This file is indexed.

/usr/lib/python3/dist-packages/networkx/classes/multigraph.py is in python3-networkx 1.11-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
"""Base class for MultiGraph."""
#    Copyright (C) 2004-2015 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
from copy import deepcopy
import networkx as nx
from networkx.classes.graph import Graph
from networkx import NetworkXError
__author__ = """\n""".join(['Aric Hagberg (hagberg@lanl.gov)',
                            'Pieter Swart (swart@lanl.gov)',
                            'Dan Schult(dschult@colgate.edu)'])


class MultiGraph(Graph):
    """
    An undirected graph class that can store multiedges.

    Multiedges are multiple edges between two nodes.  Each edge
    can hold optional data or attributes.

    A MultiGraph holds undirected edges.  Self loops are allowed.

    Nodes can be arbitrary (hashable) Python objects with optional
    key/value attributes.

    Edges are represented as links between nodes with optional
    key/value attributes.

    Parameters
    ----------
    data : input graph
        Data to initialize graph.  If data=None (default) an empty
        graph is created.  The data can be an edge list, or any
        NetworkX graph object.  If the corresponding optional Python
        packages are installed the data can also be a NumPy matrix
        or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

    attr : keyword arguments, optional (default= no attributes)
        Attributes to add to graph as key=value pairs.

    See Also
    --------
    Graph
    DiGraph
    MultiDiGraph

    Examples
    --------
    Create an empty graph structure (a "null graph") with no nodes and
    no edges.

    >>> G = nx.MultiGraph()

    G can be grown in several ways.

    **Nodes:**

    Add one node at a time:

    >>> G.add_node(1)

    Add the nodes from any container (a list, dict, set or
    even the lines from a file or the nodes from another graph).

    >>> G.add_nodes_from([2,3])
    >>> G.add_nodes_from(range(100,110))
    >>> H=nx.Graph()
    >>> H.add_path([0,1,2,3,4,5,6,7,8,9])
    >>> G.add_nodes_from(H)

    In addition to strings and integers any hashable Python object
    (except None) can represent a node, e.g. a customized node object,
    or even another Graph.

    >>> G.add_node(H)

    **Edges:**

    G can also be grown by adding edges.

    Add one edge,

    >>> G.add_edge(1, 2)

    a list of edges,

    >>> G.add_edges_from([(1,2),(1,3)])

    or a collection of edges,

    >>> G.add_edges_from(H.edges())

    If some edges connect nodes not yet in the graph, the nodes
    are added automatically.  If an edge already exists, an additional
    edge is created and stored using a key to identify the edge.
    By default the key is the lowest unused integer.

    >>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
    >>> G[4]
    {3: {0: {}}, 5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

    **Attributes:**

    Each graph, node, and edge can hold key/value attribute pairs
    in an associated attribute dictionary (the keys must be hashable).
    By default these are empty, but can be added or changed using
    add_edge, add_node or direct manipulation of the attribute
    dictionaries named graph, node and edge respectively.

    >>> G = nx.MultiGraph(day="Friday")
    >>> G.graph
    {'day': 'Friday'}

    Add node attributes using add_node(), add_nodes_from() or G.node

    >>> G.add_node(1, time='5pm')
    >>> G.add_nodes_from([3], time='2pm')
    >>> G.node[1]
    {'time': '5pm'}
    >>> G.node[1]['room'] = 714
    >>> del G.node[1]['room'] # remove attribute
    >>> G.nodes(data=True)
    [(1, {'time': '5pm'}), (3, {'time': '2pm'})]

    Warning: adding a node to G.node does not add it to the graph.

    Add edge attributes using add_edge(), add_edges_from(), subscript
    notation, or G.edge.

    >>> G.add_edge(1, 2, weight=4.7 )
    >>> G.add_edges_from([(3,4),(4,5)], color='red')
    >>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
    >>> G[1][2][0]['weight'] = 4.7
    >>> G.edge[1][2][0]['weight'] = 4

    **Shortcuts:**

    Many common graph features allow python syntax to speed reporting.

    >>> 1 in G     # check if node in graph
    True
    >>> [n for n in G if n<3]   # iterate through nodes
    [1, 2]
    >>> len(G)  # number of nodes in graph
    5
    >>> G[1] # adjacency dict keyed by neighbor to edge attributes
    ...            # Note: you should not change this dict manually!
    {2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

    The fastest way to traverse all edges of a graph is via
    adjacency_iter(), but the edges() method is often more convenient.

    >>> for n,nbrsdict in G.adjacency_iter():
    ...     for nbr,keydict in nbrsdict.items():
    ...        for key,eattr in keydict.items():
    ...            if 'weight' in eattr:
    ...                (n,nbr,key,eattr['weight'])
    (1, 2, 0, 4)
    (2, 1, 0, 4)
    (2, 3, 0, 8)
    (3, 2, 0, 8)
    >>> G.edges(data='weight', keys=True)
    [(1, 2, 0, 4), (1, 2, 1, None), (2, 3, 0, 8), (3, 4, 0, None), (4, 5, 0, None)]

    **Reporting:**

    Simple graph information is obtained using methods.
    Iterator versions of many reporting methods exist for efficiency.
    Methods exist for reporting nodes(), edges(), neighbors() and degree()
    as well as the number of nodes and edges.

    For details on these and other miscellaneous methods, see below.

    **Subclasses (Advanced):**

    The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure.
    The outer dict (node_dict) holds adjacency lists keyed by node.
    The next dict (adjlist) represents the adjacency list and holds
    edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr
    dict keyed by edge key. The inner dict (edge_attr) represents
    the edge data and holds edge attribute values keyed by attribute names.

    Each of these four dicts in the dict-of-dict-of-dict-of-dict
    structure can be replaced by a user defined dict-like object.
    In general, the dict-like features should be maintained but
    extra features can be added. To replace one of the dicts create
    a new graph class by changing the class(!) variable holding the
    factory for that dict-like structure. The variable names
    are node_dict_factory, adjlist_dict_factory, edge_key_dict_factory
    and edge_attr_dict_factory.

    node_dict_factory : function, (default: dict)
        Factory function to be used to create the outer-most dict
        in the data structure that holds adjacency lists keyed by node.
        It should require no arguments and return a dict-like object.

    adjlist_dict_factory : function, (default: dict)
        Factory function to be used to create the adjacency list
        dict which holds multiedge key dicts keyed by neighbor.
        It should require no arguments and return a dict-like object.

    edge_key_dict_factory : function, (default: dict)
        Factory function to be used to create the edge key dict
        which holds edge data keyed by edge key.
        It should require no arguments and return a dict-like object.

    edge_attr_dict_factory : function, (default: dict)
        Factory function to be used to create the edge attribute
        dict which holds attrbute values keyed by attribute name.
        It should require no arguments and return a dict-like object.

    Examples
    --------
    Create a multigraph object that tracks the order nodes are added.

    >>> from collections import OrderedDict
    >>> class OrderedGraph(nx.MultiGraph):
    ...    node_dict_factory = OrderedDict
    >>> G = OrderedGraph()
    >>> G.add_nodes_from( (2,1) )
    >>> G.nodes()
    [2, 1]
    >>> G.add_edges_from( ((2,2), (2,1), (2,1), (1,1)) )
    >>> G.edges()
    [(2, 1), (2, 1), (2, 2), (1, 1)]

    Create a multgraph object that tracks the order nodes are added
    and for each node track the order that neighbors are added and for
    each neighbor tracks the order that multiedges are added.

    >>> class OrderedGraph(nx.MultiGraph):
    ...    node_dict_factory = OrderedDict
    ...    adjlist_dict_factory = OrderedDict
    ...    edge_key_dict_factory = OrderedDict
    >>> G = OrderedGraph()
    >>> G.add_nodes_from( (2,1) )
    >>> G.nodes()
    [2, 1]
    >>> G.add_edges_from( ((2,2), (2,1,2,{'weight':0.1}), (2,1,1,{'weight':0.2}), (1,1)) )
    >>> G.edges(keys=True)
    [(2, 2, 0), (2, 1, 2), (2, 1, 1), (1, 1, 0)]

    """
    # node_dict_factory=dict    # already assigned in Graph
    # adjlist_dict_factory=dict
    edge_key_dict_factory = dict
    # edge_attr_dict_factory=dict

    def __init__(self, data=None, **attr):
        self.edge_key_dict_factory = self.edge_key_dict_factory
        Graph.__init__(self, data, **attr)

    def add_edge(self, u, v, key=None, attr_dict=None, **attr):
        """Add an edge between u and v.

        The nodes u and v will be automatically added if they are
        not already in the graph.

        Edge attributes can be specified with keywords or by providing
        a dictionary with key/value pairs.  See examples below.

        Parameters
        ----------
        u, v : nodes
            Nodes can be, for example, strings or numbers.
            Nodes must be hashable (and not None) Python objects.
        key : hashable identifier, optional (default=lowest unused integer)
            Used to distinguish multiedges between a pair of nodes.
        attr_dict : dictionary, optional (default= no attributes)
            Dictionary of edge attributes.  Key/value pairs will
            update existing data associated with the edge.
        attr : keyword arguments, optional
            Edge data (or labels or objects) can be assigned using
            keyword arguments.

        See Also
        --------
        add_edges_from : add a collection of edges

        Notes
        -----
        To replace/update edge data, use the optional key argument
        to identify a unique edge.  Otherwise a new edge will be created.

        NetworkX algorithms designed for weighted graphs cannot use
        multigraphs directly because it is not clear how to handle
        multiedge weights.  Convert to Graph using edge attribute
        'weight' to enable weighted graph algorithms.

        Examples
        --------
        The following all add the edge e=(1,2) to graph G:

        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> e = (1,2)
        >>> G.add_edge(1, 2)           # explicit two-node form
        >>> G.add_edge(*e)             # single edge as tuple of two nodes
        >>> G.add_edges_from( [(1,2)] ) # add edges from iterable container

        Associate data to edges using keywords:

        >>> G.add_edge(1, 2, weight=3)
        >>> G.add_edge(1, 2, key=0, weight=4)   # update data for key=0
        >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
        """
        # set up attribute dict
        if attr_dict is None:
            attr_dict = attr
        else:
            try:
                attr_dict.update(attr)
            except AttributeError:
                raise NetworkXError(
                    "The attr_dict argument must be a dictionary.")
        # add nodes
        if u not in self.adj:
            self.adj[u] = self.adjlist_dict_factory()
            self.node[u] = {}
        if v not in self.adj:
            self.adj[v] = self.adjlist_dict_factory()
            self.node[v] = {}
        if v in self.adj[u]:
            keydict = self.adj[u][v]
            if key is None:
                # find a unique integer key
                # other methods might be better here?
                key = len(keydict)
                while key in keydict:
                    key += 1
            datadict = keydict.get(key, self.edge_attr_dict_factory())
            datadict.update(attr_dict)
            keydict[key] = datadict
        else:
            # selfloops work this way without special treatment
            if key is None:
                key = 0
            datadict = self.edge_attr_dict_factory()
            datadict.update(attr_dict)
            keydict = self.edge_key_dict_factory()
            keydict[key] = datadict
            self.adj[u][v] = keydict
            self.adj[v][u] = keydict

    def add_edges_from(self, ebunch, attr_dict=None, **attr):
        """Add all the edges in ebunch.

        Parameters
        ----------
        ebunch : container of edges
            Each edge given in the container will be added to the
            graph. The edges can be:

                - 2-tuples (u,v) or
                - 3-tuples (u,v,d) for an edge attribute dict d, or
                - 4-tuples (u,v,k,d) for an edge identified by key k

        attr_dict : dictionary, optional  (default= no attributes)
            Dictionary of edge attributes.  Key/value pairs will
            update existing data associated with each edge.
        attr : keyword arguments, optional
            Edge data (or labels or objects) can be assigned using
            keyword arguments.


        See Also
        --------
        add_edge : add a single edge
        add_weighted_edges_from : convenient way to add weighted edges

        Notes
        -----
        Adding the same edge twice has no effect but any edge data
        will be updated when each duplicate edge is added.

        Edge attributes specified in edges take precedence
        over attributes specified generally.

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
        >>> e = zip(range(0,3),range(1,4))
        >>> G.add_edges_from(e) # Add the path graph 0-1-2-3

        Associate data to edges

        >>> G.add_edges_from([(1,2),(2,3)], weight=3)
        >>> G.add_edges_from([(3,4),(1,4)], label='WN2898')
        """
        # set up attribute dict
        if attr_dict is None:
            attr_dict = attr
        else:
            try:
                attr_dict.update(attr)
            except AttributeError:
                raise NetworkXError(
                    "The attr_dict argument must be a dictionary.")
        # process ebunch
        for e in ebunch:
            ne = len(e)
            if ne == 4:
                u, v, key, dd = e
            elif ne == 3:
                u, v, dd = e
                key = None
            elif ne == 2:
                u, v = e
                dd = {}
                key = None
            else:
                raise NetworkXError(
                    "Edge tuple %s must be a 2-tuple, 3-tuple or 4-tuple." % (e,))
            ddd = {}
            ddd.update(attr_dict)
            ddd.update(dd)
            self.add_edge(u, v, key, ddd)

    def remove_edge(self, u, v, key=None):
        """Remove an edge between u and v.

        Parameters
        ----------
        u, v : nodes
            Remove an edge between nodes u and v.
        key : hashable identifier, optional (default=None)
            Used to distinguish multiple edges between a pair of nodes.
            If None remove a single (abritrary) edge between u and v.

        Raises
        ------
        NetworkXError
            If there is not an edge between u and v, or
            if there is no edge with the specified key.

        See Also
        --------
        remove_edges_from : remove a collection of edges

        Examples
        --------
        >>> G = nx.MultiGraph()
        >>> G.add_path([0,1,2,3])
        >>> G.remove_edge(0,1)
        >>> e = (1,2)
        >>> G.remove_edge(*e) # unpacks e from an edge tuple

        For multiple edges

        >>> G = nx.MultiGraph()   # or MultiDiGraph, etc
        >>> G.add_edges_from([(1,2),(1,2),(1,2)])
        >>> G.remove_edge(1,2) # remove a single (arbitrary) edge

        For edges with keys

        >>> G = nx.MultiGraph()   # or MultiDiGraph, etc
        >>> G.add_edge(1,2,key='first')
        >>> G.add_edge(1,2,key='second')
        >>> G.remove_edge(1,2,key='second')

        """
        try:
            d = self.adj[u][v]
        except (KeyError):
            raise NetworkXError(
                "The edge %s-%s is not in the graph." % (u, v))
        # remove the edge with specified data
        if key is None:
            d.popitem()
        else:
            try:
                del d[key]
            except (KeyError):
                raise NetworkXError(
                    "The edge %s-%s with key %s is not in the graph." % (
                        u, v, key))
        if len(d) == 0:
            # remove the key entries if last edge
            del self.adj[u][v]
            if u!=v:  # check for selfloop
                del self.adj[v][u]

    def remove_edges_from(self, ebunch):
        """Remove all edges specified in ebunch.

        Parameters
        ----------
        ebunch: list or container of edge tuples
            Each edge given in the list or container will be removed
            from the graph. The edges can be:

                - 2-tuples (u,v) All edges between u and v are removed.
                - 3-tuples (u,v,key) The edge identified by key is removed.
                - 4-tuples (u,v,key,data) where data is ignored.

        See Also
        --------
        remove_edge : remove a single edge

        Notes
        -----
        Will fail silently if an edge in ebunch is not in the graph.

        Examples
        --------
        >>> G = nx.MultiGraph() # or MultiDiGraph
        >>> G.add_path([0,1,2,3])
        >>> ebunch=[(1,2),(2,3)]
        >>> G.remove_edges_from(ebunch)

        Removing multiple copies of edges

        >>> G = nx.MultiGraph()
        >>> G.add_edges_from([(1,2),(1,2),(1,2)])
        >>> G.remove_edges_from([(1,2),(1,2)])
        >>> G.edges()
        [(1, 2)]
        >>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy
        >>> G.edges() # now empty graph
        []
        """
        for e in ebunch:
            try:
                self.remove_edge(*e[:3])
            except NetworkXError:
                pass

    def has_edge(self, u, v, key=None):
        """Return True if the graph has an edge between nodes u and v.

        Parameters
        ----------
        u, v : nodes
            Nodes can be, for example, strings or numbers.

        key : hashable identifier, optional (default=None)
            If specified return True only if the edge with
            key is found.

        Returns
        -------
        edge_ind : bool
            True if edge is in the graph, False otherwise.

        Examples
        --------
        Can be called either using two nodes u,v, an edge tuple (u,v),
        or an edge tuple (u,v,key).

        >>> G = nx.MultiGraph()   # or MultiDiGraph
        >>> G.add_path([0,1,2,3])
        >>> G.has_edge(0,1)  # using two nodes
        True
        >>> e = (0,1)
        >>> G.has_edge(*e)  #  e is a 2-tuple (u,v)
        True
        >>> G.add_edge(0,1,key='a')
        >>> G.has_edge(0,1,key='a')  # specify key
        True
        >>> e=(0,1,'a')
        >>> G.has_edge(*e) # e is a 3-tuple (u,v,'a')
        True

        The following syntax are equivalent:

        >>> G.has_edge(0,1)
        True
        >>> 1 in G[0]  # though this gives KeyError if 0 not in G
        True



        """
        try:
            if key is None:
                return v in self.adj[u]
            else:
                return key in self.adj[u][v]
        except KeyError:
            return False

    def edges(self, nbunch=None, data=False, keys=False, default=None):
        """Return a list of edges.

        Edges are returned as tuples with optional data and keys
        in the order (node, neighbor, key, data).

        Parameters
        ----------
        nbunch : iterable container, optional (default= all nodes)
            A container of nodes.  The container will be iterated
            through once.
        data : bool, optional (default=False)
            Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).
        keys : bool, optional (default=False)
            Return two tuples (u,v) (False) or three-tuples (u,v,key) (True).

        Returns
        --------
        edge_list: list of edge tuples
            Edges that are adjacent to any node in nbunch, or a list
            of all edges if nbunch is not specified.

        See Also
        --------
        edges_iter : return an iterator over the edges

        Notes
        -----
        Nodes in nbunch that are not in the graph will be (quietly) ignored.
        For directed graphs this returns the out-edges.

        Examples
        --------
        >>> G = nx.MultiGraph()  # or MultiDiGraph
        >>> G.add_path([0,1,2])
        >>> G.add_edge(2,3,weight=5)
        >>> G.edges()
        [(0, 1), (1, 2), (2, 3)]
        >>> G.edges(data=True) # default edge data is {} (empty dictionary)
        [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
        >>> list(G.edges_iter(data='weight', default=1))
        [(0, 1, 1), (1, 2, 1), (2, 3, 5)]
        >>> G.edges(keys=True) # default keys are integers
        [(0, 1, 0), (1, 2, 0), (2, 3, 0)]
        >>> G.edges(data=True,keys=True) # default keys are integers
        [(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
        >>> list(G.edges(data='weight',default=1,keys=True))
        [(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
        >>> G.edges([0,3])
        [(0, 1), (3, 2)]
        >>> G.edges(0)
        [(0, 1)]

        """
        return list(self.edges_iter(nbunch, data, keys, default))

    def edges_iter(self, nbunch=None, data=False, keys=False, default=None):
        """Return an iterator over the edges.

        Edges are returned as tuples with optional data and keys
        in the order (node, neighbor, key, data).

        Parameters
        ----------
        nbunch : iterable container, optional (default= all nodes)
            A container of nodes.  The container will be iterated
            through once.
        data : string or bool, optional (default=False)
            The edge attribute returned in 3-tuple (u,v,ddict[data]).
            If True, return edge attribute dict in 3-tuple (u,v,ddict).
            If False, return 2-tuple (u,v).
        default : value, optional (default=None)
            Value used for edges that dont have the requested attribute.
            Only relevant if data is not True or False.
        keys : bool, optional (default=False)
            If True, return edge keys with each edge.

        Returns
        -------
        edge_iter : iterator
            An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

        See Also
        --------
        edges : return a list of edges

        Notes
        -----
        Nodes in nbunch that are not in the graph will be (quietly) ignored.
        For directed graphs this returns the out-edges.

        Examples
        --------
        >>> G = nx.MultiGraph()   # or MultiDiGraph
        >>> G.add_path([0,1,2])
        >>> G.add_edge(2,3,weight=5)
        >>> [e for e in G.edges_iter()]
        [(0, 1), (1, 2), (2, 3)]
        >>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
        [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
        >>> list(G.edges_iter(data='weight', default=1))
        [(0, 1, 1), (1, 2, 1), (2, 3, 5)]
        >>> list(G.edges(keys=True)) # default keys are integers
        [(0, 1, 0), (1, 2, 0), (2, 3, 0)]
        >>> list(G.edges(data=True,keys=True)) # default keys are integers
        [(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
        >>> list(G.edges(data='weight',default=1,keys=True))
        [(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
        >>> list(G.edges_iter([0,3]))
        [(0, 1), (3, 2)]
        >>> list(G.edges_iter(0))
        [(0, 1)]

        """
        seen = {}     # helper dict to keep track of multiply stored edges
        if nbunch is None:
            nodes_nbrs = self.adj.items()
        else:
            nodes_nbrs = ((n, self.adj[n]) for n in self.nbunch_iter(nbunch))
        if data is True:
            for n, nbrs in nodes_nbrs:
                for nbr, keydict in nbrs.items():
                    if nbr not in seen:
                        for key, ddict in keydict.items():
                            yield (n, nbr, key, ddict) if keys else (n, nbr, ddict)
                seen[n] = 1
        elif data is not False:
            for n, nbrs in nodes_nbrs:
                for nbr, keydict in nbrs.items():
                    if nbr not in seen:
                        for key, ddict in keydict.items():
                            d = ddict[data] if data in ddict else default
                            yield (n, nbr, key, d) if keys else (n, nbr, d)
                seen[n] = 1
        else:
            for n, nbrs in nodes_nbrs:
                for nbr, keydict in nbrs.items():
                    if nbr not in seen:
                        for key in keydict:
                            yield (n, nbr, key) if keys else (n, nbr)
                seen[n] = 1
        del seen

    def get_edge_data(self, u, v, key=None, default=None):
        """Return the attribute dictionary associated with edge (u,v).

        Parameters
        ----------
        u, v : nodes

        default :  any Python object (default=None)
            Value to return if the edge (u,v) is not found.

        key : hashable identifier, optional (default=None)
            Return data only for the edge with specified key.

        Returns
        -------
        edge_dict : dictionary
            The edge attribute dictionary.

        Notes
        -----
        It is faster to use G[u][v][key].

        >>> G = nx.MultiGraph() # or MultiDiGraph
        >>> G.add_edge(0,1,key='a',weight=7)
        >>> G[0][1]['a']  # key='a'
        {'weight': 7}

        Warning: Assigning G[u][v][key] corrupts the graph data structure.
        But it is safe to assign attributes to that dictionary,

        >>> G[0][1]['a']['weight'] = 10
        >>> G[0][1]['a']['weight']
        10
        >>> G[1][0]['a']['weight']
        10

        Examples
        --------
        >>> G = nx.MultiGraph() # or MultiDiGraph
        >>> G.add_path([0,1,2,3])
        >>> G.get_edge_data(0,1)
        {0: {}}
        >>> e = (0,1)
        >>> G.get_edge_data(*e) # tuple form
        {0: {}}
        >>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
        0
        """
        try:
            if key is None:
                return self.adj[u][v]
            else:
                return self.adj[u][v][key]
        except KeyError:
            return default

    def degree_iter(self, nbunch=None, weight=None):
        """Return an iterator for (node, degree).

        The node degree is the number of edges adjacent to the node.

        Parameters
        ----------
        nbunch : iterable container, optional (default=all nodes)
            A container of nodes.  The container will be iterated
            through once.

        weight : string or None, optional (default=None)
           The edge attribute that holds the numerical value used
           as a weight.  If None, then each edge has weight 1.
           The degree is the sum of the edge weights adjacent to the node.

        Returns
        -------
        nd_iter : an iterator
            The iterator returns two-tuples of (node, degree).

        See Also
        --------
        degree

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> list(G.degree_iter(0)) # node 0 with degree 1
        [(0, 1)]
        >>> list(G.degree_iter([0,1]))
        [(0, 1), (1, 2)]

        """
        if nbunch is None:
            nodes_nbrs = self.adj.items()
        else:
            nodes_nbrs = ((n, self.adj[n]) for n in self.nbunch_iter(nbunch))

        if weight is None:
            for n, nbrs in nodes_nbrs:
                deg = sum([len(data) for data in nbrs.values()])
                yield (n, deg + (n in nbrs and len(nbrs[n])))
        else:
            # edge weighted graph - degree is sum of nbr edge weights
            for n, nbrs in nodes_nbrs:
                deg = sum([d.get(weight, 1)
                           for data in nbrs.values()
                           for d in data.values()])
                if n in nbrs:
                    deg += sum([d.get(weight, 1)
                                for key, d in nbrs[n].items()])
                yield (n, deg)

    def is_multigraph(self):
        """Return True if graph is a multigraph, False otherwise."""
        return True

    def is_directed(self):
        """Return True if graph is directed, False otherwise."""
        return False

    def to_directed(self):
        """Return a directed representation of the graph.

        Returns
        -------
        G : MultiDiGraph
            A directed graph with the same name, same nodes, and with
            each edge (u,v,data) replaced by two directed edges
            (u,v,data) and (v,u,data).

        Notes
        -----
        This returns a "deepcopy" of the edge, node, and
        graph attributes which attempts to completely copy
        all of the data and references.

        This is in contrast to the similar D=DiGraph(G) which returns a
        shallow copy of the data.

        See the Python copy module for more information on shallow
        and deep copies, http://docs.python.org/library/copy.html.

        Warning: If you have subclassed MultiGraph to use dict-like objects
        in the data structure, those changes do not transfer to the MultiDiGraph
        created by this method.

        Examples
        --------
        >>> G = nx.Graph()   # or MultiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> H.edges()
        [(0, 1), (1, 0)]

        If already directed, return a (deep) copy

        >>> G = nx.DiGraph()   # or MultiDiGraph, etc
        >>> G.add_path([0,1])
        >>> H = G.to_directed()
        >>> H.edges()
        [(0, 1)]
        """
        from networkx.classes.multidigraph import MultiDiGraph
        G = MultiDiGraph()
        G.add_nodes_from(self)
        G.add_edges_from((u, v, key, deepcopy(datadict))
                            for u, nbrs in self.adjacency_iter()
                            for v, keydict in nbrs.items()
                            for key, datadict in keydict.items())
        G.graph = deepcopy(self.graph)
        G.node = deepcopy(self.node)
        return G

    def selfloop_edges(self, data=False, keys=False, default=None):
        """Return a list of selfloop edges.

        A selfloop edge has the same node at both ends.

        Parameters
        ----------
        data : bool, optional (default=False)
            Return selfloop edges as two tuples (u,v) (data=False)
            or three-tuples (u,v,datadict) (data=True)
            or three-tuples (u,v,datavalue) (data='attrname')
        default : value, optional (default=None)
            Value used for edges that dont have the requested attribute.
            Only relevant if data is not True or False.
        keys : bool, optional (default=False)
            If True, return edge keys with each edge.

        Returns
        -------
        edgelist : list of edge tuples
            A list of all selfloop edges.

        See Also
        --------
        nodes_with_selfloops, number_of_selfloops

        Examples
        --------
        >>> G = nx.MultiGraph()   # or MultiDiGraph
        >>> G.add_edge(1,1)
        >>> G.add_edge(1,2)
        >>> G.selfloop_edges()
        [(1, 1)]
        >>> G.selfloop_edges(data=True)
        [(1, 1, {})]
        >>> G.selfloop_edges(keys=True)
        [(1, 1, 0)]
        >>> G.selfloop_edges(keys=True, data=True)
        [(1, 1, 0, {})]
        """
        if data is True:
            if keys:
                return [(n, n, k, d)
                        for n, nbrs in self.adj.items()
                        if n in nbrs for k, d in nbrs[n].items()]
            else:
                return [(n, n, d)
                        for n, nbrs in self.adj.items()
                        if n in nbrs for d in nbrs[n].values()]
        elif data is not False:
            if keys:
                return [(n, n, k, d.get(data, default))
                        for n, nbrs in self.adj.items()
                        if n in nbrs for k, d in nbrs[n].items()]
            else:
                return [(n, n, d.get(data, default))
                        for n, nbrs in self.adj.items()
                        if n in nbrs for d in nbrs[n].values()]
        else:
            if keys:
                return [(n, n, k)
                        for n, nbrs in self.adj.items()
                        if n in nbrs for k in nbrs[n].keys()]
            else:
                return [(n, n)
                        for n, nbrs in self.adj.items()
                        if n in nbrs for d in nbrs[n].values()]

    def number_of_edges(self, u=None, v=None):
        """Return the number of edges between two nodes.

        Parameters
        ----------
        u, v : nodes, optional (default=all edges)
            If u and v are specified, return the number of edges between
            u and v. Otherwise return the total number of all edges.

        Returns
        -------
        nedges : int
            The number of edges in the graph.  If nodes u and v are specified
            return the number of edges between those nodes.

        See Also
        --------
        size

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> G.number_of_edges()
        3
        >>> G.number_of_edges(0,1)
        1
        >>> e = (0,1)
        >>> G.number_of_edges(*e)
        1
        """
        if u is None: return self.size()
        try:
            edgedata = self.adj[u][v]
        except KeyError:
            return 0  # no such edge
        return len(edgedata)

    def subgraph(self, nbunch):
        """Return the subgraph induced on nodes in nbunch.

        The induced subgraph of the graph contains the nodes in nbunch
        and the edges between those nodes.

        Parameters
        ----------
        nbunch : list, iterable
            A container of nodes which will be iterated through once.

        Returns
        -------
        G : Graph
            A subgraph of the graph with the same edge attributes.

        Notes
        -----
        The graph, edge or node attributes just point to the original graph.
        So changes to the node or edge structure will not be reflected in
        the original graph while changes to the attributes will.

        To create a subgraph with its own copy of the edge/node attributes use:
        nx.Graph(G.subgraph(nbunch))

        If edge attributes are containers, a deep copy can be obtained using:
        G.subgraph(nbunch).copy()

        For an inplace reduction of a graph to a subgraph you can remove nodes:
        G.remove_nodes_from([ n in G if n not in set(nbunch)])

        Examples
        --------
        >>> G = nx.Graph()   # or DiGraph, MultiGraph, MultiDiGraph, etc
        >>> G.add_path([0,1,2,3])
        >>> H = G.subgraph([0,1,2])
        >>> H.edges()
        [(0, 1), (1, 2)]
        """
        bunch = self.nbunch_iter(nbunch)
        # create new graph and copy subgraph into it
        H = self.__class__()
        # copy node and attribute dictionaries
        for n in bunch:
            H.node[n] = self.node[n]
        # namespace shortcuts for speed
        H_adj = H.adj
        self_adj = self.adj
        # add nodes and edges (undirected method)
        for n in H:
            Hnbrs = H.adjlist_dict_factory()
            H_adj[n] = Hnbrs
            for nbr, edgedict in self_adj[n].items():
                if nbr in H_adj:
                    # add both representations of edge: n-nbr and nbr-n
                    # they share the same edgedict
                    ed = edgedict.copy()
                    Hnbrs[nbr] = ed
                    H_adj[nbr][n] = ed
        H.graph = self.graph
        return H