This file is indexed.

/usr/lib/python3/dist-packages/ginga/canvas/CanvasObject.py is in python3-ginga 2.6.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
#
# CanvasObject.py -- base class for shapes drawn on ginga canvases.
#
# This is open-source software licensed under a BSD license.
# Please see the file LICENSE.txt for details.
#
import math
import numpy
from collections import namedtuple

from ginga.misc import Callback, Bunch
from ginga import trcalc, colors
from ginga.util.six.moves import map

from . import coordmap

__all__ = ['CanvasObjectBase', 'get_canvas_type', 'get_canvas_types',
           'register_canvas_type', 'register_canvas_types']

colors_plus_none = [ None ] + colors.get_colors()

Point = namedtuple('Point', ['x', 'y'])

class EditPoint(Point):
    edit_color = 'yellow'
class MovePoint(EditPoint):
    edit_color = 'orangered'
class ScalePoint(EditPoint):
    edit_color = 'green'
class RotatePoint(EditPoint):
    edit_color = 'skyblue'

class CanvasObjectError(Exception):
    pass


class CanvasObjectBase(Callback.Callbacks):
    """This is the abstract base class for a CanvasObject.  A CanvasObject
    is an item that can be placed on a ImageViewCanvas.

    This class defines common methods used by all such objects.
    """

    def __init__(self, **kwdargs):
        if not hasattr(self, 'cb'):
            Callback.Callbacks.__init__(self)
        self.cap = 'ball'
        self.cap_radius = 4
        self.editable = True
        self.coord = 'data'
        self.ref_obj = None
        self.__dict__.update(kwdargs)
        self.data = None
        self.crdmap = None
        self.tag = None
        if not hasattr(self, 'kind'):
            self.kind = None
        # For debugging
        self.name = None
        self.viewer = None

        # For callbacks
        for name in ('edited', 'pick-down', 'pick-move', 'pick-up',
                     'pick-hover', 'pick-enter', 'pick-leave'):
            self.enable_callback(name)

    def initialize(self, canvas, viewer, logger):
        self.viewer = viewer
        self.logger = logger
        if self.crdmap is None:
            if self.coord is None:
                # default mapping is to data coordinates
                self.coord = 'data'

            if self.coord == 'offset':
                self.crdmap = coordmap.OffsetMapper(viewer, self.ref_obj)
            else:
                self.crdmap = viewer.get_coordmap(self.coord)

    def sync_state(self):
        """This method called when changes are made to the parameters.
        subclasses should override if they need any special state handling.
        """
        pass

    def set_data(self, **kwdargs):
        if self.data is None:
            self.data = Bunch.Bunch(kwdargs)
        else:
            self.data.update(kwdargs)

    def get_data(self, *args):
        if len(args) == 0:
            return self.data
        elif len(args) == 1:
            return self.data[args[0]]
        elif len(args) == 2:
            try:
                return self.data[args[0]]
            except KeyError:
                return args[1]
        else:
            raise CanvasObjectError("method get_data() takes at most 2 arguments")

    def use_coordmap(self, mapobj):
        self.crdmap = mapobj

    def canvascoords(self, viewer, data_x, data_y, center=None):
        if center is not None:
            self.logger.warn("`center` keyword is ignored and will be deprecated")

        return viewer.get_canvas_xy(data_x, data_y)

    def is_compound(self):
        return False

    def contains_arr(self, x_arr, y_arr):
        contains = numpy.asarray([False] * len(x_arr))
        return contains

    def contains(self, x, y):
        return False

    def select_contains(self, viewer, x, y):
        return self.contains(x, y)

    def draw_arrowhead(self, cr, x1, y1, x2, y2):
        i1, j1, i2, j2 = self.calc_vertexes(x1, y1, x2, y2)

        alpha = getattr(self, 'alpha', 1.0)
        cr.set_fill(self.color, alpha=alpha)
        cr.draw_polygon(((x2, y2), (i1, j1), (i2, j2)))
        cr.set_fill(None)

    def draw_caps(self, cr, cap, points, radius=None):
        i = 0
        for pt in points:
            cx, cy = pt
            if radius is None:
                radius = self.cap_radius
            alpha = getattr(self, 'alpha', 1.0)
            if cap == 'ball':
                color = self.color
                # Draw edit control points in different colors than the others
                if isinstance(pt, EditPoint):
                    cr.set_fill('black', alpha=alpha)
                    cr.draw_circle(cx, cy, radius+2.0)

                    color = pt.edit_color

                cr.set_fill(color, alpha=alpha)
                cr.draw_circle(cx, cy, radius)
                #cr.set_fill(self, None)
            i += 1

    def draw_edit(self, cr, viewer):
        bbox = self.get_bbox()
        cpoints = self.get_cpoints(viewer, points=bbox, no_rotate=True)
        cr.set_fill(None)
        cr.set_line(color='cyan', style='dash')
        cr.draw_polygon(cpoints)

        points = self.get_edit_points(viewer)
        cpoints = self.get_cpoints(viewer, points=points)
        # preserve point types for coloring
        def _map_cpt(pt, cpt):
            if isinstance(pt, EditPoint):
                return pt.__class__(*cpt)
            return cpt

        cpoints = tuple([ _map_cpt(points[i], cpoints[i])
                    for i in range(len(points)) ])
        self.draw_caps(cr, 'ball', cpoints)

    def calc_radius(self, viewer, p1, p2):
        x1, y1 = p1
        x2, y2 = p2
        # TODO: the accuracy of this calculation of radius might be improved?
        radius = math.sqrt(abs(y2 - y1)**2 + abs(x2 - x1)**2)
        return (x1, y1, radius)

    def calc_vertexes(self, start_cx, start_cy, end_cx, end_cy,
                     arrow_length=10, arrow_degrees=0.35):

        angle = math.atan2(end_cy - start_cy, end_cx - start_cx) + math.pi

        cx1 = end_cx + arrow_length * math.cos(angle - arrow_degrees);
        cy1 = end_cy + arrow_length * math.sin(angle - arrow_degrees);
        cx2 = end_cx + arrow_length * math.cos(angle + arrow_degrees);
        cy2 = end_cy + arrow_length * math.sin(angle + arrow_degrees);

        return (cx1, cy1, cx2, cy2)

    def swapxy(self, x1, y1, x2, y2):
        if x2 < x1:
            x1, x2 = x2, x1
        if y2 < y1:
            y1, y2 = y2, y1
        return (x1, y1, x2, y2)

    def scale_font(self, viewer):
        zoomlevel = viewer.get_zoom()
        if zoomlevel >= -4:
            return 14
        elif zoomlevel >= -6:
            return 12
        elif zoomlevel >= -8:
            return 10
        else:
            return 8

    def get_points(self):
        """Get the set of points that is used to draw the object.

        Points are returned in *data* coordinates.
        """
        points = list(map(lambda pt: self.crdmap.to_data(pt[0], pt[1]),
                          self.points))
        return points

    def get_data_points(self, points=None):
        if points is None:
            points = self.points
        points = list(map(lambda pt: self.crdmap.to_data(pt[0], pt[1]),
                          points))
        return points

    def set_data_points(self, points):
        points = list(map(lambda pt: self.crdmap.data_to(pt[0], pt[1]),
                          points))
        self.points = points

    def rotate(self, theta_deg, xoff=0, yoff=0):
        points = numpy.asarray(self.get_data_points(), dtype=numpy.double)
        points = trcalc.rotate_coord(points, theta_deg, [xoff, yoff])
        self.set_data_points(points)

    def rotate_by(self, theta_deg):
        ref_x, ref_y = self.get_reference_pt()
        self.rotate(theta_deg, xoff=ref_x, yoff=ref_y)

    def rerotate_by(self, theta_deg, detail):
        ref_x, ref_y = detail.center_pos
        points = numpy.asarray(detail.points, dtype=numpy.double)
        points = trcalc.rotate_coord(points, theta_deg, [ref_x, ref_y])
        self.set_data_points(points)

    def move_delta(self, xoff, yoff):
        ## self.points = list(map(
        ##     lambda pt: self.crdmap.offset_pt(pt, xoff, yoff),
        ##     self.points))
        points = numpy.asarray(self.get_data_points(), dtype=numpy.double)
        points.T[0] += xoff
        points.T[1] += yoff
        self.set_data_points(points)

    def move_to(self, xdst, ydst):
        x, y = self.get_reference_pt()
        return self.move_delta(xdst - x, ydst - y)

    def get_num_points(self):
        return(len(self.points))

    def set_point_by_index(self, i, pt):
        points = self.get_data_points()
        points[i] = pt
        self.set_data_points(points)

    def get_point_by_index(self, i):
        points = self.get_data_points()
        return points[i]

    def scale_by(self, scale_x, scale_y):
        ctr_x, ctr_y = self.get_center_pt()
        pts = numpy.asarray(self.get_data_points(), dtype=numpy.double)
        pts[:, 0] = (pts[:, 0] - ctr_x) * scale_x + ctr_x
        pts[:, 1] = (pts[:, 1] - ctr_y) * scale_y + ctr_y
        self.set_data_points(pts)

    def rescale_by(self, scale_x, scale_y, detail):
        ctr_x, ctr_y = detail.center_pos
        pts = numpy.asarray(detail.points, dtype=numpy.double)
        pts[:, 0] = (pts[:, 0] - ctr_x) * scale_x + ctr_x
        pts[:, 1] = (pts[:, 1] - ctr_y) * scale_y + ctr_y
        self.set_data_points(pts)

    def setup_edit(self, detail):
        """subclass should override as necessary."""
        detail.center_pos = self.get_center_pt()

    def calc_rotation_from_pt(self, pt, detail):
        x, y = pt
        ctr_x, ctr_y = detail.center_pos
        start_x, start_y = detail.start_pos
        # calc angle of starting point wrt origin
        deg1 = math.degrees(math.atan2(start_y - ctr_y,
                                       start_x - ctr_x))
        # calc angle of current point wrt origin
        deg2 = math.degrees(math.atan2(y - ctr_y, x - ctr_x))
        delta_deg = deg2 - deg1
        return delta_deg

    def calc_scale_from_pt(self, pt, detail):
        x, y = pt
        ctr_x, ctr_y = detail.center_pos
        start_x, start_y = detail.start_pos
        dx, dy = start_x - ctr_x, start_y - ctr_y
        # calc distance of starting point wrt origin
        dist1 = math.sqrt(dx**2.0 + dy**2.0)
        dx, dy = x - ctr_x, y - ctr_y
        # calc distance of current point wrt origin
        dist2 = math.sqrt(dx**2.0 + dy**2.0)
        scale_f = dist2 / dist1
        return scale_f

    def calc_dual_scale_from_pt(self, pt, detail):
        x, y = pt
        ctr_x, ctr_y = detail.center_pos
        start_x, start_y = detail.start_pos
        # calc distance of starting point wrt origin
        dx, dy = start_x - ctr_x, start_y - ctr_y
        # calc distance of current point wrt origin
        ex, ey = x - ctr_x, y - ctr_y
        scale_x, scale_y = float(ex) / dx, float(ey) / dy
        return scale_x, scale_y

    def convert_mapper(self, tomap):
        """
        Converts our object from using one coordinate map to another.

        NOTE: This is currently NOT WORKING, because radii are not
        converted correctly.
        """
        frommap = self.crdmap
        if frommap == tomap:
            return

        # convert radii
        if hasattr(self, 'radius'):
            xc, yc = self.get_center_pt()
            # get data coordinates of a point radius away from center
            # under current coordmap
            x1, y1 = frommap.to_data(xc, yc)
            x2, y2 = frommap.to_data(xc + self.radius, yc)
            x3, y3 = frommap.to_data(xc, yc + self.radius)
            # now convert these data coords to native coords in tomap
            nx1, ny1 = tomap.data_to(x1, y1)
            nx2, ny2 = tomap.data_to(x2, y2)
            nx3, ny3 = tomap.data_to(x3, y3)
            # recalculate radius using new coords
            self.radius = math.sqrt((nx2 - nx1)**2 + (ny3 - ny1)**2)

        elif hasattr(self, 'xradius'):
            # similar to above case, but there are 2 radii
            xc, yc = self.get_center_pt()
            x1, y1 = frommap.to_data(xc, yc)
            x2, y2 = frommap.to_data(xc + self.xradius, yc)
            x3, y3 = frommap.to_data(xc, yc + self.yradius)
            nx1, ny1 = tomap.data_to(x1, y1)
            nx2, ny2 = tomap.data_to(x2, y2)
            nx3, ny3 = tomap.data_to(x3, y3)
            self.xradius = math.fabs(nx2 - nx1)
            self.yradius = math.fabs(ny3 - ny1)

        # convert points
        for i in range(self.get_num_points()):
            # convert each point by going to data coords under old map
            # and then to native coords in the new map
            x, y = self.get_point_by_index(i)
            data_x, data_y = frommap.to_data(x, y)
            new_x, new_y = tomap.data_to(data_x, data_y)
            self.set_point_by_index(i, (new_x, new_y))

        # set our map to the new map
        self.crdmap = tomap

    # TODO: move these into utility module?
    #####
    def point_within_radius(self, a_arr, b_arr, x, y, canvas_radius,
                            scale_x=1.0, scale_y=1.0):
        """Point (a, b) and point (x, y) are in data coordinates.
        Return True if point (a, b) is within the circle defined by
        a center at point (x, y) and within canvas_radius.
        """
        dx = numpy.fabs(x - a_arr) * scale_x
        dy = numpy.fabs(y - b_arr) * scale_y
        new_radius = numpy.sqrt(dx**2 + dy**2)
        res = (new_radius <= canvas_radius)
        return res

    def within_radius(self, viewer, a_arr, b_arr, x, y, canvas_radius):
        """Point (a, b) and point (x, y) are in data coordinates.
        Return True if point (a, b) is within the circle defined by
        a center at point (x, y) and within canvas_radius.
        The distance between points is scaled by the canvas scale.
        """
        scale_x, scale_y = viewer.get_scale_xy()
        return self.point_within_radius(a_arr, b_arr, x, y, canvas_radius,
                                        scale_x=scale_x, scale_y=scale_y)

    def get_pt(self, viewer, points, x, y, canvas_radius=None):
        if canvas_radius is None:
            canvas_radius = self.cap_radius

        if hasattr(self, 'rot_deg'):
            # rotate point back to cartesian alignment for test
            ctr_x, ctr_y = self.get_center_pt()
            xp, yp = trcalc.rotate_pt(x, y, -self.rot_deg,
                                      xoff=ctr_x, yoff=ctr_y)
        else:
            xp, yp = x, y

        # TODO: do this using numpy array()
        for i in range(len(points)):
            a, b = points[i]
            if self.within_radius(viewer, xp, yp, a, b, canvas_radius):
                return i
        return None

    def point_within_line(self, a_arr, b_arr, x1, y1, x2, y2,
                          canvas_radius):
        # TODO: is there an algorithm with the cross and dot products
        # that is more efficient?
        r = canvas_radius
        xmin, xmax = min(x1, x2) - r, max(x1, x2) + r
        ymin, ymax = min(y1, y2) - r, max(y1, y2) + r
        div = numpy.sqrt((x2 - x1)**2 + (y2 - y1)**2)

        d = numpy.fabs((x2 - x1)*(y1 - b_arr) - (x1 - a_arr)*(y2 - y1)) / div

        ## contains = (xmin <= a_arr <= xmax) and (ymin <= b_arr <= ymax) and \
        ##            (d <= canvas_radius)
        contains = numpy.logical_and(
            numpy.logical_and(xmin <= a_arr, a_arr <= xmax),
            numpy.logical_and(d <= canvas_radius,
                              numpy.logical_and(ymin <= b_arr, b_arr <= ymax)))
        return contains

    def within_line(self, viewer, a_arr, b_arr, x1, y1, x2, y2,
                    canvas_radius):
        """Point (a, b) and points (x1, y1), (x2, y2) are in data coordinates.
        Return True if point (a, b) is within the line defined by
        a line from (x1, y1) to (x2, y2) and within canvas_radius.
        The distance between points is scaled by the canvas scale.
        """
        scale_x, scale_y = viewer.get_scale_xy()
        new_radius = canvas_radius * 1.0 / min(scale_x, scale_y)
        return self.point_within_line(a_arr, b_arr, x1, y1, x2, y2,
                                         new_radius)

    #####

    def get_center_pt(self):
        """Return the geometric average of points as data_points.
        """
        P = numpy.asarray(self.get_data_points(), dtype=numpy.double)
        x = P[:, 0]
        y = P[:, 1]
        ctr_x = numpy.sum(x) / float(len(x))
        ctr_y = numpy.sum(y) / float(len(y))
        return ctr_x, ctr_y

    def get_reference_pt(self):
        return self.get_center_pt()

    def get_move_scale_rotate_pts(self, viewer):
        """Returns 3 edit control points for editing this object: a move
        point, a scale point and a rotate point.  These points are all in
        data coordinates.
        """
        scale = viewer.get_scale_min()
        ref_x, ref_y = self.get_center_pt()
        xl, yl, xu, yu = self.get_llur()
        offset = 8.0 / scale
        scl_x, scl_y = xl - offset, yl - offset
        rot_x, rot_y = xu + offset, yu + offset
        if hasattr(self, 'rot_deg'):
            # if this is an object with a rotation attribute, pre rotate
            # the control points in the opposite direction, because they
            # will be rotated back
            theta = -self.rot_deg
            scl_x, scl_y = trcalc.rotate_pt(scl_x, scl_y, theta,
                                            xoff=ref_x, yoff=ref_y)
            rot_x, rot_y = trcalc.rotate_pt(rot_x, rot_y, theta,
                                            xoff=ref_x, yoff=ref_y)
        move_pt = MovePoint(ref_x, ref_y)
        scale_pt = ScalePoint(scl_x, scl_y)
        rotate_pt = RotatePoint(rot_x, rot_y)

        return (move_pt, scale_pt, rotate_pt)

    def get_cpoints(self, viewer, points=None, no_rotate=False):
        if points is None:
            points = self.get_points()

        points = numpy.asarray(points)

        if (not no_rotate) and hasattr(self, 'rot_deg') and self.rot_deg != 0.0:
            # rotate vertices according to rotation
            ctr_x, ctr_y = self.get_center_pt()
            points = trcalc.rotate_coord(points, self.rot_deg, (ctr_x, ctr_y))

        cpoints = tuple(map(lambda p: self.canvascoords(viewer, p[0], p[1]),
                            points))
        return cpoints

    def get_bbox(self):
        """
        Get lower-left and upper-right coordinates of the bounding box
        of this compound object.

        Returns
        -------
        x1, y1, x2, y2: a 4-tuple of the lower-left and upper-right coords
        """
        x1, y1, x2, y2 = self.get_llur()
        return ((x1, y1), (x1, y2), (x2, y2), (x2, y1))


# this is the data structure to which drawing classes are registered
drawCatalog = Bunch.Bunch(caseless=True)

def get_canvas_types():
    # force registration of all canvas types
    import ginga.canvas.types.all

    return drawCatalog

def get_canvas_type(name):
    # force registration of all canvas types
    import ginga.canvas.types.all

    return drawCatalog[name]

def register_canvas_type(name, klass):
    global drawCatalog
    drawCatalog[name] = klass

def register_canvas_types(klass_dict):
    global drawCatalog
    drawCatalog.update(klass_dict)

# funky boolean converter
_bool = lambda st: str(st).lower() == 'true'

# color converter
_color = lambda name: name


# END