This file is indexed.

/usr/lib/python3/dist-packages/mdp/test/test_svm_classifier.py is in python3-mdp 3.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from __future__ import division
from builtins import zip
from builtins import range
from builtins import object
from past.utils import old_div
from ._tools import *

def _randomly_filled_hypercube(widths, num_elem=1000):
    """Fills a hypercube with given widths, centred at the origin.
    """
    p = []
    for i in range(num_elem):
        rand_data = numx_rand.random(len(widths))
        rand_data = [w*(d - 0.5) for d, w in zip(rand_data, widths)]
        p.append(tuple(rand_data))
    return p

def _randomly_filled_hyperball(dim, radius, num_elem=1000):
    """Fills a hyperball with a number of random elements.
    """
    r = numx_rand.random(num_elem)
    points = numx_rand.random((num_elem, dim))
    for i in range(len(points)):
        norm = numx.linalg.norm(points[i])
        scale = pow(r[i], old_div(1.,dim))
        points[i] = points[i] * radius * scale / norm
    return points

def _random_clusters(positions, radius=1, num_elem=1000):
    """Puts random clusters with num_elem elements at the given positions.
    positions - a list of tuples
    """
    data = []
    for p in positions:
        dim = len(p)
        ball = _randomly_filled_hyperball(dim, radius, num_elem)
        ball = [numx.array(b) + numx.array(p) for b in ball]
        data.append(ball)
    return data

def _separable_data(positions, labels, radius=1, num_elem=1000, shuffled=False):
    """
    For each position, we create num_elem data points in a certain radius around
    that position. If shuffled, we shuffle the output data and labels.
    
    positions -- List of position tuples, e.g. [(1, 1), (-1, -1)]
    labels    -- List of labels, e.g. [1, -1]
    radius    -- The maximum distance to the position
    num_elem  -- The number of elements to be created
    shuffled  -- Should the output be shuffled.
    
    Returns:
      data, labels
    """
    assert len(positions) == len(labels)

    data = numx.vstack( _random_clusters(positions, radius, num_elem) )
    #data = numx.vstack( (numx_rand.random( (num_elem,2) ) - dist,
    #                     numx_rand.random( (num_elem,2) ) + dist) )
    a_labels = numx.hstack([[x] * num_elem for x in labels])
    if shuffled:
        ind = list(range(len(data)))
        numx_rand.shuffle(ind)
        return data[ind], a_labels[ind]
    return data, a_labels

def _sqdist(tuple_a, tuple_b):
    return sum( (a-b)**2 for a, b in zip(tuple_a, tuple_b) )

def test_separable_data_is_inside_radius():
    positions = [[(1, 1), (-1, -1)],
                 [(1, 1, 10), (100, -20, 30), (-1, 10, 1000)]]
    labels = [[1, -1], [1, 2, 3]]
    radii = [0.5, 1, 10]
    num_elem = 100

    for pos, labs in zip(positions, labels):
        for rad in radii:
            data, ls = _separable_data(pos, labs, rad, num_elem)

            for d,l in zip(data, ls):
                idx = labs.index(l)
                assert rad**2 > _sqdist(pos[idx], d)

@skip_on_condition(
    "not hasattr(mdp.nodes, 'ShogunSVMClassifier')",
    "This test requires the 'shogun' module.")
def test_ShogunSVMClassifier():
    # TODO: Implement parameter ranges
    num_train = 100
    num_test = 50
    for positions in [((1,), (-1,)),
                      ((1,1), (-1,-1)),
                      ((1,1,1), (-1,-1,1)),
                      ((1,1,1,1), (-1,1,1,1)),
                      ((1,1,1,1), (-1,-1,-1,-1)),
                      ((1,1), (-1,-1), (1, -1), (-1, 1))
                      ]:

        radius = 0.3

        if len(positions) == 2:
            labels = (-1, 1)
        elif len(positions) == 3:
            labels = (-1, 1, 1)
        elif len(positions) == 4:
            labels = (-1, -1, 1, 1)

        traindata_real, trainlab = _separable_data(positions, labels,
                                                          radius, num_train)
        testdata_real, testlab = _separable_data(positions, labels,
                                                        radius, num_test)


        classifiers = ['GMNPSVM', 'GNPPSVM', 'GPBTSVM', #'KernelPerceptron',
                       'LDA', 'LibSVM', #'LibSVMOneClass', 'MPDSVM',
                       'Perceptron', 'SVMLin']
        kernels = ['PolyKernel', 'LinearKernel', 'SigmoidKernel', 'GaussianKernel']

        #kernels = list(mdp.nodes.ShogunSVMClassifier.kernel_parameters.keys())
        combinations = {'classifier': classifiers,
                        'kernel': kernels}

        for comb in utils.orthogonal_permutations(combinations):
            # this is redundant but makes it clear,
            # what has been taken out deliberately
            if comb['kernel'] in ['PyramidChi2', 'Chi2Kernel']:
                # We don't have good init arguments for these
                continue
            if comb['classifier'] in ['LaRank', 'LibLinear', 'LibSVMMultiClass',
                                      'MKLClassification', 'MKLMultiClass',
                                      'MKLOneClass', 'MultiClassSVM', 'SVM',
                                      'SVMOcas', 'SVMSGD', 'ScatterSVM',
                                      'SubGradientSVM']:
                # We don't have good init arguments for these and/or they work differently
                continue

            # something does not work here: skipping
            if comb['classifier'] == 'GPBTSVM' and comb['kernel'] == 'LinearKernel':
                continue

            sg_node = mdp.nodes.ShogunSVMClassifier(classifier=comb['classifier'])

            if sg_node.classifier.takes_kernel:
                sg_node.set_kernel(comb['kernel'])

            # train in two chunks to check update mechanism
            sg_node.train( traindata_real[:num_train], trainlab[:num_train] )
            sg_node.train( traindata_real[num_train:], trainlab[num_train:] )

            assert sg_node.input_dim == len(traindata_real.T)

            out = sg_node.label(testdata_real)

            if sg_node.classifier.takes_kernel:
                # check that the kernel has stored all our training vectors
                assert sg_node.classifier.kernel.get_num_vec_lhs() == num_train * len(positions)
                # check that the kernel has also stored the latest classification vectors in rhs
                assert sg_node.classifier.kernel.get_num_vec_rhs() == num_test * len(positions)

            # Test also for inverse
            worked = numx.all(numx.sign(out) == testlab) or \
                     numx.all(numx.sign(out) == -testlab)
            failed = not worked

            should_fail = False
            if len(positions) == 2:
                if comb['classifier'] in ['LibSVMOneClass',
                                          'GMNPSVM']:
                    should_fail = True
                if comb['classifier'] == 'GPBTSVM' and \
                   comb['kernel'] in ['LinearKernel']:
                    should_fail = True

            # xor problem
            if len(positions) == 4:
                if comb['classifier'] in ['LibSVMOneClass', 'SVMLin', 'Perceptron',
                                          'LDA', 'GMNPSVM']:
                    should_fail = True
                if comb['classifier'] == 'LibSVM' and \
                   comb['kernel'] in ['LinearKernel', 'SigmoidKernel']:
                    should_fail = True
                if comb['classifier'] == 'GPBTSVM' and \
                   comb['kernel'] in ['LinearKernel', 'SigmoidKernel']:
                    should_fail = True
                if comb['classifier'] == 'GNPPSVM' and \
                   comb['kernel'] in ['LinearKernel', 'SigmoidKernel']:
                    should_fail = True

            if should_fail:
                msg = ("Classification should fail but did not in %s. Positions %s." %
                      (sg_node.classifier, positions))
            else:
                msg = ("Classification should not fail but failed in %s. Positions %s." %
                      (sg_node.classifier, positions))

            assert should_fail == failed, msg



class TestLibSVMClassifier(object):

    @skip_on_condition("not hasattr(mdp.nodes, 'LibSVMClassifier')",
                       "This test requires the 'libsvm' module.")
    def setup_method(self, method):
        self.combinations = {'kernel': mdp.nodes.LibSVMClassifier.kernels,
                             'classifier': mdp.nodes.LibSVMClassifier.classifiers}

    def test_that_parameters_are_correct(self):
        import svm as libsvm
        for comb in utils.orthogonal_permutations(self.combinations):
            C = 1.01
            epsilon = 1.1e-5
            svm_node = mdp.nodes.LibSVMClassifier(params={"C": C, "eps": epsilon})
            svm_node.set_kernel(comb['kernel'])
            svm_node.set_classifier(comb['classifier'])
            
            # check that the parameters are correct
            assert svm_node.parameter.kernel_type == getattr(libsvm, comb['kernel'])
            assert svm_node.parameter.svm_type == getattr(libsvm, comb['classifier'])
            assert svm_node.parameter.C == C
            assert svm_node.parameter.eps == epsilon

    def test_linear_separable_data(self):
        num_train = 100
        num_test = 50
        C = 1.01
        epsilon = 1e-5
        for positions in [((1,), (-1,)),
                          ((1,1), (-1,-1)),
                          ((1,1,1), (-1,-1,1)),
                          ((1,1,1,1), (-1,1,1,1)),
                          ((1,1,1,1), (-1,-1,-1,-1))]:
            radius = 0.3

            traindata_real, trainlab = _separable_data(positions, (-1, 1),
                                                       radius, num_train, True)
            testdata_real, testlab = _separable_data(positions, (-1, 1),
                                                     radius, num_test, True)

            for comb in utils.orthogonal_permutations(self.combinations):
                # Take out non-working cases
                if comb['classifier'] in ["ONE_CLASS"]:
                    continue
                if comb['kernel'] in ["SIGMOID", "POLY"]:
                    continue
                if len(positions[0]) == 1 and comb['kernel'] == "RBF":
                    # RBF won't work in 1d
                    continue

                svm_node = mdp.nodes.LibSVMClassifier(kernel=comb['kernel'],
                                                      classifier=comb['classifier'],
                                                      probability=True,
                                                      params={"C": C, "eps": epsilon})
                
                # train in two chunks to check update mechanism
                svm_node.train(traindata_real[:num_train], trainlab[:num_train])
                svm_node.train(traindata_real[num_train:], trainlab[num_train:])

                assert svm_node.input_dim == len(traindata_real.T)

                out = svm_node.label(testdata_real)

                testerr = numx.all(numx.sign(out) == testlab)
                assert testerr, ('classification error for ', comb)

                # we don't have ranks in our regression models
                if not comb['classifier'].endswith("SVR"):
                    pos1_rank = numx.array(svm_node.rank(numx.array([positions[0]])))
                    pos2_rank = numx.array(svm_node.rank(numx.array([positions[1]])))

                    assert numx.all(pos1_rank == -pos2_rank)
                    assert numx.all(abs(pos1_rank) == 1)
                    assert numx.all(abs(pos2_rank) == 1)