This file is indexed.

/usr/lib/python3/dist-packages/deap/tools/emo.py is in python3-deap 1.0.2.post2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import bisect
import math
import random

from itertools import chain
from operator import attrgetter, itemgetter
from collections import defaultdict

######################################
# Non-Dominated Sorting   (NSGA-II)  #
######################################

def selNSGA2(individuals, k):
    """Apply NSGA-II selection operator on the *individuals*. Usually, the
    size of *individuals* will be larger than *k* because any individual
    present in *individuals* will appear in the returned list at most once.
    Having the size of *individuals* equals to *k* will have no effect other
    than sorting the population according to their front rank. The
    list returned contains references to the input *individuals*. For more
    details on the NSGA-II operator see [Deb2002]_.
    
    :param individuals: A list of individuals to select from.
    :param k: The number of individuals to select.
    :returns: A list of selected individuals.
    
    .. [Deb2002] Deb, Pratab, Agarwal, and Meyarivan, "A fast elitist
       non-dominated sorting genetic algorithm for multi-objective
       optimization: NSGA-II", 2002.
    """
    pareto_fronts = sortNondominated(individuals, k)
    for front in pareto_fronts:
        assignCrowdingDist(front)
    
    chosen = list(chain(*pareto_fronts[:-1]))
    k = k - len(chosen)
    if k > 0:
        sorted_front = sorted(pareto_fronts[-1], key=attrgetter("fitness.crowding_dist"), reverse=True)
        chosen.extend(sorted_front[:k])
        
    return chosen

def sortNondominated(individuals, k, first_front_only=False):
    """Sort the first *k* *individuals* into different nondomination levels 
    using the "Fast Nondominated Sorting Approach" proposed by Deb et al.,
    see [Deb2002]_. This algorithm has a time complexity of :math:`O(MN^2)`, 
    where :math:`M` is the number of objectives and :math:`N` the number of 
    individuals.
    
    :param individuals: A list of individuals to select from.
    :param k: The number of individuals to select.
    :param first_front_only: If :obj:`True` sort only the first front and
                             exit.
    :returns: A list of Pareto fronts (lists), the first list includes 
              nondominated individuals.

    .. [Deb2002] Deb, Pratab, Agarwal, and Meyarivan, "A fast elitist
       non-dominated sorting genetic algorithm for multi-objective
       optimization: NSGA-II", 2002.
    """
    if k == 0:
        return []

    map_fit_ind = defaultdict(list)
    for ind in individuals:
        map_fit_ind[ind.fitness].append(ind)
    fits = list(map_fit_ind.keys())
    
    current_front = []
    next_front = []
    dominating_fits = defaultdict(int)
    dominated_fits = defaultdict(list)
    
    # Rank first Pareto front
    for i, fit_i in enumerate(fits):
        for fit_j in fits[i+1:]:
            if fit_i.dominates(fit_j):
                dominating_fits[fit_j] += 1
                dominated_fits[fit_i].append(fit_j)
            elif fit_j.dominates(fit_i):
                dominating_fits[fit_i] += 1
                dominated_fits[fit_j].append(fit_i)
        if dominating_fits[fit_i] == 0:
            current_front.append(fit_i)
    
    fronts = [[]]
    for fit in current_front:
        fronts[-1].extend(map_fit_ind[fit])
    pareto_sorted = len(fronts[-1])

    # Rank the next front until all individuals are sorted or 
    # the given number of individual are sorted.
    if not first_front_only:
        N = min(len(individuals), k)
        while pareto_sorted < N:
            fronts.append([])
            for fit_p in current_front:
                for fit_d in dominated_fits[fit_p]:
                    dominating_fits[fit_d] -= 1
                    if dominating_fits[fit_d] == 0:
                        next_front.append(fit_d)
                        pareto_sorted += len(map_fit_ind[fit_d])
                        fronts[-1].extend(map_fit_ind[fit_d])
            current_front = next_front
            next_front = []
    
    return fronts

def assignCrowdingDist(individuals):
    """Assign a crowding distance to each individual's fitness. The 
    crowding distance can be retrieve via the :attr:`crowding_dist` 
    attribute of each individual's fitness.
    """
    if len(individuals) == 0:
        return
    
    distances = [0.0] * len(individuals)
    crowd = [(ind.fitness.values, i) for i, ind in enumerate(individuals)]
    
    nobj = len(individuals[0].fitness.values)
    
    for i in range(nobj):
        crowd.sort(key=lambda element: element[0][i])
        distances[crowd[0][1]] = float("inf")
        distances[crowd[-1][1]] = float("inf")
        if crowd[-1][0][i] == crowd[0][0][i]:
            continue
        norm = nobj * float(crowd[-1][0][i] - crowd[0][0][i])
        for prev, cur, next in zip(crowd[:-2], crowd[1:-1], crowd[2:]):
            distances[cur[1]] += (next[0][i] - prev[0][i]) / norm

    for i, dist in enumerate(distances):
        individuals[i].fitness.crowding_dist = dist

def selTournamentDCD(individuals, k):
    """Tournament selection based on dominance (D) between two individuals, if
    the two individuals do not interdominate the selection is made
    based on crowding distance (CD). The *individuals* sequence length has to
    be a multiple of 4. Starting from the beginning of the selected
    individuals, two consecutive individuals will be different (assuming all
    individuals in the input list are unique). Each individual from the input
    list won't be selected more than twice.
    
    This selection requires the individuals to have a :attr:`crowding_dist`
    attribute, which can be set by the :func:`assignCrowdingDist` function.
    
    :param individuals: A list of individuals to select from.
    :param k: The number of individuals to select.
    :returns: A list of selected individuals.
    """
    def tourn(ind1, ind2):
        if ind1.fitness.dominates(ind2.fitness):
            return ind1
        elif ind2.fitness.dominates(ind1.fitness):
            return ind2

        if ind1.fitness.crowding_dist < ind2.fitness.crowding_dist:
            return ind2
        elif ind1.fitness.crowding_dist > ind2.fitness.crowding_dist:
            return ind1

        if random.random() <= 0.5:
            return ind1
        return ind2

    individuals_1 = random.sample(individuals, len(individuals))
    individuals_2 = random.sample(individuals, len(individuals))

    chosen = []
    for i in range(0, k, 4):
        chosen.append(tourn(individuals_1[i],   individuals_1[i+1]))
        chosen.append(tourn(individuals_1[i+2], individuals_1[i+3]))
        chosen.append(tourn(individuals_2[i],   individuals_2[i+1]))
        chosen.append(tourn(individuals_2[i+2], individuals_2[i+3]))

    return chosen

#######################################
# Generalized Reduced runtime ND sort #
#######################################

def identity(obj):
    """Returns directly the argument *obj*.
    """
    return obj

def isDominated(wvalues1, wvalues2):
    """Returns whether or not *wvalues1* dominates *wvalues2*.
    
    :param wvalues1: The weighted fitness values that would be dominated.
    :param wvalues2: The weighted fitness values of the dominant.
    :returns: :obj:`True` if wvalues2 dominates wvalues1, :obj:`False`
              otherwise.
    """
    not_equal = False
    for self_wvalue, other_wvalue in zip(wvalues1, wvalues2):
        if self_wvalue > other_wvalue:
            return False
        elif self_wvalue < other_wvalue:
            not_equal = True
    return not_equal

def median(seq, key=identity):
    """Returns the median of *seq* - the numeric value separating the higher 
    half of a sample from the lower half. If there is an even number of 
    elements in *seq*, it returns the mean of the two middle values.
    """
    sseq = sorted(seq, key=key)
    length = len(seq)
    if length % 2 == 1:
        return key(sseq[(length - 1) // 2])
    else:
        return (key(sseq[(length - 1) // 2]) + key(sseq[length // 2])) / 2.0

def sortLogNondominated(individuals, k, first_front_only=False):
    """Sort *individuals* in pareto non-dominated fronts using the Generalized
    Reduced Run-Time Complexity Non-Dominated Sorting Algorithm presented by
    Fortin et al. (2013).
    
    :param individuals: A list of individuals to select from.
    :returns: A list of Pareto fronts (lists), with the first list being the
              true Pareto front.
    """
    if k == 0:
        return []
    
    #Separate individuals according to unique fitnesses
    unique_fits = defaultdict(list)
    for i, ind in enumerate(individuals):
        unique_fits[ind.fitness.wvalues].append(ind)
    
    #Launch the sorting algorithm
    obj = len(individuals[0].fitness.wvalues)-1
    fitnesses = list(unique_fits.keys())
    front = dict.fromkeys(fitnesses, 0)

    # Sort the fitnesses lexicographically.
    fitnesses.sort(reverse=True)
    sortNDHelperA(fitnesses, obj, front)    
    
    #Extract individuals from front list here
    nbfronts = max(front.values())+1
    pareto_fronts = [[] for i in range(nbfronts)]
    for fit in fitnesses:
        index = front[fit]
        pareto_fronts[index].extend(unique_fits[fit])

    # Keep only the fronts required to have k individuals.
    if not first_front_only:
        count = 0
        for i, front in enumerate(pareto_fronts):
            count += len(front)
            if count >= k:
                return pareto_fronts[:i+1]
        return pareto_fronts
    else:
        return pareto_fronts[0]

def sortNDHelperA(fitnesses, obj, front):
    """Create a non-dominated sorting of S on the first M objectives"""
    if len(fitnesses) < 2:
        return
    elif len(fitnesses) == 2:
        # Only two individuals, compare them and adjust front number
        s1, s2 = fitnesses[0], fitnesses[1]
        if isDominated(s2[:obj+1], s1[:obj+1]):
            front[s2] = max(front[s2], front[s1] + 1)
    elif obj == 1:
        sweepA(fitnesses, front)
    elif len(frozenset(list(map(itemgetter(obj), fitnesses)))) == 1:
        #All individuals for objective M are equal: go to objective M-1
        sortNDHelperA(fitnesses, obj-1, front)
    else:
        # More than two individuals, split list and then apply recursion
        best, worst = splitA(fitnesses, obj)
        sortNDHelperA(best, obj, front)
        sortNDHelperB(best, worst, obj-1, front)
        sortNDHelperA(worst, obj, front)

def splitA(fitnesses, obj):
    """Partition the set of fitnesses in two according to the median of
    the objective index *obj*. The values equal to the median are put in
    the set containing the least elements.
    """
    median_ = median(fitnesses, itemgetter(obj))
    best_a, worst_a = [], []
    best_b, worst_b = [], []

    for fit in fitnesses:
        if fit[obj] > median_:
            best_a.append(fit)
            best_b.append(fit)
        elif fit[obj] < median_:
            worst_a.append(fit)
            worst_b.append(fit)
        else:
            best_a.append(fit)
            worst_b.append(fit)

    balance_a = abs(len(best_a) - len(worst_a))
    balance_b = abs(len(best_b) - len(worst_b))

    if balance_a <= balance_b:
        return best_a, worst_a
    else:
        return best_b, worst_b

def sweepA(fitnesses, front):
    """Update rank number associated to the fitnesses according
    to the first two objectives using a geometric sweep procedure.
    """
    stairs = [-fitnesses[0][1]]
    fstairs = [fitnesses[0]]  
    for fit in fitnesses[1:]:
        idx = bisect.bisect_right(stairs, -fit[1])
        if 0 < idx <= len(stairs):
            fstair = max(fstairs[:idx], key=front.__getitem__)
            front[fit] = max(front[fit], front[fstair]+1)
        for i, fstair in enumerate(fstairs[idx:], idx):
            if front[fstair] == front[fit]:
                del stairs[i]
                del fstairs[i]
                break
        stairs.insert(idx, -fit[1])
        fstairs.insert(idx, fit)

def sortNDHelperB(best, worst, obj, front):
    """Assign front numbers to the solutions in H according to the solutions 
    in L. The solutions in L are assumed to have correct front numbers and the 
    solutions in H are not compared with each other, as this is supposed to 
    happen after sortNDHelperB is called."""
    key = itemgetter(obj)    
    if len(worst) == 0 or len(best) == 0:
        #One of the lists is empty: nothing to do
        return
    elif len(best) == 1 or len(worst) == 1:
        #One of the lists has one individual: compare directly
        for hi in worst:
            for li in best:
                if isDominated(hi[:obj+1], li[:obj+1]) or hi[:obj+1] == li[:obj+1]:
                    front[hi] = max(front[hi], front[li] + 1)
    elif obj == 1:
        sweepB(best, worst, front)
    elif key(min(best, key=key)) >= key(max(worst, key=key)):
        #All individuals from L dominate H for objective M:
        #Also supports the case where every individuals in L and H 
        #has the same value for the current objective
        #Skip to objective M-1
        sortNDHelperB(best, worst, obj-1, front)
    elif key(max(best, key=key)) >= key(min(worst, key=key)):
        best1, best2, worst1, worst2 = splitB(best, worst, obj)
        sortNDHelperB(best1, worst1, obj, front)
        sortNDHelperB(best1, worst2, obj-1, front)
        sortNDHelperB(best2, worst2, obj, front)

def splitB(best, worst, obj):
    """Split both best individual and worst sets of fitnesses according
    to the median of objective *obj* computed on the set containing the
    most elements. The values equal to the median are attributed so as 
    to balance the four resulting sets as much as possible.
    """
    median_ = median(best if len(best) > len(worst) else worst, itemgetter(obj))
    best1_a, best2_a, best1_b, best2_b = [], [], [], []
    for fit in best:
        if fit[obj] > median_:
            best1_a.append(fit)
            best1_b.append(fit)
        elif fit[obj] < median_:
            best2_a.append(fit)
            best2_b.append(fit)
        else:
            best1_a.append(fit)
            best2_b.append(fit)
    
    worst1_a, worst2_a, worst1_b, worst2_b = [], [], [], []        
    for fit in worst:
        if fit[obj] > median_:
            worst1_a.append(fit)
            worst1_b.append(fit)
        elif fit[obj] < median_:
            worst2_a.append(fit)
            worst2_b.append(fit)
        else:
            worst1_a.append(fit)
            worst2_b.append(fit)
    
    balance_a = abs(len(best1_a) - len(best2_a) + len(worst1_a) - len(worst2_a))
    balance_b = abs(len(best1_b) - len(best2_b) + len(worst1_b) - len(worst2_b))

    if balance_a <= balance_b:
        return best1_a, best2_a, worst1_a, worst2_a
    else:
        return best1_b, best2_b, worst1_b, worst2_b

def sweepB(best, worst, front):
    """Adjust the rank number of the worst fitnesses according to
    the best fitnesses on the first two objectives using a sweep
    procedure.
    """
    stairs, fstairs = [], []
    iter_best = iter(best)
    next_best = next(iter_best, False)
    for h in worst:
        while next_best and h[:2] <= next_best[:2]:
            insert = True
            for i, fstair in enumerate(fstairs):
                if front[fstair] == front[next_best]:
                    if fstair[1] > next_best[1]:
                        insert = False
                    else:
                        del stairs[i], fstairs[i]
                    break
            if insert:
                idx = bisect.bisect_right(stairs, -next_best[1])
                stairs.insert(idx, -next_best[1])
                fstairs.insert(idx, next_best)
            next_best = next(iter_best, False)

        idx = bisect.bisect_right(stairs, -h[1])
        if 0 < idx <= len(stairs):
            fstair = max(fstairs[:idx], key=front.__getitem__)
            front[h] = max(front[h], front[fstair]+1)

######################################
# Strength Pareto         (SPEA-II)  #
######################################

def selSPEA2(individuals, k):
    """Apply SPEA-II selection operator on the *individuals*. Usually, the
    size of *individuals* will be larger than *n* because any individual
    present in *individuals* will appear in the returned list at most once.
    Having the size of *individuals* equals to *n* will have no effect other
    than sorting the population according to a strength Pareto scheme. The
    list returned contains references to the input *individuals*. For more
    details on the SPEA-II operator see [Zitzler2001]_.
    
    :param individuals: A list of individuals to select from.
    :param k: The number of individuals to select.
    :returns: A list of selected individuals.
    
    .. [Zitzler2001] Zitzler, Laumanns and Thiele, "SPEA 2: Improving the
       strength Pareto evolutionary algorithm", 2001.
    """
    N = len(individuals)
    L = len(individuals[0].fitness.values)
    K = math.sqrt(N)
    strength_fits = [0] * N
    fits = [0] * N
    dominating_inds = [list() for i in range(N)]
    
    for i, ind_i in enumerate(individuals):
        for j, ind_j in enumerate(individuals[i+1:], i+1):
            if ind_i.fitness.dominates(ind_j.fitness):
                strength_fits[i] += 1
                dominating_inds[j].append(i)
            elif ind_j.fitness.dominates(ind_i.fitness):
                strength_fits[j] += 1
                dominating_inds[i].append(j)
    
    for i in range(N):
        for j in dominating_inds[i]:
            fits[i] += strength_fits[j]
    
    # Choose all non-dominated individuals
    chosen_indices = [i for i in range(N) if fits[i] < 1]
    
    if len(chosen_indices) < k:     # The archive is too small
        for i in range(N):
            distances = [0.0] * N
            for j in range(i + 1, N):
                dist = 0.0
                for l in range(L):
                    val = individuals[i].fitness.values[l] - \
                          individuals[j].fitness.values[l]
                    dist += val * val
                distances[j] = dist
            kth_dist = _randomizedSelect(distances, 0, N - 1, K)
            density = 1.0 / (kth_dist + 2.0)
            fits[i] += density
            
        next_indices = [(fits[i], i) for i in range(N)
                        if not i in chosen_indices]
        next_indices.sort()
        #print next_indices
        chosen_indices += [i for _, i in next_indices[:k - len(chosen_indices)]]
                
    elif len(chosen_indices) > k:   # The archive is too large
        N = len(chosen_indices)
        distances = [[0.0] * N for i in range(N)]
        sorted_indices = [[0] * N for i in range(N)]
        for i in range(N):
            for j in range(i + 1, N):
                dist = 0.0
                for l in range(L):
                    val = individuals[chosen_indices[i]].fitness.values[l] - \
                          individuals[chosen_indices[j]].fitness.values[l]
                    dist += val * val
                distances[i][j] = dist
                distances[j][i] = dist
            distances[i][i] = -1
        
        # Insert sort is faster than quick sort for short arrays
        for i in range(N):
            for j in range(1, N):
                l = j
                while l > 0 and distances[i][j] < distances[i][sorted_indices[i][l - 1]]:
                    sorted_indices[i][l] = sorted_indices[i][l - 1]
                    l -= 1
                sorted_indices[i][l] = j
        
        size = N
        to_remove = []
        while size > k:
            # Search for minimal distance
            min_pos = 0
            for i in range(1, N):
                for j in range(1, size):
                    dist_i_sorted_j = distances[i][sorted_indices[i][j]]
                    dist_min_sorted_j = distances[min_pos][sorted_indices[min_pos][j]]
                    
                    if dist_i_sorted_j < dist_min_sorted_j:
                        min_pos = i
                        break
                    elif dist_i_sorted_j > dist_min_sorted_j:
                        break
            
            # Remove minimal distance from sorted_indices
            for i in range(N):
                distances[i][min_pos] = float("inf")
                distances[min_pos][i] = float("inf")
                
                for j in range(1, size - 1):
                    if sorted_indices[i][j] == min_pos:
                        sorted_indices[i][j] = sorted_indices[i][j + 1]
                        sorted_indices[i][j + 1] = min_pos
            
            # Remove corresponding individual from chosen_indices
            to_remove.append(min_pos)
            size -= 1
        
        for index in reversed(sorted(to_remove)):
            del chosen_indices[index]
    
    return [individuals[i] for i in chosen_indices]
    
def _randomizedSelect(array, begin, end, i):
    """Allows to select the ith smallest element from array without sorting it.
    Runtime is expected to be O(n).
    """
    if begin == end:
        return array[begin]
    q = _randomizedPartition(array, begin, end)
    k = q - begin + 1
    if i < k:
        return _randomizedSelect(array, begin, q, i)
    else:
        return _randomizedSelect(array, q + 1, end, i - k)

def _randomizedPartition(array, begin, end):
    i = random.randint(begin, end)
    array[begin], array[i] = array[i], array[begin]
    return _partition(array, begin, end)
    
def _partition(array, begin, end):
    x = array[begin]
    i = begin - 1
    j = end + 1
    while True:
        j -= 1
        while array[j] > x:
            j -= 1
        i += 1
        while array[i] < x:
            i += 1
        if i < j:
            array[i], array[j] = array[j], array[i]
        else:
            return j


__all__ = ['selNSGA2', 'selSPEA2', 'sortNondominated', 'sortLogNondominated',
           'selTournamentDCD']