This file is indexed.

/usr/lib/python3/dist-packages/ginga/ColorDist.py is in python3-ginga 2.6.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#
# ColorDist.py -- Color Distribution algorithms
#
# This is open-source software licensed under a BSD license.
# Please see the file LICENSE.txt for details.
#
"""
These algorithms are modeled after the ones described for ds9 here:

    http://ds9.si.edu/doc/ref/how.html

"""
import math
import numpy

class ColorDistError(Exception):
    pass

class ColorDistBase(object):

    def __init__(self, hashsize, colorlen=None):
        super(ColorDistBase, self).__init__()

        self.hashsize = hashsize
        if colorlen is None:
            colorlen = 256
        self.colorlen = colorlen
        self.maxhashsize = 1024*1024
        # this actually holds the hash array
        self.hash = None
        self.calc_hash()

    def hash_array(self, idx):
        # NOTE: data could be assumed to be in the range 0..hashsize-1
        # at this point but clip as a precaution
        idx = idx.clip(0, self.hashsize-1)
        arr = self.hash[idx]
        return arr

    def get_hash_size(self):
        return self.hashsize

    def set_hash_size(self, size):
        assert (size >= self.colorlen) and (size <= self.maxhashsize), \
               ColorDistError("Bad hash size!")
        self.hashsize = size
        self.calc_hash()

    def check_hash(self):
        hashlen = len(self.hash)
        assert hashlen == self.hashsize, \
               ColorDistError("Computed hash table size (%d) != specified size (%d)" % (hashlen, self.hashsize))

    def calc_hash(self):
        raise ColorDistError("Subclass needs to override this method")

    def get_dist_pct(self, pct):
        raise ColorDistError("Subclass needs to override this method")


class LinearDist(ColorDistBase):
    """
    y = x
        where x in (0..1)
    """

    def __init__(self, hashsize, colorlen=None):
        super(LinearDist, self).__init__(hashsize, colorlen=colorlen)

    def calc_hash(self):
        base = numpy.arange(0.0, float(self.hashsize), 1.0) / self.hashsize
        # normalize to color range
        l = base * (self.colorlen - 1)
        self.hash = l.astype(numpy.uint)

        self.check_hash()

    def get_dist_pct(self, pct):
        val = min(max(float(pct), 0.0), 1.0)
        return val

    def __str__(self):
        return 'linear'


class LogDist(ColorDistBase):
    """
    y = log(a*x + 1) / log(a)
        where x in (0..1)
    """

    def __init__(self, hashsize, colorlen=None, exp=1000.0):
        self.exp = exp
        super(LogDist, self).__init__(hashsize, colorlen=colorlen)

    def calc_hash(self):
        base = numpy.arange(0.0, float(self.hashsize), 1.0) / self.hashsize
        base = numpy.log(self.exp * base + 1.0) / numpy.log(self.exp)
        base = base.clip(0.0, 1.0)
        # normalize to color range
        l = base * (self.colorlen - 1)
        self.hash = l.astype(numpy.uint)

        self.check_hash()

    def get_dist_pct(self, pct):
        val_inv = (math.exp(pct * math.log(self.exp)) - 1) / self.exp
        val = min(max(float(val_inv), 0.0), 1.0)
        return val

    def __str__(self):
        return 'log'


class PowerDist(ColorDistBase):
    """
    y = ((a ** x) - 1) / a
        where x in (0..1)
    """

    def __init__(self, hashsize, colorlen=None, exp=1000.0):
        self.exp = exp
        super(PowerDist, self).__init__(hashsize, colorlen=colorlen)

    def calc_hash(self):
        base = numpy.arange(0.0, float(self.hashsize), 1.0) / self.hashsize
        base = (self.exp ** base - 1.0) / self.exp
        base = base.clip(0.0, 1.0)
        # normalize to color range
        l = base * (self.colorlen - 1)
        self.hash = l.astype(numpy.uint)

        self.check_hash()

    def get_dist_pct(self, pct):
        val_inv = math.log(self.exp * pct + 1, self.exp)
        val = min(max(float(val_inv), 0.0), 1.0)
        return val

    def __str__(self):
        return 'power'


class SqrtDist(ColorDistBase):
    """
    y = sqrt(x)
        where x in (0..1)
    """

    def __init__(self, hashsize, colorlen=None):
        super(SqrtDist, self).__init__(hashsize, colorlen=colorlen)

    def calc_hash(self):
        base = numpy.arange(0.0, float(self.hashsize), 1.0) / self.hashsize
        base = numpy.sqrt(base)
        base = base.clip(0.0, 1.0)
        # normalize to color range
        l = base * (self.colorlen - 1)
        self.hash = l.astype(numpy.uint)

        self.check_hash()

    def get_dist_pct(self, pct):
        val_inv = pct ** 2.0
        val = min(max(float(val_inv), 0.0), 1.0)
        return val

    def __str__(self):
        return 'sqrt'


class SquaredDist(ColorDistBase):
    """
    y = x ** 2
        where x in (0..1)
    """

    def __init__(self, hashsize, colorlen=None):
        super(SquaredDist, self).__init__(hashsize, colorlen=colorlen)

    def calc_hash(self):
        base = numpy.arange(0.0, float(self.hashsize), 1.0) / self.hashsize
        base = (base ** 2.0)
        # normalize to color range
        l = base * (self.colorlen - 1)
        self.hash = l.astype(numpy.uint)

        self.check_hash()

    def get_dist_pct(self, pct):
        val_inv = math.sqrt(pct)
        val = min(max(float(val_inv), 0.0), 1.0)
        return val

    def __str__(self):
        return 'squared'


class AsinhDist(ColorDistBase):
    """
    y = asinh(nonlinearity * x) / factor
        where x in (0..1)
    """

    def __init__(self, hashsize, colorlen=None, factor=10.0,
                 nonlinearity=3.0):
        self.factor = factor
        self.nonlinearity = nonlinearity
        super(AsinhDist, self).__init__(hashsize, colorlen=colorlen)

    def calc_hash(self):
        base = numpy.arange(0.0, float(self.hashsize), 1.0) / self.hashsize
        base = numpy.arcsinh(self.factor * base) / self.nonlinearity
        base = base.clip(0.0, 1.0)
        # normalize to color range
        l = base * (self.colorlen - 1)
        self.hash = l.astype(numpy.uint)

        self.check_hash()

    def get_dist_pct(self, pct):
        # calculate inverse of dist fn
        val_inv = math.sinh(self.nonlinearity * pct) / self.factor
        val = min(max(float(val_inv), 0.0), 1.0)
        return val

    def __str__(self):
        return 'asinh'


class SinhDist(ColorDistBase):
    """
    y = sinh(factor * x) / nonlinearity
        where x in (0..1)
    """

    def __init__(self, hashsize, colorlen=None, factor=3.0,
                 nonlinearity=10.0):
        self.factor = factor
        self.nonlinearity = nonlinearity
        super(SinhDist, self).__init__(hashsize, colorlen=colorlen)

    def calc_hash(self):
        base = numpy.arange(0.0, float(self.hashsize), 1.0) / self.hashsize
        base = numpy.sinh(self.factor * base) / self.nonlinearity
        base = base.clip(0.0, 1.0)
        # normalize to color range
        l = base * (self.colorlen - 1)
        self.hash = l.astype(numpy.uint)

        self.check_hash()

    def get_dist_pct(self, pct):
        # calculate inverse of dist fn
        val_inv = math.asinh(self.nonlinearity * pct) / self.factor
        val = min(max(float(val_inv), 0.0), 1.0)
        return val

    def __str__(self):
        return 'sinh'


class HistogramEqualizationDist(ColorDistBase):
    """
    The histogram equalization distribution function distributes colors
    based on the frequency of each data value.
    """

    def __init__(self, hashsize, colorlen=None):
        super(HistogramEqualizationDist, self).__init__(hashsize,
                                                         colorlen=colorlen)

    def calc_hash(self):
        pass

    # TODO: this method has a lot more overhead compared to the other
    # scaling methods because the hash array must be computed each time
    # the data is delivered to hash_array()--in the other scaling
    # methods it is precomputed in calc_hash().  Investigate whether
    # there is a way to make this more efficient.
    #
    def hash_array(self, idx):
        # NOTE: data could be assumed to be in the range 0..hashsize-1
        # at this point but clip as a precaution
        idx = idx.clip(0, self.hashsize-1)

        #get image histogram
        hist, bins = numpy.histogram(idx.flatten(),
                                     self.hashsize, density=False)
        cdf = hist.cumsum()

        # normalize to color range
        l = (cdf - cdf.min()) * (self.colorlen - 1) / (
            cdf.max() - cdf.min())
        self.hash = l.astype(numpy.uint)
        self.check_hash()

        arr = self.hash[idx]
        return arr

    def get_dist_pct(self, pct):
        # TODO: this is wrong but we need a way to invert the hash
        return pct

    def __str__(self):
        return 'histeq'



distributions = {
    'linear': LinearDist,
    'log': LogDist,
    'power': PowerDist,
    'sqrt': SqrtDist,
    'squared': SquaredDist,
    'asinh': AsinhDist,
    'sinh': SinhDist,
    'histeq': HistogramEqualizationDist,
    }

def add_dist(name, distClass):
    global distributions
    distributions[name.lower()] = distClass

def get_dist_names():
    a_names = set(distributions.keys())
    std_names = ['linear', 'log', 'power', 'sqrt', 'squared', 'asinh', 'sinh',
                 'histeq']
    rest = a_names - set(std_names)
    if len(rest) > 0:
        std_names = std_names + list(rest)
    return std_names

def get_dist(name):
    if not name in distributions:
        raise ColorDistError("Invalid distribution algorithm '%s'" % (name))
    return distributions[name]

#END