This file is indexed.

/usr/lib/python3/dist-packages/pynlpl/search.py is in python3-pynlpl 1.1.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#---------------------------------------------------------------
# PyNLPl - Search Algorithms
#   by Maarten van Gompel
#   Centre for Language Studies
#   Radboud University Nijmegen
#   http://www.github.com/proycon/pynlpl
#   proycon AT anaproy DOT nl
#
#   Licensed under GPLv3
#
#----------------------------------------------------------------

"""This module contains various search algorithms."""

from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division
from __future__ import absolute_import
#from pynlpl.common import u
import sys
if sys.version < '3':
    from codecs import getwriter
    stderr = getwriter('utf-8')(sys.stderr)
    stdout = getwriter('utf-8')(sys.stdout)
else:
    stderr = sys.stderr
    stdout = sys.stdout
from pynlpl.datatypes import FIFOQueue, PriorityQueue
from collections import deque
from bisect import bisect_left


class AbstractSearchState(object):
    def __init__(self,  parent = None, cost = 0):
        self.parent = parent        
        self.cost = cost

    def test(self, goalstates = None):
        """Checks whether this state is a valid goal state, returns a boolean. If no goalstate is defined, then all states will test positively, this is what you usually want for optimisation problems."""
        if goalstates:
            return (self in goalstates)
        else:
            return True
            #raise Exception("Classes derived from AbstractSearchState must define a test() method!")

    def score(self):
        """Should return a heuristic value. This needs to be set if you plan to used an informed search algorithm."""
        raise Exception("Classes derived from AbstractSearchState must define a score() method if used in informed search algorithms!")

    def expand(self):
        """Generates successor states, implement your custom operators in the derived method."""
        raise Exception("Classes derived from AbstractSearchState must define an expand() method!")

    def __eq__(self):
        """Implement an equality test in the derived method, based only on the state's content (not its path etc!)"""
        raise Exception("Classes derived from AbstractSearchState must define an __eq__() method!")

    def __lt__(self, other):
        assert isinstance(other, AbstractSearchState)
        return self.score() < other.score()

    def __gt__(self, other):
        assert isinstance(other, AbstractSearchState)
        return self.score() > other.score()

    
    def __hash__(self):
        """Return a unique hash for this state, based on its ID"""
        raise Exception("Classes derived from AbstractSearchState must define a __hash__() method if the search space is a graph and visited nodes to be are stored in memory!")        


    def depth(self):
        if not self.parent:
            return 0
        else:
            return self.parent.depth() + 1            

    #def __len__(self):
    #    return len(self.path())

    def path(self):
        if not self.parent:
            return [self]
        else: 
            return self.parent.path() + [self]

    def pathcost(self):
        if not self.parent:
            return self.cost
        else: 
            return self.parent.pathcost() + self.cost


        

    #def __cmp__(self, other):
    #    if self.score < other.score:
    #        return -1
    #    elif self.score > other.score:
    #        return 1
    #    else:
    #        return 0

class AbstractSearch(object): #not a real search, just a base class for DFS and BFS
    def __init__(self, **kwargs):
        """For graph-searches graph=True is required (default), otherwise the search may loop forever. For tree-searches, set tree=True for better performance"""
        self.usememory = True
        self.poll = lambda x: x.pop
        self.maxdepth = False #unlimited
        self.minimize = False #minimize rather than maximize the score function? default: no
        self.keeptraversal = False
        self.goalstates = None
        self.exhaustive = False #only some subclasses use this
        self.traversed = 0 #Count of number of nodes visited
        self.solutions = 0 #Counts the number of solutions
        self.debug = 0

        for key, value in kwargs.items():
            if key == 'graph':
                self.usememory = value #search space is a graph? memory required to keep visited states
            elif key == 'tree':
                self.usememory = not value;  #search space is a tree? memory not required
            elif key == 'poll':
                self.poll = value #function
            elif key == 'maxdepth':
                self.maxdepth = value
            elif key == 'minimize':
                self.minimize = value
            elif key == 'maximize':
                self.minimize = not value
            elif key == 'keeptraversal': #remember entire traversal?
                self.keeptraversal = value
            elif key == 'goal' or key == 'goals':
                if isinstance(value, list) or isinstance(value, tuple):
                    self.goalstates = value
                else:
                    self.goalstates = [value]
            elif key == 'exhaustive':
                self.exhaustive = True
            elif key == 'debug':
                self.debug = value
        self._visited = {}
        self._traversal = []
        self.incomplete = False
        self.traversed = 0

    def reset(self):
        self._visited = {}
        self._traversal = []
        self.incomplete = False
        self.traversed = 0 #Count of all visited nodes
        self.solutions = 0 #Counts the number of solutions found     

    def traversal(self):
        """Returns all visited states (only when keeptraversal=True), note that this is not equal to the path, but contains all states that were checked!"""
        if self.keeptraversal:
            return self._traversal
        else:
            raise Exception("No traversal available, algorithm not started with keeptraversal=True!")
    
    def traversalsize(self):
        """Returns the number of nodes visited  (also when keeptravel=False). Note that this is not equal to the path, but contains all states that were checked!"""
        return self.traversed
        

    def visited(self, state):
        if self.usememory:
            return (hash(state) in self._visited)
        else:
            raise Exception("No memory kept, algorithm not started with graph=True!")
        
    def __iter__(self):
        """Generator yielding *all* valid goalstates it can find,"""
        n = 0
        while len(self.fringe) > 0:
            n += 1
            if self.debug: print("\t[pynlpl debug] *************** ITERATION #" + str(n) + " ****************",file=stderr)
            if self.debug: print("\t[pynlpl debug] FRINGE: ", self.fringe,file=stderr)
            state = self.poll(self.fringe)()
            if self.debug:
                try:
                    print("\t[pynlpl debug] CURRENT STATE (depth " + str(state.depth()) + "): " + str(state),end="",file=stderr)
                except AttributeError:
                    print("\t[pynlpl debug] CURRENT STATE: " + str(state),end="",file=stderr)
                    
                print(" hash="+str(hash(state)),file=stderr)
                try:
                    print(" score="+str(state.score()),file=stderr)
                except:
                    pass
 

            #If node not visited before (or no memory kept):
            if not self.usememory or (self.usememory and not hash(state) in self._visited):
                
                #Evaluate the current state
                self.traversed += 1
                if state.test(self.goalstates):
                    if self.debug: print("\t[pynlpl debug] Valid goalstate, yielding",file=stderr)
                    yield state
                elif self.debug:
                    print("\t[pynlpl debug] (no goalstate, not yielding)",file=stderr)
                
                #Expand the specified state and add to the fringe

                
                #if self.debug: print >>stderr,"\t[pynlpl debug] EXPANDING:"
                statecount = 0
                for i, s in enumerate(state.expand()):
                    statecount += 1
                    if self.debug >= 2:
                        print("\t[pynlpl debug] (Iteration #" + str(n) +") Expanded state #" + str(i+1) + ", adding to fringe: " + str(s),end="",file=stderr)
                        try:
                            print(s.score(),file=stderr)
                        except:
                            print("ERROR SCORING!",file=stderr)
                            pass
                    if not self.maxdepth or s.depth() <= self.maxdepth:
                        self.fringe.append(s)
                    else:
                        if self.debug: print("\t[pynlpl debug] (Iteration #" + str(n) +") Not adding to fringe, maxdepth exceeded",file=stderr)
                        self.incomplete = True
                if self.debug:
                    print("\t[pynlpl debug] Expanded " + str(statecount) + " states, offered to fringe",file=stderr)
                if self.keeptraversal: self._traversal.append(state)
                if self.usememory: self._visited[hash(state)] = True
                self.prune(state) #calls prune method
            else:
                if self.debug:
                    print("\t[pynlpl debug] State already visited before, not expanding again...(hash="+str(hash(state))+")",file=stderr)
        if self.debug:
            print("\t[pynlpl debug] Search complete: " + str(self.solutions) + " solution(s), " + str(self.traversed) + " states traversed in " + str(n) + " rounds",file=stderr)
    
    def searchfirst(self):
        """Returns the very first result (regardless of it being the best or not!)"""
        for solution in self:
            return solution

    def searchall(self):
        """Returns a list of all solutions"""
        return list(iter(self))

    def searchbest(self):
        """Returns the single best result (if multiple have the same score, the first match is returned)"""
        finalsolution = None
        bestscore = None
        for solution in self:
            if bestscore == None:
                bestscore = solution.score()
                finalsolution = solution
            elif self.minimize:
                score = solution.score()
                if score < bestscore:
                    bestscore = score
                    finalsolution = solution
            elif not self.minimize:
                score = solution.score()
                if score > bestscore:
                    bestscore = score
                    finalsolution = solution                
        return finalsolution

    def searchtop(self,n=10):
        """Return the top n best resulta (or possibly less if not enough is found)"""            
        solutions = PriorityQueue([], lambda x: x.score, self.minimize, length=n, blockworse=False, blockequal=False,duplicates=False)
        for solution in self:
            solutions.append(solution)
        return solutions

    def searchlast(self,n=10):
        """Return the last n results (or possibly less if not found). Note that the last results are not necessarily the best ones! Depending on the search type."""            
        solutions = deque([], n)
        for solution in self:
            solutions.append(solution)
        return solutions

    def prune(self, state):
        """Pruning method is called AFTER expansion of each node"""
        #pruning nothing by default
        pass

class DepthFirstSearch(AbstractSearch):

    def __init__(self, state, **kwargs):
        assert isinstance(state, AbstractSearchState)
        self.fringe = [ state ]
        super(DepthFirstSearch,self).__init__(**kwargs)         



class BreadthFirstSearch(AbstractSearch):


    def __init__(self, state, **kwargs):
        assert isinstance(state, AbstractSearchState)
        self.fringe = FIFOQueue([state])
        super(BreadthFirstSearch,self).__init__(**kwargs)         


class IterativeDeepening(AbstractSearch):

    def __init__(self, state, **kwargs):
        assert isinstance(state, AbstractSearchState)
        self.state = state
        self.kwargs = kwargs
        self.traversed = 0

    def __iter__(self):
        self.traversed = 0
        d = 0
        while not 'maxdepth' in self.kwargs or d <= self.kwargs['maxdepth']:
            dfs = DepthFirstSearch(self.state, **self.kwargs)
            self.traversed += dfs.traversalsize()
            for match in dfs:
                yield match
            if dfs.incomplete:
                d +=1 
            else:
                break

    def traversal(self):
        #TODO: add
        raise Exception("not implemented yet")

    def traversalsize(self):
        return self.traversed


class BestFirstSearch(AbstractSearch):

    def __init__(self, state, **kwargs):
        super(BestFirstSearch,self).__init__(**kwargs)
        assert isinstance(state, AbstractSearchState)
        self.fringe = PriorityQueue([state], lambda x: x.score, self.minimize, length=0, blockworse=False, blockequal=False,duplicates=False)

class BeamSearch(AbstractSearch):
    """Local beam search algorithm"""

    def __init__(self, states, beamsize, **kwargs):
        if isinstance(states, AbstractSearchState):
            states = [states]
        else:
            assert all( ( isinstance(x, AbstractSearchState) for x in states) )
        self.beamsize = beamsize      
        if 'eager' in kwargs:
            self.eager = kwargs['eager']
        else:
            self.eager = False
        super(BeamSearch,self).__init__(**kwargs)
        self.incomplete = True
        self.duplicates = kwargs['duplicates'] if 'duplicates' in kwargs else False
        self.fringe = PriorityQueue(states, lambda x: x.score, self.minimize, length=0, blockworse=False, blockequal=False,duplicates= self.duplicates)

    def __iter__(self):
        """Generator yielding *all* valid goalstates it can find"""
        i = 0
        while len(self.fringe) > 0:
            i +=1 
            if self.debug: print("\t[pynlpl debug] *************** STARTING ROUND #" + str(i) + " ****************",file=stderr)
            
            b = 0
            #Create a new empty fixed-length priority queue (this implies there will be pruning if more items are offered than it can hold!)
            successors = PriorityQueue([], lambda x: x.score, self.minimize, length=self.beamsize, blockworse=False, blockequal=False,duplicates= self.duplicates)
            
            while len(self.fringe) > 0:
                b += 1
                if self.debug: print("\t[pynlpl debug] *************** ROUND #" + str(i) + " BEAM# " + str(b) + " ****************",file=stderr)
                #if self.debug: print >>stderr,"\t[pynlpl debug] FRINGE: ", self.fringe

                state = self.poll(self.fringe)()
                if self.debug:
                    try:
                        print("\t[pynlpl debug] CURRENT STATE (depth " + str(state.depth()) + "): " + str(state),end="",file=stderr)
                    except AttributeError:
                        print("\t[pynlpl debug] CURRENT STATE: " + str(state),end="",file=stderr)
                    print(" hash="+str(hash(state)),file=stderr)
                    try:
                        print(" score="+str(state.score()),file=stderr)
                    except:
                        pass


                if not self.usememory or (self.usememory and not hash(state) in self._visited):
                    
                    self.traversed += 1
                    #Evaluate state
                    if state.test(self.goalstates):
                        if self.debug: print("\t[pynlpl debug] Valid goalstate, yielding",file=stderr)
                        self.solutions += 1 #counts the number of solutions
                        yield state
                    elif self.debug:
                        print("\t[pynlpl debug] (no goalstate, not yielding)",file=stderr)

                    if self.eager:
                        score = state.score()                    

                    #Expand the specified state and offer to the fringe
                    
                    statecount = offers = 0
                    for j, s in enumerate(state.expand()):
                        statecount += 1
                        if self.debug >= 2:
                            print("\t[pynlpl debug] (Round #" + str(i) +" Beam #" + str(b) + ") Expanded state #" + str(j+1) + ", offering to successor pool: " + str(s),end="",file=stderr)
                            try:
                                print(s.score(),end="",file=stderr)
                            except:
                                print("ERROR SCORING!",end="",file=stderr)
                                pass
                        if not self.maxdepth or s.depth() <= self.maxdepth:
                            if not self.eager:
                                #use all successors (even worse ones than the current state)
                                offers += 1
                                accepted = successors.append(s)
                            else:
                                #use only equal or better successors
                                if s.score() >= score:
                                    offers += 1
                                    accepted = successors.append(s)
                                else:
                                    accepted = False
                            if self.debug >= 2:
                                if accepted:
                                    print(" ACCEPTED",file=stderr)
                                else:
                                    print(" REJECTED",file=stderr)
                        else:                            
                            if self.debug >= 2:
                                print(" REJECTED, MAXDEPTH EXCEEDED.",file=stderr)
                            elif self.debug:
                                print("\t[pynlpl debug] Not offered to successor pool, maxdepth exceeded",file=stderr)
                    if self.debug:
                        print("\t[pynlpl debug] Expanded " + str(statecount) + " states, " + str(offers) + " offered to successor pool",file=stderr)
                    if self.keeptraversal: self._traversal.append(state)
                    if self.usememory: self._visited[hash(state)] = True
                    self.prune(state) #calls prune method (does nothing by default in this search!!!)

                else:
                    if self.debug:
                        print("\t[pynlpl debug] State already visited before, not expanding again... (hash=" + str(hash(state))  +")",file=stderr)
            #AFTER EXPANDING ALL NODES IN THE FRINGE/BEAM:
            
            #set fringe for next round
            self.fringe = successors

            #Pruning is implicit, successors was a fixed-size priority queue
            if self.debug: 
                print("\t[pynlpl debug] (Round #" + str(i) + ") Implicitly pruned with beamsize " + str(self.beamsize) + "...",file=stderr)
            #self.fringe.prune(self.beamsize)
            if self.debug: print(" (" + str(offers) + " to " + str(len(self.fringe)) + " items)",file=stderr)
        
        if self.debug:
            print("\t[pynlpl debug] Search complete: " + str(self.solutions) + " solution(s), " + str(self.traversed) + " states traversed in " + str(i) + " rounds with " + str(b) + "  beams",file=stderr)            
        
        
        

class EarlyEagerBeamSearch(AbstractSearch):
    """A beam search that prunes early (after each state expansion) and eagerly (weeding out worse successors)"""
    
    def __init__(self, state, beamsize, **kwargs):
        assert isinstance(state, AbstractSearchState)
        self.beamsize = beamsize       
        super(EarlyEagerBeamSearch,self).__init__(**kwargs)
        self.fringe = PriorityQueue(state, lambda x: x.score, self.minimize, length=0, blockworse=False, blockequal=False,duplicates= kwargs['duplicates'] if 'duplicates' in kwargs else False)
        self.incomplete = True
    
    
    def prune(self, state):
        if self.debug: 
            l = len(self.fringe)
            print("\t[pynlpl debug] pruning with beamsize " + str(self.beamsize) + "...",end="",file=stderr)
        self.fringe.prunebyscore(state.score(), retainequalscore=True)
        self.fringe.prune(self.beamsize)
        if self.debug: print(" (" + str(l) + " to " + str(len(self.fringe)) + " items)",file=stderr)


class BeamedBestFirstSearch(BeamSearch):
    """Best first search with a beamsize (non-optimal!)"""
    
    def prune(self, state):
        if self.debug: 
            l = len(self.fringe)
            print("\t[pynlpl debug] pruning with beamsize " + str(self.beamsize) + "...",end="",file=stderr)
        self.fringe.prune(self.beamsize)
        if self.debug: print(" (" + str(l) + " to " + str(len(self.fringe)) + " items)",file=stderr)

class StochasticBeamSearch(BeamSearch):
    
    def prune(self, state):
        if self.debug: 
            l = len(self.fringe)
            print("\t[pynlpl debug] pruning with beamsize " + str(self.beamsize) + "...",end="",file=stderr)
        if not self.exhaustive:
            self.fringe.prunebyscore(state.score(), retainequalscore=True)
        self.fringe.stochasticprune(self.beamsize)
        if self.debug: print(" (" + str(l) + " to " + str(len(self.fringe)) + " items)",file=stderr)
            

class HillClimbingSearch(AbstractSearch): #TODO: TEST
    """(identical to beamsearch with beam 1, but implemented differently)"""

    def __init__(self, state, **kwargs):
        assert isinstance(state, AbstractSearchState)
        super(HillClimbingSearch,self).__init__(**kwargs)
        self.fringe = PriorityQueue([state], lambda x: x.score, self.minimize, length=0, blockworse=True, blockequal=False,duplicates=False)

#From http://stackoverflow.com/questions/212358/binary-search-in-python
def binary_search(a, x, lo=0, hi=None):   # can't use a to specify default for hi 
    hi = hi if hi is not None else len(a) # hi defaults to len(a)   
    pos = bisect_left(a,x,lo,hi)          # find insertion position
    return (pos if pos != hi and a[pos] == x else -1) # don't walk off the end