This file is indexed.

/usr/lib/python3/dist-packages/networkx/algorithms/connectivity/tests/test_connectivity.py is in python3-networkx 1.11-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import itertools
from nose.tools import assert_equal, assert_true, assert_false, assert_raises
import networkx as nx

from networkx.algorithms.flow import (edmonds_karp, preflow_push,
    shortest_augmenting_path) 

flow_funcs = [edmonds_karp, preflow_push, shortest_augmenting_path]

# connectivity functions not imported to the base namespace
from networkx.algorithms.connectivity import (local_edge_connectivity,
    local_node_connectivity)


msg = "Assertion failed in function: {0}"

# helper functions for tests
def _generate_no_biconnected(max_attempts=50):
    attempts = 0
    while True:
        G = nx.fast_gnp_random_graph(100, 0.0575)
        if nx.is_connected(G) and not nx.is_biconnected(G):
            attempts = 0
            yield G
        else:
            if attempts >= max_attempts:
                msg = "Tried %d times: no suitable Graph."
                raise Exception(msg % max_attempts)
            else:
                attempts += 1


def test_average_connectivity():
    # figure 1 from:
    # Beineke, L., O. Oellermann, and R. Pippert (2002). The average 
    # connectivity of a graph. Discrete mathematics 252(1-3), 31-45
    # http://www.sciencedirect.com/science/article/pii/S0012365X01001807
    G1 = nx.path_graph(3)
    G1.add_edges_from([(1, 3),(1, 4)])
    G2 = nx.path_graph(3)
    G2.add_edges_from([(1, 3),(1, 4),(0, 3),(0, 4),(3, 4)])
    G3 = nx.Graph()
    for flow_func in flow_funcs:
        kwargs = dict(flow_func=flow_func)
        assert_equal(nx.average_node_connectivity(G1, **kwargs), 1,
                     msg=msg.format(flow_func.__name__))
        assert_equal(nx.average_node_connectivity(G2, **kwargs), 2.2,
                     msg=msg.format(flow_func.__name__))
        assert_equal(nx.average_node_connectivity(G3, **kwargs), 0,
                     msg=msg.format(flow_func.__name__))

def test_average_connectivity_directed():
    G = nx.DiGraph([(1,3),(1,4),(1,5)])
    for flow_func in flow_funcs:
        assert_equal(nx.average_node_connectivity(G), 0.25,
                     msg=msg.format(flow_func.__name__))

def test_articulation_points():
    Ggen = _generate_no_biconnected()
    for flow_func in flow_funcs:
        for i in range(3):
            G = next(Ggen)
            assert_equal(nx.node_connectivity(G, flow_func=flow_func), 1,
                         msg=msg.format(flow_func.__name__))

def test_brandes_erlebach():
    # Figure 1 chapter 7: Connectivity
    # http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf
    G = nx.Graph()
    G.add_edges_from([(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 6), (3, 4),
                      (3, 6), (4, 6), (4, 7), (5, 7), (6, 8), (6, 9), (7, 8),
                      (7, 10), (8, 11), (9, 10), (9, 11), (10, 11)])
    for flow_func in flow_funcs:
        kwargs = dict(flow_func=flow_func)
        assert_equal(3, local_edge_connectivity(G, 1, 11, **kwargs),
                     msg=msg.format(flow_func.__name__))
        assert_equal(3, nx.edge_connectivity(G, 1, 11, **kwargs),
                     msg=msg.format(flow_func.__name__))
        assert_equal(2, local_node_connectivity(G, 1, 11, **kwargs),
                     msg=msg.format(flow_func.__name__))
        assert_equal(2, nx.node_connectivity(G, 1, 11, **kwargs),
                     msg=msg.format(flow_func.__name__))
        assert_equal(2, nx.edge_connectivity(G, **kwargs), # node 5 has degree 2
                     msg=msg.format(flow_func.__name__))
        assert_equal(2, nx.node_connectivity(G, **kwargs),
                     msg=msg.format(flow_func.__name__))

def test_white_harary_1():
    # Figure 1b white and harary (2001)
    # # http://eclectic.ss.uci.edu/~drwhite/sm-w23.PDF
    # A graph with high adhesion (edge connectivity) and low cohesion
    # (vertex connectivity)
    G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4))
    G.remove_node(7)
    for i in range(4, 7):
        G.add_edge(0, i)
    G = nx.disjoint_union(G, nx.complete_graph(4))
    G.remove_node(G.order() - 1)
    for i in range(7, 10):
        G.add_edge(0, i)
    for flow_func in flow_funcs:
        assert_equal(1, nx.node_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))
        assert_equal(3, nx.edge_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))

def test_white_harary_2():
    # Figure 8 white and harary (2001)
    # # http://eclectic.ss.uci.edu/~drwhite/sm-w23.PDF
    G = nx.disjoint_union(nx.complete_graph(4), nx.complete_graph(4))
    G.add_edge(0, 4)
    # kappa <= lambda <= delta
    assert_equal(3, min(nx.core_number(G).values()))
    for flow_func in flow_funcs:
        assert_equal(1, nx.node_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))
        assert_equal(1, nx.edge_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))

def test_complete_graphs():
    for n in range(5, 20, 5):
        for flow_func in flow_funcs:
            G = nx.complete_graph(n)
            assert_equal(n-1, nx.node_connectivity(G, flow_func=flow_func),
                         msg=msg.format(flow_func.__name__))
            assert_equal(n-1, nx.node_connectivity(G.to_directed(),
                                                   flow_func=flow_func),
                         msg=msg.format(flow_func.__name__))
            assert_equal(n-1, nx.edge_connectivity(G, flow_func=flow_func),
                         msg=msg.format(flow_func.__name__))
            assert_equal(n-1, nx.edge_connectivity(G.to_directed(),
                                                   flow_func=flow_func),
                         msg=msg.format(flow_func.__name__))

def test_empty_graphs():
    for k in range(5, 25, 5):
        G = nx.empty_graph(k)
        for flow_func in flow_funcs:
            assert_equal(0, nx.node_connectivity(G, flow_func=flow_func),
                         msg=msg.format(flow_func.__name__))
            assert_equal(0, nx.edge_connectivity(G, flow_func=flow_func),
                         msg=msg.format(flow_func.__name__))

def test_petersen():
    G = nx.petersen_graph()
    for flow_func in flow_funcs:
        assert_equal(3, nx.node_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))
        assert_equal(3, nx.edge_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))

def test_tutte():
    G = nx.tutte_graph()
    for flow_func in flow_funcs:
        assert_equal(3, nx.node_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))
        assert_equal(3, nx.edge_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))

def test_dodecahedral():
    G = nx.dodecahedral_graph()
    for flow_func in flow_funcs:
        assert_equal(3, nx.node_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))
        assert_equal(3, nx.edge_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))

def test_octahedral():
    G=nx.octahedral_graph()
    for flow_func in flow_funcs:
        assert_equal(4, nx.node_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))
        assert_equal(4, nx.edge_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))

def test_icosahedral():
    G=nx.icosahedral_graph()
    for flow_func in flow_funcs:
        assert_equal(5, nx.node_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))
        assert_equal(5, nx.edge_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))

def test_missing_source():
    G = nx.path_graph(4)
    for flow_func in flow_funcs:
        assert_raises(nx.NetworkXError, nx.node_connectivity, G, 10, 1,
                      flow_func=flow_func)

def test_missing_target():
    G = nx.path_graph(4)
    for flow_func in flow_funcs:
        assert_raises(nx.NetworkXError, nx.node_connectivity, G, 1, 10,
                      flow_func=flow_func)

def test_edge_missing_source():
    G = nx.path_graph(4)
    for flow_func in flow_funcs:
        assert_raises(nx.NetworkXError, nx.edge_connectivity, G, 10, 1,
                      flow_func=flow_func)

def test_edge_missing_target():
    G = nx.path_graph(4)
    for flow_func in flow_funcs:
        assert_raises(nx.NetworkXError, nx.edge_connectivity, G, 1, 10,
                      flow_func=flow_func)

def test_not_weakly_connected():
    G = nx.DiGraph()
    G.add_path([1, 2, 3])
    G.add_path([4, 5])
    for flow_func in flow_funcs:
        assert_equal(nx.node_connectivity(G), 0,
                     msg=msg.format(flow_func.__name__))
        assert_equal(nx.edge_connectivity(G), 0,
                     msg=msg.format(flow_func.__name__))

def test_not_connected():
    G = nx.Graph()
    G.add_path([1, 2, 3])
    G.add_path([4, 5])
    for flow_func in flow_funcs:
        assert_equal(nx.node_connectivity(G), 0,
                     msg=msg.format(flow_func.__name__))
        assert_equal(nx.edge_connectivity(G), 0,
                     msg=msg.format(flow_func.__name__))

def test_directed_edge_connectivity():
    G = nx.cycle_graph(10, create_using=nx.DiGraph()) # only one direction
    D = nx.cycle_graph(10).to_directed() # 2 reciprocal edges
    for flow_func in flow_funcs:
        assert_equal(1, nx.edge_connectivity(G, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))
        assert_equal(1, local_edge_connectivity(G, 1, 4, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))
        assert_equal(1, nx.edge_connectivity(G, 1, 4, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))
        assert_equal(2, nx.edge_connectivity(D, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))
        assert_equal(2, local_edge_connectivity(D, 1, 4, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))
        assert_equal(2, nx.edge_connectivity(D, 1, 4, flow_func=flow_func),
                     msg=msg.format(flow_func.__name__))

def test_cutoff():
    G = nx.complete_graph(5)
    for local_func in [local_edge_connectivity, local_node_connectivity]:
        for flow_func in flow_funcs:
            if flow_func is preflow_push:
                # cutoff is not supported by preflow_push
                continue
            for cutoff in [3, 2, 1]:
                result = local_func(G, 0, 4, flow_func=flow_func, cutoff=cutoff)
                assert_equal(cutoff, result,
                             msg="cutoff error in {0}".format(flow_func.__name__))

def test_invalid_auxiliary():
    G = nx.complete_graph(5)
    assert_raises(nx.NetworkXError, local_node_connectivity, G, 0, 3,
                  auxiliary=G)

def test_interface_only_source():
    G = nx.complete_graph(5)
    for interface_func in [nx.node_connectivity, nx.edge_connectivity]:
        assert_raises(nx.NetworkXError, interface_func, G, s=0)

def test_interface_only_target():
    G = nx.complete_graph(5)
    for interface_func in [nx.node_connectivity, nx.edge_connectivity]:
        assert_raises(nx.NetworkXError, interface_func, G, t=3)

def test_edge_connectivity_flow_vs_stoer_wagner():
    graph_funcs = [
        nx.icosahedral_graph,
        nx.octahedral_graph,
        nx.dodecahedral_graph,
    ]
    for graph_func in graph_funcs:
        G = graph_func()
        assert_equal(nx.stoer_wagner(G)[0], nx.edge_connectivity(G))


class TestAllPairsNodeConnectivity:

    def setUp(self):
        self.path = nx.path_graph(7)
        self.directed_path = nx.path_graph(7, create_using=nx.DiGraph())
        self.cycle = nx.cycle_graph(7)
        self.directed_cycle = nx.cycle_graph(7, create_using=nx.DiGraph())
        self.gnp = nx.gnp_random_graph(30, 0.1)
        self.directed_gnp = nx.gnp_random_graph(30, 0.1, directed=True)
        self.K20 = nx.complete_graph(20)
        self.K10 = nx.complete_graph(10)
        self.K5 = nx.complete_graph(5)
        self.G_list = [self.path, self.directed_path, self.cycle,
            self.directed_cycle, self.gnp, self.directed_gnp, self.K10,
            self.K5, self.K20]

    def test_cycles(self):
        K_undir = nx.all_pairs_node_connectivity(self.cycle)
        for source in K_undir:
            for target, k in K_undir[source].items():
                assert_true(k == 2)
        K_dir = nx.all_pairs_node_connectivity(self.directed_cycle)
        for source in K_dir:
            for target, k in K_dir[source].items():
                assert_true(k == 1)

    def test_complete(self):
        for G in [self.K10, self.K5, self.K20]:
            K = nx.all_pairs_node_connectivity(G)
            for source in K:
                for target, k in K[source].items():
                    assert_true(k == len(G)-1)

    def test_paths(self):
        K_undir = nx.all_pairs_node_connectivity(self.path)
        for source in K_undir:
            for target, k in K_undir[source].items():
                assert_true(k == 1)
        K_dir = nx.all_pairs_node_connectivity(self.directed_path)
        for source in K_dir:
            for target, k in K_dir[source].items():
                if source < target:
                    assert_true(k == 1)
                else:
                    assert_true(k == 0)

    def test_all_pairs_connectivity_nbunch(self):
        G = nx.complete_graph(5)
        nbunch = [0, 2, 3]
        C = nx.all_pairs_node_connectivity(G, nbunch=nbunch)
        assert_equal(len(C), len(nbunch))

    def test_all_pairs_connectivity_icosahedral(self):
        G = nx.icosahedral_graph()
        C = nx.all_pairs_node_connectivity(G)
        assert_true(all(5 == C[u][v] for u, v in itertools.combinations(G, 2)))

    def test_all_pairs_connectivity(self):
        G = nx.Graph()
        nodes = [0, 1, 2, 3]
        G.add_path(nodes)
        A = {n: {} for n in G}
        for u, v in itertools.combinations(nodes,2):
            A[u][v] = A[v][u] = nx.node_connectivity(G, u, v)
        C = nx.all_pairs_node_connectivity(G)
        assert_equal(sorted((k, sorted(v)) for k, v in A.items()),
                     sorted((k, sorted(v)) for k, v in C.items()))

    def test_all_pairs_connectivity_directed(self):
        G = nx.DiGraph()
        nodes = [0, 1, 2, 3]
        G.add_path(nodes)
        A = {n: {} for n in G}
        for u, v in itertools.permutations(nodes, 2):
            A[u][v] = nx.node_connectivity(G, u, v)
        C = nx.all_pairs_node_connectivity(G)
        assert_equal(sorted((k, sorted(v)) for k, v in A.items()),
                     sorted((k, sorted(v)) for k, v in C.items()))

    def test_all_pairs_connectivity_nbunch(self):
        G = nx.complete_graph(5)
        nbunch = [0, 2, 3]
        A = {n: {} for n in nbunch}
        for u, v in itertools.combinations(nbunch, 2):
            A[u][v] = A[v][u] = nx.node_connectivity(G, u, v)
        C = nx.all_pairs_node_connectivity(G, nbunch=nbunch)
        assert_equal(sorted((k, sorted(v)) for k, v in A.items()),
                     sorted((k, sorted(v)) for k, v in C.items()))

    def test_all_pairs_connectivity_nbunch_iter(self):
        G = nx.complete_graph(5)
        nbunch = [0, 2, 3]
        A = {n: {} for n in nbunch}
        for u, v in itertools.combinations(nbunch, 2):
            A[u][v] = A[v][u] = nx.node_connectivity(G, u, v)
        C = nx.all_pairs_node_connectivity(G, nbunch=iter(nbunch))
        assert_equal(sorted((k, sorted(v)) for k, v in A.items()),
                     sorted((k, sorted(v)) for k, v in C.items()))