This file is indexed.

/usr/lib/python3/dist-packages/networkx/generators/community.py is in python3-networkx 1.11-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
"""Generators for classes of graphs used in studying social networks."""
import itertools
import math
import random
import networkx as nx
#    Copyright(C) 2011 by
#    Ben Edwards <bedwards@cs.unm.edu>
#    Aric Hagberg <hagberg@lanl.gov>
#    All rights reserved.
#    BSD license.
__author__ = """\n""".join(['Ben Edwards (bedwards@cs.unm.edu)',
                            'Aric Hagberg (hagberg@lanl.gov)'])
__all__ = ['caveman_graph', 'connected_caveman_graph',
           'relaxed_caveman_graph', 'random_partition_graph',
           'planted_partition_graph', 'gaussian_random_partition_graph']


def caveman_graph(l, k):
    """Returns a caveman graph of ``l`` cliques of size ``k``.

    Parameters
    ----------
    l : int
      Number of cliques
    k : int
      Size of cliques

    Returns
    -------
    G : NetworkX Graph
      caveman graph

    Notes
    -----
    This returns an undirected graph, it can be converted to a directed
    graph using :func:`nx.to_directed`, or a multigraph using
    ``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is
    described in [1]_ and it is unclear which of the directed
    generalizations is most useful.

    Examples
    --------
    >>> G = nx.caveman_graph(3, 3)

    See also
    --------

    connected_caveman_graph

    References
    ----------
    .. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.'
       Amer. J. Soc. 105, 493-527, 1999.
    """
    # l disjoint cliques of size k
    G = nx.empty_graph(l*k)
    G.name = "caveman_graph(%s,%s)" % (l*k, k)
    if k > 1:
        for start in range(0, l*k, k):
            edges = itertools.combinations(range(start, start+k), 2)
            G.add_edges_from(edges)
    return G


def connected_caveman_graph(l, k):
    """Returns a connected caveman graph of ``l`` cliques of size ``k``.

    The connected caveman graph is formed by creating ``n`` cliques of size
    ``k``, then a single edge in each clique is rewired to a node in an
    adjacent clique.

    Parameters
    ----------
    l : int
      number of cliques
    k : int
      size of cliques

    Returns
    -------
    G : NetworkX Graph
      connected caveman graph

    Notes
    -----
    This returns an undirected graph, it can be converted to a directed
    graph using :func:`nx.to_directed`, or a multigraph using
    ``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is
    described in [1]_ and it is unclear which of the directed
    generalizations is most useful.

    Examples
    --------
    >>> G = nx.connected_caveman_graph(3, 3)

    References
    ----------
    .. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.'
       Amer. J. Soc. 105, 493-527, 1999.
    """
    G = nx.caveman_graph(l, k)
    G.name = "connected_caveman_graph(%s,%s)" % (l, k)
    for start in range(0, l*k, k):
        G.remove_edge(start, start+1)
        G.add_edge(start, (start-1) % (l*k))
    return G


def relaxed_caveman_graph(l, k, p, seed=None):
    """Return a relaxed caveman graph.

    A relaxed caveman graph starts with ``l`` cliques of size ``k``.  Edges are
    then randomly rewired with probability ``p`` to link different cliques.

    Parameters
    ----------
    l : int
      Number of groups
    k : int
      Size of cliques
    p : float
      Probabilty of rewiring each edge.
    seed : int,optional
      Seed for random number generator(default=None)

    Returns
    -------
    G : NetworkX Graph
      Relaxed Caveman Graph

    Raises
    ------
    NetworkXError:
     If p is not in [0,1]

    Examples
    --------
    >>> G = nx.relaxed_caveman_graph(2, 3, 0.1, seed=42)

    References
    ----------
    .. [1] Santo Fortunato, Community Detection in Graphs,
       Physics Reports Volume 486, Issues 3-5, February 2010, Pages 75-174.
       http://arxiv.org/abs/0906.0612
    """
    if not seed is None:
        random.seed(seed)
    G = nx.caveman_graph(l, k)
    nodes = G.nodes()
    G.name = "relaxed_caveman_graph (%s,%s,%s)" % (l, k, p)
    for (u, v) in G.edges():
        if random.random() < p:  # rewire the edge
            x = random.choice(nodes)
            if G.has_edge(u, x):
                continue
            G.remove_edge(u, v)
            G.add_edge(u, x)
    return G


def random_partition_graph(sizes, p_in, p_out, seed=None, directed=False):
    """Return the random partition graph with a partition of sizes.

    A partition graph is a graph of communities with sizes defined by
    s in sizes. Nodes in the same group are connected with probability
    p_in and nodes of different groups are connected with probability
    p_out.

    Parameters
    ----------
    sizes : list of ints
      Sizes of groups
    p_in : float
      probability of edges with in groups
    p_out : float
      probability of edges between groups
    directed : boolean optional, default=False
      Whether to create a directed graph
    seed : int optional, default None
      A seed for the random number generator

    Returns
    -------
    G : NetworkX Graph or DiGraph
      random partition graph of size sum(gs)

    Raises
    ------
    NetworkXError
      If p_in or p_out is not in [0,1]

    Examples
    --------
    >>> G = nx.random_partition_graph([10,10,10],.25,.01)
    >>> len(G)
    30
    >>> partition = G.graph['partition']
    >>> len(partition)
    3

    Notes
    -----
    This is a generalization of the planted-l-partition described in
    [1]_.  It allows for the creation of groups of any size.

    The partition is store as a graph attribute 'partition'.

    References
    ----------
    .. [1] Santo Fortunato 'Community Detection in Graphs' Physical Reports
       Volume 486, Issue 3-5 p. 75-174. http://arxiv.org/abs/0906.0612
       http://arxiv.org/abs/0906.0612
       """
    # Use geometric method for O(n+m) complexity algorithm
    # partition=nx.community_sets(nx.get_node_attributes(G,'affiliation'))
    if not seed is None:
        random.seed(seed)
    if not 0.0 <= p_in <= 1.0:
        raise nx.NetworkXError("p_in must be in [0,1]")
    if not 0.0 <= p_out <= 1.0:
        raise nx.NetworkXError("p_out must be in [0,1]")

    if directed:
        G = nx.DiGraph()
    else:
        G = nx.Graph()
    G.graph['partition'] = []
    n = sum(sizes)
    G.add_nodes_from(range(n))
    # start with len(sizes) groups of gnp random graphs with parameter p_in
    # graphs are unioned together with node labels starting at
    # 0, sizes[0], sizes[0]+sizes[1], ...
    next_group = {}  # maps node key (int) to first node in next group
    start = 0
    group = 0
    for n in sizes:
        edges = ((u+start, v+start)
                 for u, v in
                 nx.fast_gnp_random_graph(n, p_in, directed=directed).edges())
        G.add_edges_from(edges)
        next_group.update(dict.fromkeys(range(start, start+n), start+n))
        G.graph['partition'].append(set(range(start, start+n)))
        group += 1
        start += n
    # handle edge cases
    if p_out == 0:
        return G
    if p_out == 1:
        for n in next_group:
            targets = range(next_group[n], len(G))
            G.add_edges_from(zip([n]*len(targets), targets))
            if directed:
                G.add_edges_from(zip(targets, [n]*len(targets)))
        return G
    # connect each node in group randomly with the nodes not in group
    # use geometric method like fast_gnp_random_graph()
    lp = math.log(1.0 - p_out)
    n = len(G)
    if directed:
        for u in range(n):
            v = 0
            while v < n:
                lr = math.log(1.0 - random.random())
                v += int(lr/lp)
                # skip over nodes in the same group as v, including self loops
                if next_group.get(v, n) == next_group[u]:
                    v = next_group[u]
                if v < n:
                    G.add_edge(u, v)
                    v += 1
    else:
        for u in range(n-1):
            v = next_group[u]  # start with next node not in this group
            while v < n:
                lr = math.log(1.0 - random.random())
                v += int(lr/lp)
                if v < n:
                    G.add_edge(u, v)
                    v += 1
    return G


def planted_partition_graph(l, k, p_in, p_out, seed=None, directed=False):
    """Return the planted l-partition graph.

    This model partitions a graph with n=l*k vertices in
    l groups with k vertices each. Vertices of the same
    group are linked with a probability p_in, and vertices
    of different groups are linked with probability p_out.

    Parameters
    ----------
    l : int
      Number of groups
    k : int
      Number of vertices in each group
    p_in : float
      probability of connecting vertices within a group
    p_out : float
      probability of connected vertices between groups
    seed : int,optional
      Seed for random number generator(default=None)
    directed : bool,optional (default=False)
      If True return a directed graph

    Returns
    -------
    G : NetworkX Graph or DiGraph
      planted l-partition graph

    Raises
    ------
    NetworkXError:
      If p_in,p_out are not in [0,1] or

    Examples
    --------
    >>> G = nx.planted_partition_graph(4, 3, 0.5, 0.1,seed=42)

    See Also
    --------
    random_partition_model

    References
    ----------
    .. [1] A. Condon, R.M. Karp, Algorithms for graph partitioning
        on the planted partition model,
        Random Struct. Algor. 18 (2001) 116-140.

    .. [2] Santo Fortunato 'Community Detection in Graphs' Physical Reports
       Volume 486, Issue 3-5 p. 75-174. http://arxiv.org/abs/0906.0612
    """
    return random_partition_graph([k]*l, p_in, p_out, seed, directed)


def gaussian_random_partition_graph(n, s, v, p_in, p_out, directed=False,
                                    seed=None):
    """Generate a Gaussian random partition graph.

    A Gaussian random partition graph is created by creating k partitions
    each with a size drawn from a normal distribution with mean s and variance
    s/v. Nodes are connected within clusters with probability p_in and
    between clusters with probability p_out[1]

    Parameters
    ----------
    n : int
      Number of nodes in the graph
    s : float
      Mean cluster size
    v : float
      Shape parameter. The variance of cluster size distribution is s/v.
    p_in : float
      Probabilty of intra cluster connection.
    p_out : float
      Probability of inter cluster connection.
    directed : boolean, optional default=False
      Whether to create a directed graph or not
    seed : int
      Seed value for random number generator

    Returns
    -------
    G : NetworkX Graph or DiGraph
      gaussian random partition graph

    Raises
    ------
    NetworkXError
      If s is > n
      If p_in or p_out is not in [0,1]

    Notes
    -----
    Note the number of partitions is dependent on s,v and n, and that the
    last partition may be considerably smaller, as it is sized to simply
    fill out the nodes [1]

    See Also
    --------
    random_partition_graph

    Examples
    --------
    >>> G = nx.gaussian_random_partition_graph(100,10,10,.25,.1)
    >>> len(G)
    100

    References
    ----------
    .. [1] Ulrik Brandes, Marco Gaertler, Dorothea Wagner,
       Experiments on Graph Clustering Algorithms,
       In the proceedings of the 11th Europ. Symp. Algorithms, 2003.
    """
    if s > n:
        raise nx.NetworkXError("s must be <= n")
    assigned = 0
    sizes = []
    while True:
        size = int(random.normalvariate(s, float(s) / v + 0.5))
        if size < 1:  # how to handle 0 or negative sizes?
            continue
        if assigned + size >= n:
            sizes.append(n-assigned)
            break
        assigned += size
        sizes.append(size)
    return random_partition_graph(sizes, p_in, p_out, directed, seed)