This file is indexed.

/usr/lib/python3/dist-packages/networkx/algorithms/components/strongly_connected.py is in python3-networkx 1.11-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
# -*- coding: utf-8 -*-
"""Strongly connected components.
"""
#    Copyright (C) 2004-2015 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
import networkx as nx
from networkx.utils.decorators import not_implemented_for

__authors__ = "\n".join(['Eben Kenah',
                         'Aric Hagberg (hagberg@lanl.gov)'
                         'Christopher Ellison',
                         'Ben Edwards (bedwards@cs.unm.edu)'])

__all__ = ['number_strongly_connected_components',
           'strongly_connected_components',
           'strongly_connected_component_subgraphs',
           'is_strongly_connected',
           'strongly_connected_components_recursive',
           'kosaraju_strongly_connected_components',
           'condensation']


@not_implemented_for('undirected')
def strongly_connected_components(G):
    """Generate nodes in strongly connected components of graph.

    Parameters
    ----------
    G : NetworkX Graph
        An directed graph.

    Returns
    -------
    comp : generator of sets
        A generator of sets of nodes, one for each strongly connected
        component of G.

    Raises
    ------
    NetworkXNotImplemented:
        If G is undirected.

    Examples
    --------
    Generate a sorted list of strongly connected components, largest first.

    >>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
    >>> G.add_cycle([10, 11, 12])
    >>> [len(c) for c in sorted(nx.strongly_connected_components(G),
    ...                         key=len, reverse=True)]
    [4, 3]

    If you only want the largest component, it's more efficient to
    use max instead of sort.

    >>> largest = max(nx.strongly_connected_components(G), key=len)

    See Also
    --------
    connected_components,
    weakly_connected_components

    Notes
    -----
    Uses Tarjan's algorithm with Nuutila's modifications.
    Nonrecursive version of algorithm.

    References
    ----------
    .. [1] Depth-first search and linear graph algorithms, R. Tarjan
       SIAM Journal of Computing 1(2):146-160, (1972).

    .. [2] On finding the strongly connected components in a directed graph.
       E. Nuutila and E. Soisalon-Soinen
       Information Processing Letters 49(1): 9-14, (1994)..

    """
    preorder = {}
    lowlink = {}
    scc_found = {}
    scc_queue = []
    i = 0     # Preorder counter
    for source in G:
        if source not in scc_found:
            queue = [source]
            while queue:
                v = queue[-1]
                if v not in preorder:
                    i = i + 1
                    preorder[v] = i
                done = 1
                v_nbrs = G[v]
                for w in v_nbrs:
                    if w not in preorder:
                        queue.append(w)
                        done = 0
                        break
                if done == 1:
                    lowlink[v] = preorder[v]
                    for w in v_nbrs:
                        if w not in scc_found:
                            if preorder[w] > preorder[v]:
                                lowlink[v] = min([lowlink[v], lowlink[w]])
                            else:
                                lowlink[v] = min([lowlink[v], preorder[w]])
                    queue.pop()
                    if lowlink[v] == preorder[v]:
                        scc_found[v] = True
                        scc = {v}
                        while scc_queue and preorder[scc_queue[-1]] > preorder[v]:
                            k = scc_queue.pop()
                            scc_found[k] = True
                            scc.add(k)
                        yield scc
                    else:
                        scc_queue.append(v)


@not_implemented_for('undirected')
def kosaraju_strongly_connected_components(G, source=None):
    """Generate nodes in strongly connected components of graph.

    Parameters
    ----------
    G : NetworkX Graph
        An directed graph.

    Returns
    -------
    comp : generator of sets
        A genrator of sets of nodes, one for each strongly connected
        component of G.

    Raises
    ------
    NetworkXNotImplemented:
        If G is undirected.

    Examples
    --------
    Generate a sorted list of strongly connected components, largest first.

    >>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
    >>> G.add_cycle([10, 11, 12])
    >>> [len(c) for c in sorted(nx.kosaraju_strongly_connected_components(G),
    ...                         key=len, reverse=True)]
    [4, 3]

    If you only want the largest component, it's more efficient to
    use max instead of sort.

    >>> largest = max(nx.kosaraju_strongly_connected_components(G), key=len)

    See Also
    --------
    connected_components
    weakly_connected_components

    Notes
    -----
    Uses Kosaraju's algorithm.

    """
    with nx.utils.reversed(G):
        post = list(nx.dfs_postorder_nodes(G, source=source))

    seen = set()
    while post:
        r = post.pop()
        if r in seen:
            continue
        c = nx.dfs_preorder_nodes(G, r)
        new = {v for v in c if v not in seen}
        yield new
        seen.update(new)


@not_implemented_for('undirected')
def strongly_connected_components_recursive(G):
    """Generate nodes in strongly connected components of graph.

    Recursive version of algorithm.

    Parameters
    ----------
    G : NetworkX Graph
        An directed graph.

    Returns
    -------
    comp : generator of sets
        A generator of sets of nodes, one for each strongly connected
        component of G.

    Raises
    ------
    NetworkXNotImplemented:
        If G is undirected

    Examples
    --------
    Generate a sorted list of strongly connected components, largest first.

    >>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
    >>> G.add_cycle([10, 11, 12])
    >>> [len(c) for c in sorted(nx.strongly_connected_components_recursive(G),
    ...                         key=len, reverse=True)]
    [4, 3]

    If you only want the largest component, it's more efficient to
    use max instead of sort.

    >>> largest = max(nx.strongly_connected_components_recursive(G), key=len)

    See Also
    --------
    connected_components

    Notes
    -----
    Uses Tarjan's algorithm with Nuutila's modifications.

    References
    ----------
    .. [1] Depth-first search and linear graph algorithms, R. Tarjan
       SIAM Journal of Computing 1(2):146-160, (1972).

    .. [2] On finding the strongly connected components in a directed graph.
       E. Nuutila and E. Soisalon-Soinen
       Information Processing Letters 49(1): 9-14, (1994)..

    """
    def visit(v, cnt):
        root[v] = cnt
        visited[v] = cnt
        cnt += 1
        stack.append(v)
        for w in G[v]:
            if w not in visited:
                for c in visit(w, cnt):
                    yield c
            if w not in component:
                root[v] = min(root[v], root[w])
        if root[v] == visited[v]:
            component[v] = root[v]
            tmpc = {v}  # hold nodes in this component
            while stack[-1] != v:
                w = stack.pop()
                component[w] = root[v]
                tmpc.add(w)
            stack.remove(v)
            yield tmpc

    visited = {}
    component = {}
    root = {}
    cnt = 0
    stack = []
    for source in G:
        if source not in visited:
            for c in visit(source, cnt):
                yield c


@not_implemented_for('undirected')
def strongly_connected_component_subgraphs(G, copy=True):
    """Generate strongly connected components as subgraphs.

    Parameters
    ----------
    G : NetworkX Graph
       A directed graph.

    copy : boolean, optional
        if copy is True, Graph, node, and edge attributes are copied to
        the subgraphs.

    Returns
    -------
    comp : generator of graphs
      A generator of graphs, one for each strongly connected component of G.

    Examples
    --------
    Generate a sorted list of strongly connected components, largest first.

    >>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
    >>> G.add_cycle([10, 11, 12])
    >>> [len(Gc) for Gc in sorted(nx.strongly_connected_component_subgraphs(G),
    ...                         key=len, reverse=True)]
    [4, 3]

    If you only want the largest component, it's more efficient to
    use max instead of sort.

    >>> Gc = max(nx.strongly_connected_component_subgraphs(G), key=len)

    See Also
    --------
    connected_component_subgraphs
    weakly_connected_component_subgraphs

    """
    for comp in strongly_connected_components(G):
        if copy:
            yield G.subgraph(comp).copy()
        else:
            yield G.subgraph(comp)


@not_implemented_for('undirected')
def number_strongly_connected_components(G):
    """Return number of strongly connected components in graph.

    Parameters
    ----------
    G : NetworkX graph
       A directed graph.

    Returns
    -------
    n : integer
       Number of strongly connected components

    See Also
    --------
    connected_components

    Notes
    -----
    For directed graphs only.
    """
    return len(list(strongly_connected_components(G)))


@not_implemented_for('undirected')
def is_strongly_connected(G):
    """Test directed graph for strong connectivity.

    Parameters
    ----------
    G : NetworkX Graph
       A directed graph.

    Returns
    -------
    connected : bool
      True if the graph is strongly connected, False otherwise.

    See Also
    --------
    strongly_connected_components

    Notes
    -----
    For directed graphs only.
    """
    if len(G) == 0:
        raise nx.NetworkXPointlessConcept(
            """Connectivity is undefined for the null graph.""")

    return len(list(strongly_connected_components(G))[0]) == len(G)


@not_implemented_for('undirected')
def condensation(G, scc=None):
    """Returns the condensation of G.

    The condensation of G is the graph with each of the strongly connected
    components contracted into a single node.

    Parameters
    ----------
    G : NetworkX DiGraph
       A directed graph.

    scc:  list or generator (optional, default=None)
       Strongly connected components. If provided, the elements in
       `scc` must partition the nodes in `G`. If not provided, it will be
       calculated as scc=nx.strongly_connected_components(G).

    Returns
    -------
    C : NetworkX DiGraph
       The condensation graph C of G. The node labels are integers
       corresponding to the index of the component in the list of
       strongly connected components of G. C has a graph attribute named
       'mapping' with a dictionary mapping the original nodes to the
       nodes in C to which they belong. Each node in C also has a node
       attribute 'members' with the set of original nodes in G that
       form the SCC that the node in C represents.

    Raises
    ------
    NetworkXNotImplemented:
        If G is not directed

    Notes
    -----
    After contracting all strongly connected components to a single node,
    the resulting graph is a directed acyclic graph.

    """
    if scc is None:
        scc = nx.strongly_connected_components(G)
    mapping = {}
    members = {}
    C = nx.DiGraph()
    for i, component in enumerate(scc):
        members[i] = component
        mapping.update((n, i) for n in component)
    number_of_components = i + 1
    C.add_nodes_from(range(number_of_components))
    C.add_edges_from((mapping[u], mapping[v]) for u, v in G.edges_iter()
                     if mapping[u] != mapping[v])
    # Add a list of members (ie original nodes) to each node (ie scc) in C.
    nx.set_node_attributes(C, 'members', members)
    # Add mapping dict as graph attribute
    C.graph['mapping'] = mapping
    return C