self.assertIs(self.computed.find_base_parameter(), self.base)
    

@test.unit
class TestNonVirtualParameter(test.Case):
    """
    Make sure explicit NonVirtualParameter-s are updatable and 
    refuse binding requests
    """
    
    def setUp(self):
        self.param = Location()
        
    def testConstructor(self):
        base = Parameter()
        self.assertRaises(ParameterizationError, lambda: Location(base=base))
        
    def testIsVirtual(self):
        self.assertFalse(self.param.is_virtual)
        
    def testBindTo(self):
        base = Parameter()
        self.assertRaises(ParameterizationError, self.param.bind_to, base)
        
    def testSet(self):
        self.param.set(22)
        self.assertEqual(self.param.value, 22)
        

@test.unit
class TestParameterizedDensity(test.Case):
    
    def setUp(self):
        self.pdf = FancyGaussian(2, 5)
        
    def testConstructor(self):
        
        class Density(ParameterizedDensity):
            
            def __init__(self, p):
                super(Density, self).__init__()                
                self._register('p')
                self.set_params(p=p)
                
            def log_prob(self, x):
                return x
        
        self.assertRaises(TypeError, Density, 4)
    
    def testProperties(self):
        
        self.assertEqual(self.pdf.mu, 2)
        self.assertEqual(self.pdf.precision, 5)
        self.assertAlmostEqual(self.pdf.sigma, 0.4472, places=3)
        
    def testParameterChaining(self):
        
        self.assertEqual(self.pdf.precision, 5)
        self.assertAlmostEqual(self.pdf.sigma, 0.4472, places=3)
        
        self.pdf['precision'].set(2)
        
        self.assertEqual(self.pdf.precision, 2)
        self.assertAlmostEqual(self.pdf.sigma, 0.7071, places=3)
    
    def testAssignment(self):
        
        self.pdf['sigma'] = Scale(55)
        self.assertEqual(self.pdf.sigma, 55)
        self.assertEqual(self.pdf['sigma'].name, 'scale')
        
        def assign(i):
            self.pdf['sigma'] = i
            
        self.assertRaises(TypeError, assign, 55) 

    

if __name__ == '__main__':
    test.Console()