This file is indexed.

/usr/lib/python3/dist-packages/seaborn/categorical.py is in python3-seaborn 0.7.1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
from __future__ import division
from textwrap import dedent
import colorsys
import numpy as np
from scipy import stats
import pandas as pd
from pandas.core.series import remove_na
import matplotlib as mpl
from matplotlib.collections import PatchCollection
import matplotlib.patches as Patches
import matplotlib.pyplot as plt
import warnings

from .external.six import string_types
from .external.six.moves import range

from . import utils
from .utils import iqr, categorical_order
from .algorithms import bootstrap
from .palettes import color_palette, husl_palette, light_palette
from .axisgrid import FacetGrid, _facet_docs


__all__ = ["boxplot", "violinplot", "stripplot", "swarmplot", "lvplot",
           "pointplot", "barplot", "countplot", "factorplot"]


class _CategoricalPlotter(object):

    width = .8

    def establish_variables(self, x=None, y=None, hue=None, data=None,
                            orient=None, order=None, hue_order=None,
                            units=None):
        """Convert input specification into a common representation."""
        # Option 1:
        # We are plotting a wide-form dataset
        # -----------------------------------
        if x is None and y is None:

            # Do a sanity check on the inputs
            if hue is not None:
                error = "Cannot use `hue` without `x` or `y`"
                raise ValueError(error)

            # No hue grouping with wide inputs
            plot_hues = None
            hue_title = None
            hue_names = None

            # No statistical units with wide inputs
            plot_units = None

            # We also won't get a axes labels here
            value_label = None
            group_label = None

            # Option 1a:
            # The input data is a Pandas DataFrame
            # ------------------------------------

            if isinstance(data, pd.DataFrame):

                # Order the data correctly
                if order is None:
                    order = []
                    # Reduce to just numeric columns
                    for col in data:
                        try:
                            data[col].astype(np.float)
                            order.append(col)
                        except ValueError:
                            pass
                plot_data = data[order]
                group_names = order
                group_label = data.columns.name

                # Convert to a list of arrays, the common representation
                iter_data = plot_data.iteritems()
                plot_data = [np.asarray(s, np.float) for k, s in iter_data]

            # Option 1b:
            # The input data is an array or list
            # ----------------------------------

            else:

                # We can't reorder the data
                if order is not None:
                    error = "Input data must be a pandas object to reorder"
                    raise ValueError(error)

                # The input data is an array
                if hasattr(data, "shape"):
                    if len(data.shape) == 1:
                        if np.isscalar(data[0]):
                            plot_data = [data]
                        else:
                            plot_data = list(data)
                    elif len(data.shape) == 2:
                        nr, nc = data.shape
                        if nr == 1 or nc == 1:
                            plot_data = [data.ravel()]
                        else:
                            plot_data = [data[:, i] for i in range(nc)]
                    else:
                        error = ("Input `data` can have no "
                                 "more than 2 dimensions")
                        raise ValueError(error)

                # Check if `data` is None to let us bail out here (for testing)
                elif data is None:
                    plot_data = [[]]

                # The input data is a flat list
                elif np.isscalar(data[0]):
                    plot_data = [data]

                # The input data is a nested list
                # This will catch some things that might fail later
                # but exhaustive checks are hard
                else:
                    plot_data = data

                # Convert to a list of arrays, the common representation
                plot_data = [np.asarray(d, np.float) for d in plot_data]

                # The group names will just be numeric indices
                group_names = list(range((len(plot_data))))

            # Figure out the plotting orientation
            orient = "h" if str(orient).startswith("h") else "v"

        # Option 2:
        # We are plotting a long-form dataset
        # -----------------------------------

        else:

            # See if we need to get variables from `data`
            if data is not None:
                x = data.get(x, x)
                y = data.get(y, y)
                hue = data.get(hue, hue)
                units = data.get(units, units)

            # Validate the inputs
            for input in [x, y, hue, units]:
                if isinstance(input, string_types):
                    err = "Could not interpret input '{}'".format(input)
                    raise ValueError(err)

            # Figure out the plotting orientation
            orient = self.infer_orient(x, y, orient)

            # Option 2a:
            # We are plotting a single set of data
            # ------------------------------------
            if x is None or y is None:

                # Determine where the data are
                vals = y if x is None else x

                # Put them into the common representation
                plot_data = [np.asarray(vals)]

                # Get a label for the value axis
                if hasattr(vals, "name"):
                    value_label = vals.name
                else:
                    value_label = None

                # This plot will not have group labels or hue nesting
                groups = None
                group_label = None
                group_names = []
                plot_hues = None
                hue_names = None
                hue_title = None
                plot_units = None

            # Option 2b:
            # We are grouping the data values by another variable
            # ---------------------------------------------------
            else:

                # Determine which role each variable will play
                if orient == "v":
                    vals, groups = y, x
                else:
                    vals, groups = x, y

                # Get the categorical axis label
                group_label = None
                if hasattr(groups, "name"):
                    group_label = groups.name

                # Get the order on the categorical axis
                group_names = categorical_order(groups, order)

                # Group the numeric data
                plot_data, value_label = self._group_longform(vals, groups,
                                                              group_names)

                # Now handle the hue levels for nested ordering
                if hue is None:
                    plot_hues = None
                    hue_title = None
                    hue_names = None
                else:

                    # Get the order of the hue levels
                    hue_names = categorical_order(hue, hue_order)

                    # Group the hue data
                    plot_hues, hue_title = self._group_longform(hue, groups,
                                                                group_names)

                # Now handle the units for nested observations
                if units is None:
                    plot_units = None
                else:
                    plot_units, _ = self._group_longform(units, groups,
                                                         group_names)

        # Assign object attributes
        # ------------------------
        self.orient = orient
        self.plot_data = plot_data
        self.group_label = group_label
        self.value_label = value_label
        self.group_names = group_names
        self.plot_hues = plot_hues
        self.hue_title = hue_title
        self.hue_names = hue_names
        self.plot_units = plot_units

    def _group_longform(self, vals, grouper, order):
        """Group a long-form variable by another with correct order."""
        # Ensure that the groupby will work
        if not isinstance(vals, pd.Series):
            vals = pd.Series(vals)

        # Group the val data
        grouped_vals = vals.groupby(grouper)
        out_data = []
        for g in order:
            try:
                g_vals = np.asarray(grouped_vals.get_group(g))
            except KeyError:
                g_vals = np.array([])
            out_data.append(g_vals)

        # Get the vals axis label
        label = vals.name

        return out_data, label

    def establish_colors(self, color, palette, saturation):
        """Get a list of colors for the main component of the plots."""
        if self.hue_names is None:
            n_colors = len(self.plot_data)
        else:
            n_colors = len(self.hue_names)

        # Determine the main colors
        if color is None and palette is None:
            # Determine whether the current palette will have enough values
            # If not, we'll default to the husl palette so each is distinct
            current_palette = utils.get_color_cycle()
            if n_colors <= len(current_palette):
                colors = color_palette(n_colors=n_colors)
            else:
                colors = husl_palette(n_colors, l=.7)

        elif palette is None:
            # When passing a specific color, the interpretation depends
            # on whether there is a hue variable or not.
            # If so, we will make a blend palette so that the different
            # levels have some amount of variation.
            if self.hue_names is None:
                colors = [color] * n_colors
            else:
                colors = light_palette(color, n_colors)
        else:

            # Let `palette` be a dict mapping level to color
            if isinstance(palette, dict):
                if self.hue_names is None:
                    levels = self.group_names
                else:
                    levels = self.hue_names
                palette = [palette[l] for l in levels]

            colors = color_palette(palette, n_colors)

        # Desaturate a bit because these are patches
        if saturation < 1:
            colors = color_palette(colors, desat=saturation)

        # Conver the colors to a common representations
        rgb_colors = color_palette(colors)

        # Determine the gray color to use for the lines framing the plot
        light_vals = [colorsys.rgb_to_hls(*c)[1] for c in rgb_colors]
        l = min(light_vals) * .6
        gray = mpl.colors.rgb2hex((l, l, l))

        # Assign object attributes
        self.colors = rgb_colors
        self.gray = gray

    def infer_orient(self, x, y, orient=None):
        """Determine how the plot should be oriented based on the data."""
        orient = str(orient)

        def is_categorical(s):
            try:
                # Correct way, but doesnt exist in older Pandas
                return pd.core.common.is_categorical_dtype(s)
            except AttributeError:
                # Also works, but feels hackier
                return str(s.dtype) == "categorical"

        def is_not_numeric(s):
            try:
                np.asarray(s, dtype=np.float)
            except ValueError:
                return True
            return False

        no_numeric = "Neither the `x` nor `y` variable appears to be numeric."

        if orient.startswith("v"):
            return "v"
        elif orient.startswith("h"):
            return "h"
        elif x is None:
            return "v"
        elif y is None:
            return "h"
        elif is_categorical(y):
            if is_categorical(x):
                raise ValueError(no_numeric)
            else:
                return "h"
        elif is_not_numeric(y):
            if is_not_numeric(x):
                raise ValueError(no_numeric)
            else:
                return "h"
        else:
            return "v"

    @property
    def hue_offsets(self):
        """A list of center positions for plots when hue nesting is used."""
        n_levels = len(self.hue_names)
        each_width = self.width / n_levels
        offsets = np.linspace(0, self.width - each_width, n_levels)
        offsets -= offsets.mean()

        return offsets

    @property
    def nested_width(self):
        """A float with the width of plot elements when hue nesting is used."""
        return self.width / len(self.hue_names) * .98

    def annotate_axes(self, ax):
        """Add descriptive labels to an Axes object."""
        if self.orient == "v":
            xlabel, ylabel = self.group_label, self.value_label
        else:
            xlabel, ylabel = self.value_label, self.group_label

        if xlabel is not None:
            ax.set_xlabel(xlabel)
        if ylabel is not None:
            ax.set_ylabel(ylabel)

        if self.orient == "v":
            ax.set_xticks(np.arange(len(self.plot_data)))
            ax.set_xticklabels(self.group_names)
        else:
            ax.set_yticks(np.arange(len(self.plot_data)))
            ax.set_yticklabels(self.group_names)

        if self.orient == "v":
            ax.xaxis.grid(False)
            ax.set_xlim(-.5, len(self.plot_data) - .5)
        else:
            ax.yaxis.grid(False)
            ax.set_ylim(-.5, len(self.plot_data) - .5)

        if self.hue_names is not None:
            leg = ax.legend(loc="best")
            if self.hue_title is not None:
                leg.set_title(self.hue_title)

                # Set the title size a roundabout way to maintain
                # compatability with matplotlib 1.1
                try:
                    title_size = mpl.rcParams["axes.labelsize"] * .85
                except TypeError:  # labelsize is something like "large"
                    title_size = mpl.rcParams["axes.labelsize"]
                prop = mpl.font_manager.FontProperties(size=title_size)
                leg._legend_title_box._text.set_font_properties(prop)

    def add_legend_data(self, ax, color, label):
        """Add a dummy patch object so we can get legend data."""
        rect = plt.Rectangle([0, 0], 0, 0,
                             linewidth=self.linewidth / 2,
                             edgecolor=self.gray,
                             facecolor=color,
                             label=label)
        ax.add_patch(rect)


class _BoxPlotter(_CategoricalPlotter):

    def __init__(self, x, y, hue, data, order, hue_order,
                 orient, color, palette, saturation,
                 width, fliersize, linewidth):

        self.establish_variables(x, y, hue, data, orient, order, hue_order)
        self.establish_colors(color, palette, saturation)

        self.width = width
        self.fliersize = fliersize

        if linewidth is None:
            linewidth = mpl.rcParams["lines.linewidth"]
        self.linewidth = linewidth

    def draw_boxplot(self, ax, kws):
        """Use matplotlib to draw a boxplot on an Axes."""
        vert = self.orient == "v"

        props = {}
        for obj in ["box", "whisker", "cap", "median", "flier"]:
            props[obj] = kws.pop(obj + "props", {})

        for i, group_data in enumerate(self.plot_data):

            if self.plot_hues is None:

                # Handle case where there is data at this level
                if group_data.size == 0:
                    continue

                # Draw a single box or a set of boxes
                # with a single level of grouping
                box_data = remove_na(group_data)

                # Handle case where there is no non-null data
                if box_data.size == 0:
                    continue

                artist_dict = ax.boxplot(box_data,
                                         vert=vert,
                                         patch_artist=True,
                                         positions=[i],
                                         widths=self.width,
                                         **kws)
                color = self.colors[i]
                self.restyle_boxplot(artist_dict, color, props)
            else:
                # Draw nested groups of boxes
                offsets = self.hue_offsets
                for j, hue_level in enumerate(self.hue_names):

                    # Add a legend for this hue level
                    if not i:
                        self.add_legend_data(ax, self.colors[j], hue_level)

                    # Handle case where there is data at this level
                    if group_data.size == 0:
                        continue

                    hue_mask = self.plot_hues[i] == hue_level
                    box_data = remove_na(group_data[hue_mask])

                    # Handle case where there is no non-null data
                    if box_data.size == 0:
                        continue

                    center = i + offsets[j]
                    artist_dict = ax.boxplot(box_data,
                                             vert=vert,
                                             patch_artist=True,
                                             positions=[center],
                                             widths=self.nested_width,
                                             **kws)
                    self.restyle_boxplot(artist_dict, self.colors[j], props)
                    # Add legend data, but just for one set of boxes

    def restyle_boxplot(self, artist_dict, color, props):
        """Take a drawn matplotlib boxplot and make it look nice."""
        for box in artist_dict["boxes"]:
            box.update(dict(facecolor=color,
                            zorder=.9,
                            edgecolor=self.gray,
                            linewidth=self.linewidth))
            box.update(props["box"])
        for whisk in artist_dict["whiskers"]:
            whisk.update(dict(color=self.gray,
                              linewidth=self.linewidth,
                              linestyle="-"))
            whisk.update(props["whisker"])
        for cap in artist_dict["caps"]:
            cap.update(dict(color=self.gray,
                            linewidth=self.linewidth))
            cap.update(props["cap"])
        for med in artist_dict["medians"]:
            med.update(dict(color=self.gray,
                            linewidth=self.linewidth))
            med.update(props["median"])
        for fly in artist_dict["fliers"]:
            fly.update(dict(markerfacecolor=self.gray,
                            marker="d",
                            markeredgecolor=self.gray,
                            markersize=self.fliersize))
            fly.update(props["flier"])

    def plot(self, ax, boxplot_kws):
        """Make the plot."""
        self.draw_boxplot(ax, boxplot_kws)
        self.annotate_axes(ax)
        if self.orient == "h":
            ax.invert_yaxis()


class _ViolinPlotter(_CategoricalPlotter):

    def __init__(self, x, y, hue, data, order, hue_order,
                 bw, cut, scale, scale_hue, gridsize,
                 width, inner, split, orient, linewidth,
                 color, palette, saturation):

        self.establish_variables(x, y, hue, data, orient, order, hue_order)
        self.establish_colors(color, palette, saturation)
        self.estimate_densities(bw, cut, scale, scale_hue, gridsize)

        self.gridsize = gridsize
        self.width = width

        if inner is not None:
            if not any([inner.startswith("quart"),
                        inner.startswith("box"),
                        inner.startswith("stick"),
                        inner.startswith("point")]):
                err = "Inner style '{}' not recognized".format(inner)
                raise ValueError(err)
        self.inner = inner

        if split and self.hue_names is not None and len(self.hue_names) != 2:
            raise ValueError("Cannot use `split` with more than 2 hue levels.")
        self.split = split

        if linewidth is None:
            linewidth = mpl.rcParams["lines.linewidth"]
        self.linewidth = linewidth

    def estimate_densities(self, bw, cut, scale, scale_hue, gridsize):
        """Find the support and density for all of the data."""
        # Initialize data structures to keep track of plotting data
        if self.hue_names is None:
            support = []
            density = []
            counts = np.zeros(len(self.plot_data))
            max_density = np.zeros(len(self.plot_data))
        else:
            support = [[] for _ in self.plot_data]
            density = [[] for _ in self.plot_data]
            size = len(self.group_names), len(self.hue_names)
            counts = np.zeros(size)
            max_density = np.zeros(size)

        for i, group_data in enumerate(self.plot_data):

            # Option 1: we have a single level of grouping
            # --------------------------------------------

            if self.plot_hues is None:

                # Strip missing datapoints
                kde_data = remove_na(group_data)

                # Handle special case of no data at this level
                if kde_data.size == 0:
                    support.append(np.array([]))
                    density.append(np.array([1.]))
                    counts[i] = 0
                    max_density[i] = 0
                    continue

                # Handle special case of a single unique datapoint
                elif np.unique(kde_data).size == 1:
                    support.append(np.unique(kde_data))
                    density.append(np.array([1.]))
                    counts[i] = 1
                    max_density[i] = 0
                    continue

                # Fit the KDE and get the used bandwidth size
                kde, bw_used = self.fit_kde(kde_data, bw)

                # Determine the support grid and get the density over it
                support_i = self.kde_support(kde_data, bw_used, cut, gridsize)
                density_i = kde.evaluate(support_i)

                # Update the data structures with these results
                support.append(support_i)
                density.append(density_i)
                counts[i] = kde_data.size
                max_density[i] = density_i.max()

            # Option 2: we have nested grouping by a hue variable
            # ---------------------------------------------------

            else:
                for j, hue_level in enumerate(self.hue_names):

                    # Handle special case of no data at this category level
                    if not group_data.size:
                        support[i].append(np.array([]))
                        density[i].append(np.array([1.]))
                        counts[i, j] = 0
                        max_density[i, j] = 0
                        continue

                    # Select out the observations for this hue level
                    hue_mask = self.plot_hues[i] == hue_level

                    # Strip missing datapoints
                    kde_data = remove_na(group_data[hue_mask])

                    # Handle special case of no data at this level
                    if kde_data.size == 0:
                        support[i].append(np.array([]))
                        density[i].append(np.array([1.]))
                        counts[i, j] = 0
                        max_density[i, j] = 0
                        continue

                    # Handle special case of a single unique datapoint
                    elif np.unique(kde_data).size == 1:
                        support[i].append(np.unique(kde_data))
                        density[i].append(np.array([1.]))
                        counts[i, j] = 1
                        max_density[i, j] = 0
                        continue

                    # Fit the KDE and get the used bandwidth size
                    kde, bw_used = self.fit_kde(kde_data, bw)

                    # Determine the support grid and get the density over it
                    support_ij = self.kde_support(kde_data, bw_used,
                                                  cut, gridsize)
                    density_ij = kde.evaluate(support_ij)

                    # Update the data structures with these results
                    support[i].append(support_ij)
                    density[i].append(density_ij)
                    counts[i, j] = kde_data.size
                    max_density[i, j] = density_ij.max()

        # Scale the height of the density curve.
        # For a violinplot the density is non-quantitative.
        # The objective here is to scale the curves relative to 1 so that
        # they can be multiplied by the width parameter during plotting.

        if scale == "area":
            self.scale_area(density, max_density, scale_hue)

        elif scale == "width":
            self.scale_width(density)

        elif scale == "count":
            self.scale_count(density, counts, scale_hue)

        else:
            raise ValueError("scale method '{}' not recognized".format(scale))

        # Set object attributes that will be used while plotting
        self.support = support
        self.density = density

    def fit_kde(self, x, bw):
        """Estimate a KDE for a vector of data with flexible bandwidth."""
        # Allow for the use of old scipy where `bw` is fixed
        try:
            kde = stats.gaussian_kde(x, bw)
        except TypeError:
            kde = stats.gaussian_kde(x)
            if bw != "scott":  # scipy default
                msg = ("Ignoring bandwidth choice, "
                       "please upgrade scipy to use a different bandwidth.")
                warnings.warn(msg, UserWarning)

        # Extract the numeric bandwidth from the KDE object
        bw_used = kde.factor

        # At this point, bw will be a numeric scale factor.
        # To get the actual bandwidth of the kernel, we multiple by the
        # unbiased standard deviation of the data, which we will use
        # elsewhere to compute the range of the support.
        bw_used = bw_used * x.std(ddof=1)

        return kde, bw_used

    def kde_support(self, x, bw, cut, gridsize):
        """Define a grid of support for the violin."""
        support_min = x.min() - bw * cut
        support_max = x.max() + bw * cut
        return np.linspace(support_min, support_max, gridsize)

    def scale_area(self, density, max_density, scale_hue):
        """Scale the relative area under the KDE curve.

        This essentially preserves the "standard" KDE scaling, but the
        resulting maximum density will be 1 so that the curve can be
        properly multiplied by the violin width.

        """
        if self.hue_names is None:
            for d in density:
                if d.size > 1:
                    d /= max_density.max()
        else:
            for i, group in enumerate(density):
                for d in group:
                    if scale_hue:
                        max = max_density[i].max()
                    else:
                        max = max_density.max()
                    if d.size > 1:
                        d /= max

    def scale_width(self, density):
        """Scale each density curve to the same height."""
        if self.hue_names is None:
            for d in density:
                d /= d.max()
        else:
            for group in density:
                for d in group:
                    d /= d.max()

    def scale_count(self, density, counts, scale_hue):
        """Scale each density curve by the number of observations."""
        if self.hue_names is None:
            for count, d in zip(counts, density):
                d /= d.max()
                d *= count / counts.max()
        else:
            for i, group in enumerate(density):
                for j, d in enumerate(group):
                    count = counts[i, j]
                    if scale_hue:
                        scaler = count / counts[i].max()
                    else:
                        scaler = count / counts.max()
                    d /= d.max()
                    d *= scaler

    @property
    def dwidth(self):

        if self.hue_names is None:
            return self.width / 2
        elif self.split:
            return self.width / 2
        else:
            return self.width / (2 * len(self.hue_names))

    def draw_violins(self, ax):
        """Draw the violins onto `ax`."""
        fill_func = ax.fill_betweenx if self.orient == "v" else ax.fill_between
        for i, group_data in enumerate(self.plot_data):

            kws = dict(edgecolor=self.gray, linewidth=self.linewidth)

            # Option 1: we have a single level of grouping
            # --------------------------------------------

            if self.plot_hues is None:

                support, density = self.support[i], self.density[i]

                # Handle special case of no observations in this bin
                if support.size == 0:
                    continue

                # Handle special case of a single observation
                elif support.size == 1:
                    val = np.asscalar(support)
                    d = np.asscalar(density)
                    self.draw_single_observation(ax, i, val, d)
                    continue

                # Draw the violin for this group
                grid = np.ones(self.gridsize) * i
                fill_func(support,
                          grid - density * self.dwidth,
                          grid + density * self.dwidth,
                          facecolor=self.colors[i],
                          **kws)

                # Draw the interior representation of the data
                if self.inner is None:
                    continue

                # Get a nan-free vector of datapoints
                violin_data = remove_na(group_data)

                # Draw box and whisker information
                if self.inner.startswith("box"):
                    self.draw_box_lines(ax, violin_data, support, density, i)

                # Draw quartile lines
                elif self.inner.startswith("quart"):
                    self.draw_quartiles(ax, violin_data, support, density, i)

                # Draw stick observations
                elif self.inner.startswith("stick"):
                    self.draw_stick_lines(ax, violin_data, support, density, i)

                # Draw point observations
                elif self.inner.startswith("point"):
                    self.draw_points(ax, violin_data, i)

            # Option 2: we have nested grouping by a hue variable
            # ---------------------------------------------------

            else:
                offsets = self.hue_offsets
                for j, hue_level in enumerate(self.hue_names):

                    support, density = self.support[i][j], self.density[i][j]
                    kws["color"] = self.colors[j]

                    # Add legend data, but just for one set of violins
                    if not i:
                        self.add_legend_data(ax, self.colors[j], hue_level)

                    # Handle the special case where we have no observations
                    if support.size == 0:
                        continue

                    # Handle the special case where we have one observation
                    elif support.size == 1:
                        val = np.asscalar(support)
                        d = np.asscalar(density)
                        if self.split:
                            d = d / 2
                        at_group = i + offsets[j]
                        self.draw_single_observation(ax, at_group, val, d)
                        continue

                    # Option 2a: we are drawing a single split violin
                    # -----------------------------------------------

                    if self.split:

                        grid = np.ones(self.gridsize) * i
                        if j:
                            fill_func(support,
                                      grid,
                                      grid + density * self.dwidth,
                                      **kws)
                        else:
                            fill_func(support,
                                      grid - density * self.dwidth,
                                      grid,
                                      **kws)

                        # Draw the interior representation of the data
                        if self.inner is None:
                            continue

                        # Get a nan-free vector of datapoints
                        hue_mask = self.plot_hues[i] == hue_level
                        violin_data = remove_na(group_data[hue_mask])

                        # Draw quartile lines
                        if self.inner.startswith("quart"):
                            self.draw_quartiles(ax, violin_data,
                                                support, density, i,
                                                ["left", "right"][j])

                        # Draw stick observations
                        elif self.inner.startswith("stick"):
                            self.draw_stick_lines(ax, violin_data,
                                                  support, density, i,
                                                  ["left", "right"][j])

                        # The box and point interior plots are drawn for
                        # all data at the group level, so we just do that once
                        if not j:
                            continue

                        # Get the whole vector for this group level
                        violin_data = remove_na(group_data)

                        # Draw box and whisker information
                        if self.inner.startswith("box"):
                            self.draw_box_lines(ax, violin_data,
                                                support, density, i)

                        # Draw point observations
                        elif self.inner.startswith("point"):
                            self.draw_points(ax, violin_data, i)

                    # Option 2b: we are drawing full nested violins
                    # -----------------------------------------------

                    else:
                        grid = np.ones(self.gridsize) * (i + offsets[j])
                        fill_func(support,
                                  grid - density * self.dwidth,
                                  grid + density * self.dwidth,
                                  **kws)

                        # Draw the interior representation
                        if self.inner is None:
                            continue

                        # Get a nan-free vector of datapoints
                        hue_mask = self.plot_hues[i] == hue_level
                        violin_data = remove_na(group_data[hue_mask])

                        # Draw box and whisker information
                        if self.inner.startswith("box"):
                            self.draw_box_lines(ax, violin_data,
                                                support, density,
                                                i + offsets[j])

                        # Draw quartile lines
                        elif self.inner.startswith("quart"):
                            self.draw_quartiles(ax, violin_data,
                                                support, density,
                                                i + offsets[j])

                        # Draw stick observations
                        elif self.inner.startswith("stick"):
                            self.draw_stick_lines(ax, violin_data,
                                                  support, density,
                                                  i + offsets[j])

                        # Draw point observations
                        elif self.inner.startswith("point"):
                            self.draw_points(ax, violin_data, i + offsets[j])

    def draw_single_observation(self, ax, at_group, at_quant, density):
        """Draw a line to mark a single observation."""
        d_width = density * self.dwidth
        if self.orient == "v":
            ax.plot([at_group - d_width, at_group + d_width],
                    [at_quant, at_quant],
                    color=self.gray,
                    linewidth=self.linewidth)
        else:
            ax.plot([at_quant, at_quant],
                    [at_group - d_width, at_group + d_width],
                    color=self.gray,
                    linewidth=self.linewidth)

    def draw_box_lines(self, ax, data, support, density, center):
        """Draw boxplot information at center of the density."""
        # Compute the boxplot statistics
        q25, q50, q75 = np.percentile(data, [25, 50, 75])
        whisker_lim = 1.5 * iqr(data)
        h1 = np.min(data[data >= (q25 - whisker_lim)])
        h2 = np.max(data[data <= (q75 + whisker_lim)])

        # Draw a boxplot using lines and a point
        if self.orient == "v":
            ax.plot([center, center], [h1, h2],
                    linewidth=self.linewidth,
                    color=self.gray)
            ax.plot([center, center], [q25, q75],
                    linewidth=self.linewidth * 3,
                    color=self.gray)
            ax.scatter(center, q50,
                       zorder=3,
                       color="white",
                       edgecolor=self.gray,
                       s=np.square(self.linewidth * 2))
        else:
            ax.plot([h1, h2], [center, center],
                    linewidth=self.linewidth,
                    color=self.gray)
            ax.plot([q25, q75], [center, center],
                    linewidth=self.linewidth * 3,
                    color=self.gray)
            ax.scatter(q50, center,
                       zorder=3,
                       color="white",
                       edgecolor=self.gray,
                       s=np.square(self.linewidth * 2))

    def draw_quartiles(self, ax, data, support, density, center, split=False):
        """Draw the quartiles as lines at width of density."""
        q25, q50, q75 = np.percentile(data, [25, 50, 75])

        self.draw_to_density(ax, center, q25, support, density, split,
                             linewidth=self.linewidth,
                             dashes=[self.linewidth * 1.5] * 2)
        self.draw_to_density(ax, center, q50, support, density, split,
                             linewidth=self.linewidth,
                             dashes=[self.linewidth * 3] * 2)
        self.draw_to_density(ax, center, q75, support, density, split,
                             linewidth=self.linewidth,
                             dashes=[self.linewidth * 1.5] * 2)

    def draw_points(self, ax, data, center):
        """Draw individual observations as points at middle of the violin."""
        kws = dict(s=np.square(self.linewidth * 2),
                   color=self.gray,
                   edgecolor=self.gray)

        grid = np.ones(len(data)) * center

        if self.orient == "v":
            ax.scatter(grid, data, **kws)
        else:
            ax.scatter(data, grid, **kws)

    def draw_stick_lines(self, ax, data, support, density,
                         center, split=False):
        """Draw individual observations as sticks at width of density."""
        for val in data:
            self.draw_to_density(ax, center, val, support, density, split,
                                 linewidth=self.linewidth * .5)

    def draw_to_density(self, ax, center, val, support, density, split, **kws):
        """Draw a line orthogonal to the value axis at width of density."""
        idx = np.argmin(np.abs(support - val))
        width = self.dwidth * density[idx] * .99

        kws["color"] = self.gray

        if self.orient == "v":
            if split == "left":
                ax.plot([center - width, center], [val, val], **kws)
            elif split == "right":
                ax.plot([center, center + width], [val, val], **kws)
            else:
                ax.plot([center - width, center + width], [val, val], **kws)
        else:
            if split == "left":
                ax.plot([val, val], [center - width, center], **kws)
            elif split == "right":
                ax.plot([val, val], [center, center + width], **kws)
            else:
                ax.plot([val, val], [center - width, center + width], **kws)

    def plot(self, ax):
        """Make the violin plot."""
        self.draw_violins(ax)
        self.annotate_axes(ax)
        if self.orient == "h":
            ax.invert_yaxis()


class _CategoricalScatterPlotter(_CategoricalPlotter):

    @property
    def point_colors(self):
        """Return a color for each scatter point based on group and hue."""
        colors = []
        for i, group_data in enumerate(self.plot_data):

            # Initialize the array for this group level
            group_colors = np.empty((group_data.size, 3))

            if self.plot_hues is None:

                # Use the same color for all points at this level
                group_color = self.colors[i]
                group_colors[:] = group_color

            else:

                # Color the points based on  the hue level
                for j, level in enumerate(self.hue_names):
                    hue_color = self.colors[j]
                    if group_data.size:
                        group_colors[self.plot_hues[i] == level] = hue_color

            colors.append(group_colors)

        return colors

    def add_legend_data(self, ax):
        """Add empty scatterplot artists with labels for the legend."""
        if self.hue_names is not None:
            for rgb, label in zip(self.colors, self.hue_names):
                ax.scatter([], [],
                           color=mpl.colors.rgb2hex(rgb),
                           label=label,
                           s=60)


class _StripPlotter(_CategoricalScatterPlotter):
    """1-d scatterplot with categorical organization."""
    def __init__(self, x, y, hue, data, order, hue_order,
                 jitter, split, orient, color, palette):
        """Initialize the plotter."""
        self.establish_variables(x, y, hue, data, orient, order, hue_order)
        self.establish_colors(color, palette, 1)

        # Set object attributes
        self.split = split
        self.width = .8

        if jitter == 1:  # Use a good default for `jitter = True`
            jlim = 0.1
        else:
            jlim = float(jitter)
        if self.hue_names is not None and split:
            jlim /= len(self.hue_names)
        self.jitterer = stats.uniform(-jlim, jlim * 2).rvs

    def draw_stripplot(self, ax, kws):
        """Draw the points onto `ax`."""
        # Set the default zorder to 2.1, so that the points
        # will be drawn on top of line elements (like in a boxplot)
        for i, group_data in enumerate(self.plot_data):
            if self.plot_hues is None or not self.split:

                if self.hue_names is None:
                    hue_mask = np.ones(group_data.size, np.bool)
                else:
                    hue_mask = np.array([h in self.hue_names
                                         for h in self.plot_hues[i]], np.bool)
                    # Broken on older numpys
                    # hue_mask = np.in1d(self.plot_hues[i], self.hue_names)

                strip_data = group_data[hue_mask]

                # Plot the points in centered positions
                cat_pos = np.ones(strip_data.size) * i
                cat_pos += self.jitterer(len(strip_data))
                kws.update(c=self.point_colors[i][hue_mask])
                if self.orient == "v":
                    ax.scatter(cat_pos, strip_data, **kws)
                else:
                    ax.scatter(strip_data, cat_pos, **kws)

            else:
                offsets = self.hue_offsets
                for j, hue_level in enumerate(self.hue_names):
                    hue_mask = self.plot_hues[i] == hue_level
                    strip_data = group_data[hue_mask]

                    # Plot the points in centered positions
                    center = i + offsets[j]
                    cat_pos = np.ones(strip_data.size) * center
                    cat_pos += self.jitterer(len(strip_data))
                    kws.update(c=self.point_colors[i][hue_mask])
                    if self.orient == "v":
                        ax.scatter(cat_pos, strip_data, **kws)
                    else:
                        ax.scatter(strip_data, cat_pos, **kws)

    def plot(self, ax, kws):
        """Make the plot."""
        self.draw_stripplot(ax, kws)
        self.add_legend_data(ax)
        self.annotate_axes(ax)
        if self.orient == "h":
            ax.invert_yaxis()


class _SwarmPlotter(_CategoricalScatterPlotter):

    def __init__(self, x, y, hue, data, order, hue_order,
                 split, orient, color, palette):
        """Initialize the plotter."""
        self.establish_variables(x, y, hue, data, orient, order, hue_order)
        self.establish_colors(color, palette, 1)

        # Set object attributes
        self.split = split
        self.width = .8

    def overlap(self, xy_i, xy_j, d):
        """Return True if two circles with the same diameter will overlap."""
        x_i, y_i = xy_i
        x_j, y_j = xy_j
        return ((x_i - x_j) ** 2 + (y_i - y_j) ** 2) < (d ** 2)

    def could_overlap(self, xy_i, swarm, d):
        """Return a list of all swarm points that could overlap with target.

        Assumes that swarm is a sorted list of all points below xy_i.
        """
        _, y_i = xy_i
        neighbors = []
        for xy_j in reversed(swarm):
            _, y_j = xy_j
            if (y_i - y_j) < d:
                neighbors.append(xy_j)
            else:
                break
        return list(reversed(neighbors))

    def position_candidates(self, xy_i, neighbors, d):
        """Return a list of (x, y) coordinates that might be valid."""
        candidates = [xy_i]
        x_i, y_i = xy_i
        left_first = True
        for x_j, y_j in neighbors:
            dy = y_i - y_j
            dx = np.sqrt(d ** 2 - dy ** 2) * 1.05
            cl, cr = (x_j - dx, y_i), (x_j + dx, y_i)
            if left_first:
                new_candidates = [cl, cr]
            else:
                new_candidates = [cr, cl]
            candidates.extend(new_candidates)
            left_first = not left_first
        return candidates

    def prune_candidates(self, candidates, neighbors, d):
        """Remove candidates from the list if they overlap with the swarm."""
        good_candidates = []
        for xy_i in candidates:
            good_candidate = True
            for xy_j in neighbors:
                if self.overlap(xy_i, xy_j, d):
                    good_candidate = False
            if good_candidate:
                good_candidates.append(xy_i)
        return np.array(good_candidates)

    def beeswarm(self, orig_xy, d):
        """Adjust x position of points to avoid overlaps."""
        # In this method, ``x`` is always the categorical axis
        # Center of the swarm, in point coordinates
        midline = orig_xy[0, 0]

        # Start the swarm with the first point
        swarm = [orig_xy[0]]

        # Loop over the remaining points
        for xy_i in orig_xy[1:]:

            # Find the points in the swarm that could possibly
            # overlap with the point we are currently placing
            neighbors = self.could_overlap(xy_i, swarm, d)

            # Find positions that would be valid individually
            # with respect to each of the swarm neighbors
            candidates = self.position_candidates(xy_i, neighbors, d)

            # Remove the positions that overlap with any of the
            # other neighbors
            candidates = self.prune_candidates(candidates, neighbors, d)

            # Find the most central of the remaining positions
            offsets = np.abs(candidates[:, 0] - midline)
            best_index = np.argmin(offsets)
            new_xy_i = candidates[best_index]
            swarm.append(new_xy_i)

        return np.array(swarm)

    def add_gutters(self, points, center, width):
        """Stop points from extending beyond their territory."""
        half_width = width / 2
        low_gutter = center - half_width
        off_low = points < low_gutter
        if off_low.any():
            points[off_low] = low_gutter
        high_gutter = center + half_width
        off_high = points > high_gutter
        if off_high.any():
            points[off_high] = high_gutter
        return points

    def swarm_points(self, ax, points, center, width, s, **kws):
        """Find new positions on the categorical axis for each point."""
        # Convert from point size (area) to diameter
        default_lw = mpl.rcParams["patch.linewidth"]
        lw = kws.get("linewidth", kws.get("lw", default_lw))
        d = np.sqrt(s) + lw

        # Transform the data coordinates to point coordinates.
        # We'll figure out the swarm positions in the latter
        # and then convert back to data coordinates and replot
        orig_xy = ax.transData.transform(points.get_offsets())

        # Order the variables so that x is the caegorical axis
        if self.orient == "h":
            orig_xy = orig_xy[:, [1, 0]]

        # Do the beeswarm in point coordinates
        new_xy = self.beeswarm(orig_xy, d)

        # Transform the point coordinates back to data coordinates
        if self.orient == "h":
            new_xy = new_xy[:, [1, 0]]
        new_x, new_y = ax.transData.inverted().transform(new_xy).T

        # Add gutters
        if self.orient == "v":
            self.add_gutters(new_x, center, width)
        else:
            self.add_gutters(new_y, center, width)

        # Reposition the points so they do not overlap
        points.set_offsets(np.c_[new_x, new_y])

    def draw_swarmplot(self, ax, kws):
        """Plot the data."""
        s = kws.pop("s")

        centers = []
        swarms = []

        # Set the categorical axes limits here for the swarm math
        if self.orient == "v":
            ax.set_xlim(-.5, len(self.plot_data) - .5)
        else:
            ax.set_ylim(-.5, len(self.plot_data) - .5)

        # Plot each swarm
        for i, group_data in enumerate(self.plot_data):

            if self.plot_hues is None or not self.split:

                width = self.width

                if self.hue_names is None:
                    hue_mask = np.ones(group_data.size, np.bool)
                else:
                    hue_mask = np.array([h in self.hue_names
                                         for h in self.plot_hues[i]], np.bool)
                    # Broken on older numpys
                    # hue_mask = np.in1d(self.plot_hues[i], self.hue_names)

                swarm_data = group_data[hue_mask]

                # Sort the points for the beeswarm algorithm
                sorter = np.argsort(swarm_data)
                swarm_data = swarm_data[sorter]
                point_colors = self.point_colors[i][hue_mask][sorter]

                # Plot the points in centered positions
                cat_pos = np.ones(swarm_data.size) * i
                kws.update(c=point_colors)
                if self.orient == "v":
                    points = ax.scatter(cat_pos, swarm_data, s=s, **kws)
                else:
                    points = ax.scatter(swarm_data, cat_pos, s=s, **kws)

                centers.append(i)
                swarms.append(points)

            else:
                offsets = self.hue_offsets
                width = self.nested_width

                for j, hue_level in enumerate(self.hue_names):
                    hue_mask = self.plot_hues[i] == hue_level
                    swarm_data = group_data[hue_mask]

                    # Sort the points for the beeswarm algorithm
                    sorter = np.argsort(swarm_data)
                    swarm_data = swarm_data[sorter]
                    point_colors = self.point_colors[i][hue_mask][sorter]

                    # Plot the points in centered positions
                    center = i + offsets[j]
                    cat_pos = np.ones(swarm_data.size) * center
                    kws.update(c=point_colors)
                    if self.orient == "v":
                        points = ax.scatter(cat_pos, swarm_data, s=s, **kws)
                    else:
                        points = ax.scatter(swarm_data, cat_pos, s=s, **kws)

                    centers.append(center)
                    swarms.append(points)

        # Update the position of each point on the categorical axis
        # Do this after plotting so that the numerical axis limits are correct
        for center, swarm in zip(centers, swarms):
            if swarm.get_offsets().size:
                self.swarm_points(ax, swarm, center, width, s, **kws)

    def plot(self, ax, kws):
        """Make the full plot."""
        self.draw_swarmplot(ax, kws)
        self.add_legend_data(ax)
        self.annotate_axes(ax)
        if self.orient == "h":
            ax.invert_yaxis()


class _CategoricalStatPlotter(_CategoricalPlotter):

    @property
    def nested_width(self):
        """A float with the width of plot elements when hue nesting is used."""
        return self.width / len(self.hue_names)

    def estimate_statistic(self, estimator, ci, n_boot):

        if self.hue_names is None:
            statistic = []
            confint = []
        else:
            statistic = [[] for _ in self.plot_data]
            confint = [[] for _ in self.plot_data]

        for i, group_data in enumerate(self.plot_data):

            # Option 1: we have a single layer of grouping
            # --------------------------------------------

            if self.plot_hues is None:

                if self.plot_units is None:
                    stat_data = remove_na(group_data)
                    unit_data = None
                else:
                    unit_data = self.plot_units[i]
                    have = pd.notnull(np.c_[group_data, unit_data]).all(axis=1)
                    stat_data = group_data[have]
                    unit_data = unit_data[have]

                # Estimate a statistic from the vector of data
                if not stat_data.size:
                    statistic.append(np.nan)
                else:
                    statistic.append(estimator(stat_data))

                # Get a confidence interval for this estimate
                if ci is not None:

                    if stat_data.size < 2:
                        confint.append([np.nan, np.nan])
                        continue

                    boots = bootstrap(stat_data, func=estimator,
                                      n_boot=n_boot,
                                      units=unit_data)
                    confint.append(utils.ci(boots, ci))

            # Option 2: we are grouping by a hue layer
            # ----------------------------------------

            else:
                for j, hue_level in enumerate(self.hue_names):

                    if not self.plot_hues[i].size:
                        statistic[i].append(np.nan)
                        if ci is not None:
                            confint[i].append((np.nan, np.nan))
                        continue

                    hue_mask = self.plot_hues[i] == hue_level
                    if self.plot_units is None:
                        stat_data = remove_na(group_data[hue_mask])
                        unit_data = None
                    else:
                        group_units = self.plot_units[i]
                        have = pd.notnull(
                            np.c_[group_data, group_units]
                            ).all(axis=1)
                        stat_data = group_data[hue_mask & have]
                        unit_data = group_units[hue_mask & have]

                    # Estimate a statistic from the vector of data
                    if not stat_data.size:
                        statistic[i].append(np.nan)
                    else:
                        statistic[i].append(estimator(stat_data))

                    # Get a confidence interval for this estimate
                    if ci is not None:

                        if stat_data.size < 2:
                            confint[i].append([np.nan, np.nan])
                            continue

                        boots = bootstrap(stat_data, func=estimator,
                                          n_boot=n_boot,
                                          units=unit_data)
                        confint[i].append(utils.ci(boots, ci))

        # Save the resulting values for plotting
        self.statistic = np.array(statistic)
        self.confint = np.array(confint)

        # Rename the value label to reflect the estimation
        if self.value_label is not None:
            self.value_label = "{}({})".format(estimator.__name__,
                                               self.value_label)

    def draw_confints(self, ax, at_group, confint, colors,
                      errwidth=None, capsize=None, **kws):

        if errwidth is not None:
            kws.setdefault("lw", errwidth)
        else:
            kws.setdefault("lw", mpl.rcParams["lines.linewidth"] * 1.8)

        for at, (ci_low, ci_high), color in zip(at_group,
                                                confint,
                                                colors):
            if self.orient == "v":
                ax.plot([at, at], [ci_low, ci_high], color=color, **kws)
                if capsize is not None:
                    ax.plot([at - capsize / 2, at + capsize / 2],
                            [ci_low, ci_low], color=color, **kws)
                    ax.plot([at - capsize / 2, at + capsize / 2],
                            [ci_high, ci_high], color=color, **kws)
            else:
                ax.plot([ci_low, ci_high], [at, at], color=color, **kws)
                if capsize is not None:
                    ax.plot([ci_low, ci_low],
                            [at - capsize / 2, at + capsize / 2],
                            color=color, **kws)
                    ax.plot([ci_high, ci_high],
                            [at - capsize / 2, at + capsize / 2],
                            color=color, **kws)


class _BarPlotter(_CategoricalStatPlotter):
    """Show point estimates and confidence intervals with bars."""

    def __init__(self, x, y, hue, data, order, hue_order,
                 estimator, ci, n_boot, units,
                 orient, color, palette, saturation, errcolor, errwidth=None,
                 capsize=None):
        """Initialize the plotter."""
        self.establish_variables(x, y, hue, data, orient,
                                 order, hue_order, units)
        self.establish_colors(color, palette, saturation)
        self.estimate_statistic(estimator, ci, n_boot)

        self.errcolor = errcolor
        self.errwidth = errwidth
        self.capsize = capsize

    def draw_bars(self, ax, kws):
        """Draw the bars onto `ax`."""
        # Get the right matplotlib function depending on the orientation
        barfunc = ax.bar if self.orient == "v" else ax.barh
        barpos = np.arange(len(self.statistic))

        if self.plot_hues is None:

            # Draw the bars
            barfunc(barpos, self.statistic, self.width,
                    color=self.colors, align="center", **kws)

            # Draw the confidence intervals
            errcolors = [self.errcolor] * len(barpos)
            self.draw_confints(ax,
                               barpos,
                               self.confint,
                               errcolors,
                               self.errwidth,
                               self.capsize)

        else:

            for j, hue_level in enumerate(self.hue_names):

                # Draw the bars
                offpos = barpos + self.hue_offsets[j]
                barfunc(offpos, self.statistic[:, j], self.nested_width,
                        color=self.colors[j], align="center",
                        label=hue_level, **kws)

                # Draw the confidence intervals
                if self.confint.size:
                    confint = self.confint[:, j]
                    errcolors = [self.errcolor] * len(offpos)
                    self.draw_confints(ax,
                                       offpos,
                                       confint,
                                       errcolors,
                                       self.errwidth,
                                       self.capsize)

    def plot(self, ax, bar_kws):
        """Make the plot."""
        self.draw_bars(ax, bar_kws)
        self.annotate_axes(ax)
        if self.orient == "h":
            ax.invert_yaxis()


class _PointPlotter(_CategoricalStatPlotter):
    """Show point estimates and confidence intervals with (joined) points."""
    def __init__(self, x, y, hue, data, order, hue_order,
                 estimator, ci, n_boot, units,
                 markers, linestyles, dodge, join, scale,
                 orient, color, palette, errwidth=None, capsize=None):
        """Initialize the plotter."""
        self.establish_variables(x, y, hue, data, orient,
                                 order, hue_order, units)
        self.establish_colors(color, palette, 1)
        self.estimate_statistic(estimator, ci, n_boot)

        # Override the default palette for single-color plots
        if hue is None and color is None and palette is None:
            self.colors = [color_palette()[0]] * len(self.colors)

        # Don't join single-layer plots with different colors
        if hue is None and palette is not None:
            join = False

        # Use a good default for `dodge=True`
        if dodge is True and self.hue_names is not None:
            dodge = .025 * len(self.hue_names)

        # Make sure we have a marker for each hue level
        if isinstance(markers, string_types):
            markers = [markers] * len(self.colors)
        self.markers = markers

        # Make sure we have a line style for each hue level
        if isinstance(linestyles, string_types):
            linestyles = [linestyles] * len(self.colors)
        self.linestyles = linestyles

        # Set the other plot components
        self.dodge = dodge
        self.join = join
        self.scale = scale
        self.errwidth = errwidth
        self.capsize = capsize

    @property
    def hue_offsets(self):
        """Offsets relative to the center position for each hue level."""
        offset = np.linspace(0, self.dodge, len(self.hue_names))
        offset -= offset.mean()
        return offset

    def draw_points(self, ax):
        """Draw the main data components of the plot."""
        # Get the center positions on the categorical axis
        pointpos = np.arange(len(self.statistic))

        # Get the size of the plot elements
        lw = mpl.rcParams["lines.linewidth"] * 1.8 * self.scale
        mew = lw * .75
        markersize = np.pi * np.square(lw) * 2

        if self.plot_hues is None:

            # Draw lines joining each estimate point
            if self.join:
                color = self.colors[0]
                ls = self.linestyles[0]
                if self.orient == "h":
                    ax.plot(self.statistic, pointpos,
                            color=color, ls=ls, lw=lw)
                else:
                    ax.plot(pointpos, self.statistic,
                            color=color, ls=ls, lw=lw)

            # Draw the confidence intervals
            self.draw_confints(ax, pointpos, self.confint, self.colors,
                               self.errwidth, self.capsize)
            # Draw the estimate points
            marker = self.markers[0]
            if self.orient == "h":
                ax.scatter(self.statistic, pointpos,
                           linewidth=mew, marker=marker, s=markersize,
                           c=self.colors, edgecolor=self.colors)
            else:
                ax.scatter(pointpos, self.statistic,
                           linewidth=mew, marker=marker, s=markersize,
                           c=self.colors, edgecolor=self.colors)

        else:

            offsets = self.hue_offsets
            for j, hue_level in enumerate(self.hue_names):

                # Determine the values to plot for this level
                statistic = self.statistic[:, j]

                # Determine the position on the categorical and z axes
                offpos = pointpos + offsets[j]
                z = j + 1

                # Draw lines joining each estimate point
                if self.join:
                    color = self.colors[j]
                    ls = self.linestyles[j]
                    if self.orient == "h":
                        ax.plot(statistic, offpos, color=color,
                                zorder=z, ls=ls, lw=lw)
                    else:
                        ax.plot(offpos, statistic, color=color,
                                zorder=z, ls=ls, lw=lw)

                # Draw the confidence intervals
                if self.confint.size:
                    confint = self.confint[:, j]
                    errcolors = [self.colors[j]] * len(offpos)
                    self.draw_confints(ax, offpos, confint, errcolors,
                                       self.errwidth, self.capsize,
                                       zorder=z)

                # Draw the estimate points
                marker = self.markers[j]
                if self.orient == "h":
                    ax.scatter(statistic, offpos, label=hue_level,
                               c=[self.colors[j]] * len(offpos),
                               linewidth=mew, marker=marker, s=markersize,
                               edgecolor=self.colors[j], zorder=z)
                else:
                    ax.scatter(offpos, statistic, label=hue_level,
                               c=[self.colors[j]] * len(offpos),
                               linewidth=mew, marker=marker, s=markersize,
                               edgecolor=self.colors[j], zorder=z)

    def plot(self, ax):
        """Make the plot."""
        self.draw_points(ax)
        self.annotate_axes(ax)
        if self.orient == "h":
            ax.invert_yaxis()


class _LVPlotter(_CategoricalPlotter):

    def __init__(self, x, y, hue, data, order, hue_order,
                 orient, color, palette, saturation,
                 width, k_depth, linewidth, scale, outlier_prop):

        if width is None:
            width = .8
        self.width = width

        if saturation is None:
            saturation = .75
        self.saturation = saturation

        if k_depth is None:
            k_depth = 'proportion'
        self.k_depth = k_depth

        if linewidth is None:
            linewidth = mpl.rcParams["lines.linewidth"]
        self.linewidth = linewidth

        if scale is None:
            scale = 'exponential'
        self.scale = scale

        self.outlier_prop = outlier_prop

        self.establish_variables(x, y, hue, data, orient, order, hue_order)
        self.establish_colors(color, palette, saturation)

    def _lv_box_ends(self, vals, k_depth='proportion', outlier_prop=None):
        """Get the number of data points and calculate `depth` of
        letter-value plot."""
        vals = np.asarray(vals)
        vals = vals[np.isfinite(vals)]
        n = len(vals)
        # If p is not set, calculate it so that 8 points are outliers
        if not outlier_prop:
            # Conventional boxplots assume this proportion of the data are
            # outliers.
            p = 0.007
        else:
            if ((outlier_prop > 1.) or (outlier_prop < 0.)):
                raise ValueError('outlier_prop not in range [0, 1]!')
            p = outlier_prop
        # Select the depth, i.e. number of boxes to draw, based on the method
        k_dict = {'proportion': (np.log2(n)) - int(np.log2(n*p)) + 1,
                  'tukey': (np.log2(n)) - 3,
                  'trustworthy': (np.log2(n) -
                                  np.log2(2*stats.norm.ppf((1-p))**2)) + 1}
        k = k_dict[k_depth]
        try:
            k = int(k)
        except ValueError:
            k = 1
        # If the number happens to be less than 0, set k to 0
        if k < 1.:
            k = 1
        # Calculate the upper box ends
        upper = [100*(1 - 0.5**(i+2)) for i in range(k, -1, -1)]
        # Calculate the lower box ends
        lower = [100*(0.5**(i+2)) for i in range(k, -1, -1)]
        # Stitch the box ends together
        percentile_ends = [(i, j) for i, j in zip(lower, upper)]
        box_ends = [np.percentile(vals, q) for q in percentile_ends]
        return box_ends, k

    def _lv_outliers(self, vals, k):
        """Find the outliers based on the letter value depth."""
        perc_ends = (100*(0.5**(k+2)), 100*(1 - 0.5**(k+2)))
        edges = np.percentile(vals, perc_ends)
        lower_out = vals[np.where(vals < edges[0])[0]]
        upper_out = vals[np.where(vals > edges[1])[0]]
        return np.concatenate((lower_out, upper_out))

    def _width_functions(self, width_func):
        # Dictionary of functions for computing the width of the boxes
        width_functions = {'linear': lambda h, i, k: (i + 1.) / k,
                           'exponential': lambda h, i, k: 2**(-k+i-1),
                           'area': lambda h, i, k: (1 - 2**(-k+i-2)) / h}
        return width_functions[width_func]

    def _lvplot(self, box_data, positions,
                color=[255. / 256., 185. / 256., 0.],
                vert=True, widths=1, k_depth='proportion',
                ax=None, outlier_prop=None, scale='exponential',
                **kws):

        x = positions[0]
        box_data = np.asarray(box_data)

        # If we only have one data point, plot a line
        if len(box_data) == 1:
            kws.update({'color': self.gray, 'linestyle': '-'})
            ys = [box_data[0], box_data[0]]
            xs = [x - widths / 2, x + widths / 2]
            if vert:
                xx, yy = xs, ys
            else:
                xx, yy = ys, xs
            ax.plot(xx, yy, **kws)
        else:
            # Get the number of data points and calculate "depth" of
            # letter-value plot
            box_ends, k = self._lv_box_ends(box_data, k_depth=k_depth,
                                            outlier_prop=outlier_prop)

            # Anonymous functions for calculating the width and height
            # of the letter value boxes
            width = self._width_functions(scale)

            # Function to find height of boxes
            def height(b):
                return b[1] - b[0]

            # Functions to construct the letter value boxes
            def vert_perc_box(x, b, i, k, w):
                rect = Patches.Rectangle((x - widths*w / 2, b[0]),
                                         widths*w,
                                         height(b), fill=True)
                return rect

            def horz_perc_box(x, b, i, k, w):
                rect = Patches.Rectangle((b[0], x - widths*w / 2),
                                         height(b), widths*w,
                                         fill=True)
                return rect

            # Scale the width of the boxes so the biggest starts at 1
            w_area = np.array([width(height(b), i, k)
                               for i, b in enumerate(box_ends)])
            w_area = w_area / np.max(w_area)

            # Calculate the medians
            y = np.median(box_data)

            # Calculate the outliers and plot
            outliers = self._lv_outliers(box_data, k)

            if vert:
                boxes = [vert_perc_box(x, b[0], i, k, b[1])
                         for i, b in enumerate(zip(box_ends, w_area))]

                # Plot the medians
                ax.plot([x - widths / 2, x + widths / 2], [y, y],
                        c='.15', alpha=.45, **kws)

                ax.scatter(np.repeat(x, len(outliers)), outliers,
                           marker='d', c=mpl.colors.rgb2hex(color), **kws)
            else:
                boxes = [horz_perc_box(x, b[0], i, k, b[1])
                         for i, b in enumerate(zip(box_ends, w_area))]

                # Plot the medians
                ax.plot([y, y], [x - widths / 2, x + widths / 2],
                        c='.15', alpha=.45, **kws)

                ax.scatter(outliers, np.repeat(x, len(outliers)),
                           marker='d', c=color, **kws)

            # Construct a color map from the input color
            rgb = [[1, 1, 1], list(color)]
            cmap = mpl.colors.LinearSegmentedColormap.from_list('new_map', rgb)
            collection = PatchCollection(boxes, cmap=cmap)

            # Set the color gradation
            collection.set_array(np.array(np.linspace(0, 1, len(boxes))))

            # Plot the boxes
            ax.add_collection(collection)

    def draw_letter_value_plot(self, ax, kws):
        """Use matplotlib to draw a letter value plot on an Axes."""
        vert = self.orient == "v"

        for i, group_data in enumerate(self.plot_data):

            if self.plot_hues is None:

                # Handle case where there is data at this level
                if group_data.size == 0:
                    continue

                # Draw a single box or a set of boxes
                # with a single level of grouping
                box_data = remove_na(group_data)

                # Handle case where there is no non-null data
                if box_data.size == 0:
                    continue

                color = self.colors[i]

                artist_dict = self._lvplot(box_data,
                                           positions=[i],
                                           color=color,
                                           vert=vert,
                                           widths=self.width,
                                           k_depth=self.k_depth,
                                           ax=ax,
                                           scale=self.scale,
                                           outlier_prop=self.outlier_prop,
                                           **kws)

            else:
                # Draw nested groups of boxes
                offsets = self.hue_offsets
                for j, hue_level in enumerate(self.hue_names):

                    # Add a legend for this hue level
                    if not i:
                        self.add_legend_data(ax, self.colors[j], hue_level)

                    # Handle case where there is data at this level
                    if group_data.size == 0:
                        continue

                    hue_mask = self.plot_hues[i] == hue_level
                    box_data = remove_na(group_data[hue_mask])

                    # Handle case where there is no non-null data
                    if box_data.size == 0:
                        continue

                    color = self.colors[j]
                    center = i + offsets[j]
                    artist_dict = self._lvplot(box_data,
                                               positions=[center],
                                               color=color,
                                               vert=vert,
                                               widths=self.nested_width,
                                               k_depth=self.k_depth,
                                               ax=ax,
                                               scale=self.scale,
                                               outlier_prop=self.outlier_prop,
                                               **kws)

    def plot(self, ax, boxplot_kws):
        """Make the plot."""
        self.draw_letter_value_plot(ax, boxplot_kws)
        self.annotate_axes(ax)
        if self.orient == "h":
            ax.invert_yaxis()

_categorical_docs = dict(

    # Shared narrative docs
    main_api_narrative=dedent("""\
    Input data can be passed in a variety of formats, including:

    - Vectors of data represented as lists, numpy arrays, or pandas Series
      objects passed directly to the ``x``, ``y``, and/or ``hue`` parameters.
    - A "long-form" DataFrame, in which case the ``x``, ``y``, and ``hue``
      variables will determine how the data are plotted.
    - A "wide-form" DataFrame, such that each numeric column will be plotted.
    - Anything accepted by ``plt.boxplot`` (e.g. a 2d array or list of vectors)

    In most cases, it is possible to use numpy or Python objects, but pandas
    objects are preferable because the associated names will be used to
    annotate the axes. Additionally, you can use Categorical types for the
    grouping variables to control the order of plot elements.\
    """),

    # Shared function parameters
    input_params=dedent("""\
    x, y, hue : names of variables in ``data`` or vector data, optional
        Inputs for plotting long-form data. See examples for interpretation.\
        """),
    string_input_params=dedent("""\
    x, y, hue : names of variables in ``data``
        Inputs for plotting long-form data. See examples for interpretation.\
        """),
    categorical_data=dedent("""\
    data : DataFrame, array, or list of arrays, optional
        Dataset for plotting. If ``x`` and ``y`` are absent, this is
        interpreted as wide-form. Otherwise it is expected to be long-form.\
    """),
    long_form_data=dedent("""\
    data : DataFrame
        Long-form (tidy) dataset for plotting. Each column should correspond
        to a variable, and each row should correspond to an observation.\
    """),
    order_vars=dedent("""\
    order, hue_order : lists of strings, optional
        Order to plot the categorical levels in, otherwise the levels are
        inferred from the data objects.\
        """),
    stat_api_params=dedent("""\
    estimator : callable that maps vector -> scalar, optional
        Statistical function to estimate within each categorical bin.
    ci : float or None, optional
        Size of confidence intervals to draw around estimated values. If
        ``None``, no bootstrapping will be performed, and error bars will
        not be drawn.
    n_boot : int, optional
        Number of bootstrap iterations to use when computing confidence
        intervals.
    units : name of variable in ``data`` or vector data, optional
        Identifier of sampling units, which will be used to perform a
        multilevel bootstrap and account for repeated measures design.\
    """),
    orient=dedent("""\
    orient : "v" | "h", optional
        Orientation of the plot (vertical or horizontal). This is usually
        inferred from the dtype of the input variables, but can be used to
        specify when the "categorical" variable is a numeric or when plotting
        wide-form data.\
    """),
    color=dedent("""\
    color : matplotlib color, optional
        Color for all of the elements, or seed for :func:`light_palette` when
        using hue nesting.\
    """),
    palette=dedent("""\
    palette : palette name, list, or dict, optional
        Color palette that maps either the grouping variable or the hue
        variable. If the palette is a dictionary, keys should be names of
        levels and values should be matplotlib colors.\
    """),
    saturation=dedent("""\
    saturation : float, optional
        Proportion of the original saturation to draw colors at. Large patches
        often look better with slightly desaturated colors, but set this to
        ``1`` if you want the plot colors to perfectly match the input color
        spec.\
    """),
    capsize=dedent("""\
         capsize : float, optional
             Width of the "caps" on error bars.
         """),
    errwidth=dedent("""\
         errwidth : float, optional
             Thickness of error bar lines (and caps).\
         """),
    width=dedent("""\
    width : float, optional
        Width of a full element when not using hue nesting, or width of all the
        elements for one level of the major grouping variable.\
    """),
    linewidth=dedent("""\
    linewidth : float, optional
        Width of the gray lines that frame the plot elements.\
    """),
    ax_in=dedent("""\
    ax : matplotlib Axes, optional
        Axes object to draw the plot onto, otherwise uses the current Axes.\
    """),
    ax_out=dedent("""\
    ax : matplotlib Axes
        Returns the Axes object with the boxplot drawn onto it.\
    """),

    # Shared see also
    boxplot=dedent("""\
    boxplot : A traditional box-and-whisker plot with a similar API.\
    """),
    violinplot=dedent("""\
    violinplot : A combination of boxplot and kernel density estimation.\
    """),
    stripplot=dedent("""\
    stripplot : A scatterplot where one variable is categorical. Can be used
                in conjunction with other plots to show each observation.\
    """),
    swarmplot=dedent("""\
    swarmplot : A categorical scatterplot where the points do not overlap. Can
                be used with other plots to show each observation.\
    """),
    barplot=dedent("""\
    barplot : Show point estimates and confidence intervals using bars.\
    """),
    countplot=dedent("""\
    countplot : Show the counts of observations in each categorical bin.\
    """),
    pointplot=dedent("""\
    pointplot : Show point estimates and confidence intervals using scatterplot
                glyphs.\
    """),
    factorplot=dedent("""\
    factorplot : Combine categorical plots and a class:`FacetGrid`.\
    """),
    lvplot=dedent("""\
    lvplot : An extension of the boxplot for long-tailed and large data sets.
    """),

    )

_categorical_docs.update(_facet_docs)


def boxplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
            orient=None, color=None, palette=None, saturation=.75,
            width=.8, fliersize=5, linewidth=None, whis=1.5, notch=False,
            ax=None, **kwargs):

    # Try to handle broken backwards-compatability
    # This should help with the lack of a smooth deprecation,
    # but won't catch everything
    warn = False
    if isinstance(x, pd.DataFrame):
        data = x
        x = None
        warn = True

    if "vals" in kwargs:
        x = kwargs.pop("vals")
        warn = True

    if "groupby" in kwargs:
        y = x
        x = kwargs.pop("groupby")
        warn = True

    if "vert" in kwargs:
        vert = kwargs.pop("vert", True)
        if not vert:
            x, y = y, x
        orient = "v" if vert else "h"
        warn = True

    if "names" in kwargs:
        kwargs.pop("names")
        warn = True

    if "join_rm" in kwargs:
        kwargs.pop("join_rm")
        warn = True

    msg = ("The boxplot API has been changed. Attempting to adjust your "
           "arguments for the new API (which might not work). Please update "
           "your code. See the version 0.6 release notes for more info.")

    if warn:
        warnings.warn(msg, UserWarning)

    plotter = _BoxPlotter(x, y, hue, data, order, hue_order,
                          orient, color, palette, saturation,
                          width, fliersize, linewidth)

    if ax is None:
        ax = plt.gca()
    kwargs.update(dict(whis=whis, notch=notch))

    plotter.plot(ax, kwargs)
    return ax

boxplot.__doc__ = dedent("""\
    Draw a box plot to show distributions with respect to categories.

    A box plot (or box-and-whisker plot) shows the distribution of quantitative
    data in a way that facilitates comparisons between variables or across
    levels of a categorical variable. The box shows the quartiles of the
    dataset while the whiskers extend to show the rest of the distribution,
    except for points that are determined to be "outliers" using a method
    that is a function of the inter-quartile range.

    {main_api_narrative}

    Parameters
    ----------
    {input_params}
    {categorical_data}
    {order_vars}
    {orient}
    {color}
    {palette}
    {saturation}
    {width}
    fliersize : float, optional
        Size of the markers used to indicate outlier observations.
    {linewidth}
    whis : float, optional
        Proportion of the IQR past the low and high quartiles to extend the
        plot whiskers. Points outside this range will be identified as
        outliers.
    notch : boolean, optional
        Whether to "notch" the box to indicate a confidence interval for the
        median. There are several other parameters that can control how the
        notches are drawn; see the ``plt.boxplot`` help for more information
        on them.
    {ax_in}
    kwargs : key, value mappings
        Other keyword arguments are passed through to ``plt.boxplot`` at draw
        time.

    Returns
    -------
    {ax_out}

    See Also
    --------
    {violinplot}
    {stripplot}
    {swarmplot}

    Examples
    --------

    Draw a single horizontal boxplot:

    .. plot::
        :context: close-figs

        >>> import seaborn as sns
        >>> sns.set_style("whitegrid")
        >>> tips = sns.load_dataset("tips")
        >>> ax = sns.boxplot(x=tips["total_bill"])

    Draw a vertical boxplot grouped by a categorical variable:

    .. plot::
        :context: close-figs

        >>> ax = sns.boxplot(x="day", y="total_bill", data=tips)

    Draw a boxplot with nested grouping by two categorical variables:

    .. plot::
        :context: close-figs

        >>> ax = sns.boxplot(x="day", y="total_bill", hue="smoker",
        ...                  data=tips, palette="Set3")

    Draw a boxplot with nested grouping when some bins are empty:

    .. plot::
        :context: close-figs

        >>> ax = sns.boxplot(x="day", y="total_bill", hue="time",
        ...                  data=tips, linewidth=2.5)

    Control box order by passing an explicit order:

    .. plot::
        :context: close-figs

        >>> ax = sns.boxplot(x="time", y="tip", data=tips,
        ...                  order=["Dinner", "Lunch"])

    Draw a boxplot for each numeric variable in a DataFrame:

    .. plot::
        :context: close-figs

        >>> iris = sns.load_dataset("iris")
        >>> ax = sns.boxplot(data=iris, orient="h", palette="Set2")

    Use :func:`swarmplot` to show the datapoints on top of the boxes:

    .. plot::
        :context: close-figs

        >>> ax = sns.boxplot(x="day", y="total_bill", data=tips)
        >>> ax = sns.swarmplot(x="day", y="total_bill", data=tips, color=".25")

    Draw a box plot on to a :class:`FacetGrid` to group within an additional
    categorical variable:

    .. plot::
        :context: close-figs

        >>> g = sns.FacetGrid(tips, col="time", size=4, aspect=.7)
        >>> (g.map(sns.boxplot, "sex", "total_bill", "smoker")
        ...   .despine(left=True)
        ...   .add_legend(title="smoker"))  #doctest: +ELLIPSIS
        <seaborn.axisgrid.FacetGrid object at 0x...>

    """).format(**_categorical_docs)


def violinplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
               bw="scott", cut=2, scale="area", scale_hue=True, gridsize=100,
               width=.8, inner="box", split=False, orient=None, linewidth=None,
               color=None, palette=None, saturation=.75, ax=None, **kwargs):

    # Try to handle broken backwards-compatability
    # This should help with the lack of a smooth deprecation,
    # but won't catch everything
    warn = False
    if isinstance(x, pd.DataFrame):
        data = x
        x = None
        warn = True

    if "vals" in kwargs:
        x = kwargs.pop("vals")
        warn = True

    if "groupby" in kwargs:
        y = x
        x = kwargs.pop("groupby")
        warn = True

    if "vert" in kwargs:
        vert = kwargs.pop("vert", True)
        if not vert:
            x, y = y, x
        orient = "v" if vert else "h"
        warn = True

    msg = ("The violinplot API has been changed. Attempting to adjust your "
           "arguments for the new API (which might not work). Please update "
           "your code. See the version 0.6 release notes for more info.")
    if warn:
        warnings.warn(msg, UserWarning)

    plotter = _ViolinPlotter(x, y, hue, data, order, hue_order,
                             bw, cut, scale, scale_hue, gridsize,
                             width, inner, split, orient, linewidth,
                             color, palette, saturation)

    if ax is None:
        ax = plt.gca()

    plotter.plot(ax)
    return ax

violinplot.__doc__ = dedent("""\
    Draw a combination of boxplot and kernel density estimate.

    A violin plot plays a similar role as a box and whisker plot. It shows the
    distribution of quantitative data across several levels of one (or more)
    categorical variables such that those distributions can be compared. Unlike
    a box plot, in which all of the plot components correspond to actual
    datapoints, the violin plot features a kernel density estimation of the
    underlying distribution.

    This can be an effective and attractive way to show multiple distributions
    of data at once, but keep in mind that the estimation procedure is
    influenced by the sample size, and violins for relatively small samples
    might look misleadingly smooth.

    {main_api_narrative}

    Parameters
    ----------
    {input_params}
    {categorical_data}
    {order_vars}
    bw : {{'scott', 'silverman', float}}, optional
        Either the name of a reference rule or the scale factor to use when
        computing the kernel bandwidth. The actual kernel size will be
        determined by multiplying the scale factor by the standard deviation of
        the data within each bin.
    cut : float, optional
        Distance, in units of bandwidth size, to extend the density past the
        extreme datapoints. Set to 0 to limit the violin range within the range
        of the observed data (i.e., to have the same effect as ``trim=True`` in
        ``ggplot``.
    scale : {{"area", "count", "width"}}, optional
        The method used to scale the width of each violin. If ``area``, each
        violin will have the same area. If ``count``, the width of the violins
        will be scaled by the number of observations in that bin. If ``width``,
        each violin will have the same width.
    scale_hue : bool, optional
        When nesting violins using a ``hue`` variable, this parameter
        determines whether the scaling is computed within each level of the
        major grouping variable (``scale_hue=True``) or across all the violins
        on the plot (``scale_hue=False``).
    gridsize : int, optional
        Number of points in the discrete grid used to compute the kernel
        density estimate.
    {width}
    inner : {{"box", "quartile", "point", "stick", None}}, optional
        Representation of the datapoints in the violin interior. If ``box``,
        draw a miniature boxplot. If ``quartiles``, draw the quartiles of the
        distribution.  If ``point`` or ``stick``, show each underlying
        datapoint. Using ``None`` will draw unadorned violins.
    split : bool, optional
        When using hue nesting with a variable that takes two levels, setting
        ``split`` to True will draw half of a violin for each level. This can
        make it easier to directly compare the distributions.
    {orient}
    {linewidth}
    {color}
    {palette}
    {saturation}
    {ax_in}

    Returns
    -------
    {ax_out}

    See Also
    --------
    {boxplot}
    {stripplot}
    {swarmplot}

    Examples
    --------

    Draw a single horizontal violinplot:

    .. plot::
        :context: close-figs

        >>> import seaborn as sns
        >>> sns.set_style("whitegrid")
        >>> tips = sns.load_dataset("tips")
        >>> ax = sns.violinplot(x=tips["total_bill"])

    Draw a vertical violinplot grouped by a categorical variable:

    .. plot::
        :context: close-figs

        >>> ax = sns.violinplot(x="day", y="total_bill", data=tips)

    Draw a violinplot with nested grouping by two categorical variables:

    .. plot::
        :context: close-figs

        >>> ax = sns.violinplot(x="day", y="total_bill", hue="smoker",
        ...                     data=tips, palette="muted")

    Draw split violins to compare the across the hue variable:

    .. plot::
        :context: close-figs

        >>> ax = sns.violinplot(x="day", y="total_bill", hue="smoker",
        ...                     data=tips, palette="muted", split=True)

    Control violin order by passing an explicit order:

    .. plot::
        :context: close-figs

        >>> ax = sns.violinplot(x="time", y="tip", data=tips,
        ...                     order=["Dinner", "Lunch"])

    Scale the violin width by the number of observations in each bin:

    .. plot::
        :context: close-figs

        >>> ax = sns.violinplot(x="day", y="total_bill", hue="sex",
        ...                     data=tips, palette="Set2", split=True,
        ...                     scale="count")

    Draw the quartiles as horizontal lines instead of a mini-box:

    .. plot::
        :context: close-figs

        >>> ax = sns.violinplot(x="day", y="total_bill", hue="sex",
        ...                     data=tips, palette="Set2", split=True,
        ...                     scale="count", inner="quartile")

    Show each observation with a stick inside the violin:

    .. plot::
        :context: close-figs

        >>> ax = sns.violinplot(x="day", y="total_bill", hue="sex",
        ...                     data=tips, palette="Set2", split=True,
        ...                     scale="count", inner="stick")

    Scale the density relative to the counts across all bins:

    .. plot::
        :context: close-figs

        >>> ax = sns.violinplot(x="day", y="total_bill", hue="sex",
        ...                     data=tips, palette="Set2", split=True,
        ...                     scale="count", inner="stick", scale_hue=False)

    Use a narrow bandwidth to reduce the amount of smoothing:

    .. plot::
        :context: close-figs

        >>> ax = sns.violinplot(x="day", y="total_bill", hue="sex",
        ...                     data=tips, palette="Set2", split=True,
        ...                     scale="count", inner="stick",
        ...                     scale_hue=False, bw=.2)

    Draw horizontal violins:

    .. plot::
        :context: close-figs

        >>> planets = sns.load_dataset("planets")
        >>> ax = sns.violinplot(x="orbital_period", y="method",
        ...                     data=planets[planets.orbital_period < 1000],
        ...                     scale="width", palette="Set3")

    Draw a violin plot on to a :class:`FacetGrid` to group within an additional
    categorical variable:

    .. plot::
        :context: close-figs

        >>> g = sns.FacetGrid(tips, col="time", size=4, aspect=.7)
        >>> (g.map(sns.violinplot, "sex", "total_bill", "smoker", split=True)
        ...   .despine(left=True)
        ...   .add_legend(title="smoker"))  # doctest: +ELLIPSIS
        <seaborn.axisgrid.FacetGrid object at 0x...>

    """).format(**_categorical_docs)


def stripplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
              jitter=False, split=False, orient=None, color=None, palette=None,
              size=5, edgecolor="gray", linewidth=0, ax=None, **kwargs):

    plotter = _StripPlotter(x, y, hue, data, order, hue_order,
                            jitter, split, orient, color, palette)
    if ax is None:
        ax = plt.gca()

    kwargs.setdefault("zorder", 3)
    size = kwargs.get("s", size)
    if linewidth is None:
        linewidth = size / 10
    if edgecolor == "gray":
        edgecolor = plotter.gray
    kwargs.update(dict(s=size ** 2,
                       edgecolor=edgecolor,
                       linewidth=linewidth))

    plotter.plot(ax, kwargs)
    return ax


stripplot.__doc__ = dedent("""\
    Draw a scatterplot where one variable is categorical.

    A strip plot can be drawn on its own, but it is also a good complement
    to a box or violin plot in cases where you want to show all observations
    along with some representation of the underlying distribution.

    {main_api_narrative}

    Parameters
    ----------
    {input_params}
    {categorical_data}
    {order_vars}
    jitter : float, ``True``/``1`` is special-cased, optional
        Amount of jitter (only along the categorical axis) to apply. This
        can be useful when you have many points and they overlap, so that
        it is easier to see the distribution. You can specify the amount
        of jitter (half the width of the uniform random variable support),
        or just use ``True`` for a good default.
    split : bool, optional
        When using ``hue`` nesting, setting this to ``True`` will separate
        the strips for different hue levels along the categorical axis.
        Otherwise, the points for each level will be plotted on top of
        each other.
    {orient}
    {color}
    {palette}
    size : float, optional
        Diameter of the markers, in points. (Although ``plt.scatter`` is used
        to draw the points, the ``size`` argument here takes a "normal"
        markersize and not size^2 like ``plt.scatter``.
    edgecolor : matplotlib color, "gray" is special-cased, optional
        Color of the lines around each point. If you pass ``"gray"``, the
        brightness is determined by the color palette used for the body
        of the points.
    {linewidth}
    {ax_in}

    Returns
    -------
    {ax_out}

    See Also
    --------
    {swarmplot}
    {boxplot}
    {violinplot}

    Examples
    --------

    Draw a single horizontal strip plot:

    .. plot::
        :context: close-figs

        >>> import seaborn as sns
        >>> sns.set_style("whitegrid")
        >>> tips = sns.load_dataset("tips")
        >>> ax = sns.stripplot(x=tips["total_bill"])

    Group the strips by a categorical variable:

    .. plot::
        :context: close-figs

        >>> ax = sns.stripplot(x="day", y="total_bill", data=tips)

    Add jitter to bring out the distribution of values:

    .. plot::
        :context: close-figs

        >>> ax = sns.stripplot(x="day", y="total_bill", data=tips, jitter=True)

    Use a smaller amount of jitter:

    .. plot::
        :context: close-figs

        >>> ax = sns.stripplot(x="day", y="total_bill", data=tips, jitter=0.05)

    Draw horizontal strips:

    .. plot::
        :context: close-figs

        >>> ax = sns.stripplot(x="total_bill", y="day", data=tips,
        ...                    jitter=True)

    Draw outlines around the points:

    .. plot::
        :context: close-figs

        >>> ax = sns.stripplot(x="total_bill", y="day", data=tips,
        ...                    jitter=True, linewidth=1)

    Nest the strips within a second categorical variable:

    .. plot::
        :context: close-figs

        >>> ax = sns.stripplot(x="sex", y="total_bill", hue="day",
        ...                    data=tips, jitter=True)

    Draw each level of the ``hue`` variable at different locations on the
    major categorical axis:

    .. plot::
        :context: close-figs

        >>> ax = sns.stripplot(x="day", y="total_bill", hue="smoker",
        ...                    data=tips, jitter=True,
        ...                    palette="Set2", split=True)

    Control strip order by passing an explicit order:

    .. plot::
        :context: close-figs

        >>> ax = sns.stripplot(x="time", y="tip", data=tips,
        ...                    order=["Dinner", "Lunch"])

    Draw strips with large points and different aesthetics:

    .. plot::
        :context: close-figs

        >>> ax =  sns.stripplot("day", "total_bill", "smoker", data=tips,
        ...                    palette="Set2", size=20, marker="D",
        ...                    edgecolor="gray", alpha=.25)

    Draw strips of observations on top of a box plot:

    .. plot::
        :context: close-figs

        >>> ax = sns.boxplot(x="tip", y="day", data=tips, whis=np.inf)
        >>> ax = sns.stripplot(x="tip", y="day", data=tips,
        ...                    jitter=True, color=".3")

    Draw strips of observations on top of a violin plot:

    .. plot::
        :context: close-figs

        >>> ax = sns.violinplot(x="day", y="total_bill", data=tips,
        ...                     inner=None, color=".8")
        >>> ax = sns.stripplot(x="day", y="total_bill", data=tips, jitter=True)

    """).format(**_categorical_docs)


def swarmplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
              split=False, orient=None, color=None, palette=None,
              size=5, edgecolor="gray", linewidth=0, ax=None, **kwargs):

    plotter = _SwarmPlotter(x, y, hue, data, order, hue_order,
                            split, orient, color, palette)
    if ax is None:
        ax = plt.gca()

    kwargs.setdefault("zorder", 3)
    size = kwargs.get("s", size)
    if linewidth is None:
        linewidth = size / 10
    if edgecolor == "gray":
        edgecolor = plotter.gray
    kwargs.update(dict(s=size ** 2,
                       edgecolor=edgecolor,
                       linewidth=linewidth))

    plotter.plot(ax, kwargs)
    return ax


swarmplot.__doc__ = dedent("""\
    Draw a categorical scatterplot with non-overlapping points.

    This function is similar to :func:`stripplot`, but the points are adjusted
    (only along the categorical axis) so that they don't overlap. This gives a
    better representation of the distribution of values, although it does not
    scale as well to large numbers of observations (both in terms of the
    ability to show all the points and in terms of the computation needed
    to arrange them).

    This style of plot is often called a "beeswarm".

    A swarm plot can be drawn on its own, but it is also a good complement
    to a box or violin plot in cases where you want to show all observations
    along with some representation of the underlying distribution.

    Note that arranging the points properly requires an accurate transformation
    between data and point coordinates. This means that non-default axis limits
    should be set *before* drawing the swarm plot.

    {main_api_narrative}

    Parameters
    ----------
    {input_params}
    {categorical_data}
    {order_vars}
    split : bool, optional
        When using ``hue`` nesting, setting this to ``True`` will separate
        the strips for different hue levels along the categorical axis.
        Otherwise, the points for each level will be plotted in one swarm.
    {orient}
    {color}
    {palette}
    size : float, optional
        Diameter of the markers, in points. (Although ``plt.scatter`` is used
        to draw the points, the ``size`` argument here takes a "normal"
        markersize and not size^2 like ``plt.scatter``.
    edgecolor : matplotlib color, "gray" is special-cased, optional
        Color of the lines around each point. If you pass ``"gray"``, the
        brightness is determined by the color palette used for the body
        of the points.
    {linewidth}
    {ax_in}

    Returns
    -------
    {ax_out}

    See Also
    --------
    {boxplot}
    {violinplot}
    {stripplot}
    {factorplot}

    Examples
    --------

    Draw a single horizontal swarm plot:

    .. plot::
        :context: close-figs

        >>> import seaborn as sns
        >>> sns.set_style("whitegrid")
        >>> tips = sns.load_dataset("tips")
        >>> ax = sns.swarmplot(x=tips["total_bill"])

    Group the swarms by a categorical variable:

    .. plot::
        :context: close-figs

        >>> ax = sns.swarmplot(x="day", y="total_bill", data=tips)

    Draw horizontal swarms:

    .. plot::
        :context: close-figs

        >>> ax = sns.swarmplot(x="total_bill", y="day", data=tips)

    Color the points using a second categorical variable:

    .. plot::
        :context: close-figs

        >>> ax = sns.swarmplot(x="day", y="total_bill", hue="sex", data=tips)

    Split each level of the ``hue`` variable along the categorical axis:

    .. plot::
        :context: close-figs

        >>> ax = sns.swarmplot(x="day", y="total_bill", hue="smoker",
        ...                    data=tips, palette="Set2", split=True)

    Control swarm order by passing an explicit order:

    .. plot::
        :context: close-figs

        >>> ax = sns.swarmplot(x="time", y="tip", data=tips,
        ...                    order=["Dinner", "Lunch"])

    Plot using larger points:

    .. plot::
        :context: close-figs

        >>> ax = sns.swarmplot(x="time", y="tip", data=tips, size=6)


    Draw swarms of observations on top of a box plot:

    .. plot::
        :context: close-figs

        >>> ax = sns.boxplot(x="tip", y="day", data=tips, whis=np.inf)
        >>> ax = sns.swarmplot(x="tip", y="day", data=tips)

    Draw swarms of observations on top of a violin plot:

    .. plot::
        :context: close-figs

        >>> ax = sns.violinplot(x="day", y="total_bill", data=tips, inner=None)
        >>> ax = sns.swarmplot(x="day", y="total_bill", data=tips,
        ...                    color="white", edgecolor="gray")

    """).format(**_categorical_docs)


def barplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
            estimator=np.mean, ci=95, n_boot=1000, units=None,
            orient=None, color=None, palette=None, saturation=.75,
            errcolor=".26", errwidth=None, capsize=None, ax=None, **kwargs):

    # Handle some deprecated arguments
    if "hline" in kwargs:
        kwargs.pop("hline")
        warnings.warn("The `hline` parameter has been removed", UserWarning)

    if "dropna" in kwargs:
        kwargs.pop("dropna")
        warnings.warn("The `dropna` parameter has been removed", UserWarning)

    if "x_order" in kwargs:
        order = kwargs.pop("x_order")
        warnings.warn("The `x_order` parameter has been renamed `order`",
                      UserWarning)

    plotter = _BarPlotter(x, y, hue, data, order, hue_order,
                          estimator, ci, n_boot, units,
                          orient, color, palette, saturation,
                          errcolor, errwidth, capsize)

    if ax is None:
        ax = plt.gca()

    plotter.plot(ax, kwargs)
    return ax


barplot.__doc__ = dedent("""\
    Show point estimates and confidence intervals as rectangular bars.

    A bar plot represents an estimate of central tendency for a numeric
    variable with the height of each rectangle and provides some indication of
    the uncertainty around that estimate using error bars. Bar plots include 0
    in the quantitative axis range, and they are a good choice when 0 is a
    meaningful value for the quantitative variable, and you want to make
    comparisons against it.

    For datasets where 0 is not a meaningful value, a point plot will allow you
    to focus on differences between levels of one or more categorical
    variables.

    It is also important to keep in mind that a bar plot shows only the mean
    (or other estimator) value, but in many cases it may be more informative to
    show the distribution of values at each level of the categorical variables.
    In that case, other approaches such as a box or violin plot may be more
    appropriate.

    {main_api_narrative}

    Parameters
    ----------
    {input_params}
    {categorical_data}
    {order_vars}
    {stat_api_params}
    {orient}
    {color}
    {palette}
    {saturation}
    errcolor : matplotlib color
        Color for the lines that represent the confidence interval.
    {ax_in}
    {errwidth}
    {capsize}
    kwargs : key, value mappings
        Other keyword arguments are passed through to ``plt.bar`` at draw
        time.

    Returns
    -------
    {ax_out}

    See Also
    --------
    {countplot}
    {pointplot}
    {factorplot}

    Examples
    --------

    Draw a set of vertical bar plots grouped by a categorical variable:

    .. plot::
        :context: close-figs

        >>> import seaborn as sns
        >>> sns.set_style("whitegrid")
        >>> tips = sns.load_dataset("tips")
        >>> ax = sns.barplot(x="day", y="total_bill", data=tips)

    Draw a set of vertical bars with nested grouping by a two variables:

    .. plot::
        :context: close-figs

        >>> ax = sns.barplot(x="day", y="total_bill", hue="sex", data=tips)

    Draw a set of horizontal bars:

    .. plot::
        :context: close-figs

        >>> ax = sns.barplot(x="tip", y="day", data=tips)

    Control bar order by passing an explicit order:

    .. plot::
        :context: close-figs

        >>> ax = sns.barplot(x="time", y="tip", data=tips,
        ...                  order=["Dinner", "Lunch"])

    Use median as the estimate of central tendency:

    .. plot::
        :context: close-figs

        >>> from numpy import median
        >>> ax = sns.barplot(x="day", y="tip", data=tips, estimator=median)

    Show the standard error of the mean with the error bars:

    .. plot::
        :context: close-figs

        >>> ax = sns.barplot(x="day", y="tip", data=tips, ci=68)

    Add "caps" to the error bars:

    .. plot::
        :context: close-figs

        >>> ax = sns.barplot(x="day", y="tip", data=tips, capsize=.2)

    Use a different color palette for the bars:

    .. plot::
        :context: close-figs

        >>> ax = sns.barplot("size", y="total_bill", data=tips,
        ...                  palette="Blues_d")

    Plot all bars in a single color:

    .. plot::
        :context: close-figs

        >>> ax = sns.barplot("size", y="total_bill", data=tips,
        ...                  color="salmon", saturation=.5)

    Use ``plt.bar`` keyword arguments to further change the aesthetic:

    .. plot::
        :context: close-figs

        >>> ax = sns.barplot("day", "total_bill", data=tips,
        ...                  linewidth=2.5, facecolor=(1, 1, 1, 0),
        ...                  errcolor=".2", edgecolor=".2")

    """).format(**_categorical_docs)


def pointplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
              estimator=np.mean, ci=95, n_boot=1000, units=None,
              markers="o", linestyles="-", dodge=False, join=True, scale=1,
              orient=None, color=None, palette=None, ax=None, errwidth=None,
              capsize=None, **kwargs):

    # Handle some deprecated arguments
    if "hline" in kwargs:
        kwargs.pop("hline")
        warnings.warn("The `hline` parameter has been removed", UserWarning)

    if "dropna" in kwargs:
        kwargs.pop("dropna")
        warnings.warn("The `dropna` parameter has been removed", UserWarning)

    if "x_order" in kwargs:
        order = kwargs.pop("x_order")
        warnings.warn("The `x_order` parameter has been renamed `order`",
                      UserWarning)

    plotter = _PointPlotter(x, y, hue, data, order, hue_order,
                            estimator, ci, n_boot, units,
                            markers, linestyles, dodge, join, scale,
                            orient, color, palette, errwidth, capsize)

    if ax is None:
        ax = plt.gca()

    plotter.plot(ax)
    return ax


pointplot.__doc__ = dedent("""\
    Show point estimates and confidence intervals using scatter plot glyphs.

    A point plot represents an estimate of central tendency for a numeric
    variable by the position of scatter plot points and provides some
    indication of the uncertainty around that estimate using error bars.

    Point plots can be more useful than bar plots for focusing comparisons
    between different levels of one or more categorical variables. They are
    particularly adept at showing interactions: how the relationship between
    levels of one categorical variable changes across levels of a second
    categorical variable. The lines that join each point from the same ``hue``
    level allow interactions to be judged by differences in slope, which is
    easier for the eyes than comparing the heights of several groups of points
    or bars.

    It is important to keep in mind that a point plot shows only the mean (or
    other estimator) value, but in many cases it may be more informative to
    show the distribution of values at each level of the categorical variables.
    In that case, other approaches such as a box or violin plot may be more
    appropriate.

    {main_api_narrative}

    Parameters
    ----------
    {input_params}
    {categorical_data}
    {order_vars}
    {stat_api_params}
    markers : string or list of strings, optional
        Markers to use for each of the ``hue`` levels.
    linestyles : string or list of strings, optional
        Line styles to use for each of the ``hue`` levels.
    dodge : bool or float, optional
        Amount to separate the points for each level of the ``hue`` variable
        along the categorical axis.
    join : bool, optional
        If ``True``, lines will be drawn between point estimates at the same
        ``hue`` level.
    scale : float, optional
        Scale factor for the plot elements.
    {orient}
    {color}
    {palette}
    {ax_in}

    Returns
    -------
    {ax_out}

    See Also
    --------
    {barplot}
    {factorplot}

    Examples
    --------

    Draw a set of vertical point plots grouped by a categorical variable:

    .. plot::
        :context: close-figs

        >>> import seaborn as sns
        >>> sns.set_style("darkgrid")
        >>> tips = sns.load_dataset("tips")
        >>> ax = sns.pointplot(x="time", y="total_bill", data=tips)

    Draw a set of vertical points with nested grouping by a two variables:

    .. plot::
        :context: close-figs

        >>> ax = sns.pointplot(x="time", y="total_bill", hue="smoker",
        ...                    data=tips)

    Separate the points for different hue levels along the categorical axis:

    .. plot::
        :context: close-figs

        >>> ax = sns.pointplot(x="time", y="total_bill", hue="smoker",
        ...                    data=tips, dodge=True)

    Use a different marker and line style for the hue levels:

    .. plot::
        :context: close-figs

        >>> ax = sns.pointplot(x="time", y="total_bill", hue="smoker",
        ...                    data=tips,
        ...                    markers=["o", "x"],
        ...                    linestyles=["-", "--"])

    Draw a set of horizontal points:

    .. plot::
        :context: close-figs

        >>> ax = sns.pointplot(x="tip", y="day", data=tips)

    Don't draw a line connecting each point:

    .. plot::
        :context: close-figs

        >>> ax = sns.pointplot(x="tip", y="day", data=tips, join=False)

    Use a different color for a single-layer plot:

    .. plot::
        :context: close-figs

        >>> ax = sns.pointplot("time", y="total_bill", data=tips,
        ...                    color="#bb3f3f")

    Use a different color palette for the points:

    .. plot::
        :context: close-figs

        >>> ax = sns.pointplot(x="time", y="total_bill", hue="smoker",
        ...                    data=tips, palette="Set2")

    Control point order by passing an explicit order:

    .. plot::
        :context: close-figs

        >>> ax = sns.pointplot(x="time", y="tip", data=tips,
        ...                    order=["Dinner", "Lunch"])

    Use median as the estimate of central tendency:

    .. plot::
        :context: close-figs

        >>> from numpy import median
        >>> ax = sns.pointplot(x="day", y="tip", data=tips, estimator=median)

    Show the standard error of the mean with the error bars:

    .. plot::
        :context: close-figs

        >>> ax = sns.pointplot(x="day", y="tip", data=tips, ci=68)

    Add "caps" to the error bars:

    .. plot::
        :context: close-figs

        >>> ax = sns.pointplot(x="day", y="tip", data=tips, capsize=.2)

    """).format(**_categorical_docs)


def countplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
              orient=None, color=None, palette=None, saturation=.75,
              ax=None, **kwargs):

    estimator = len
    ci = None
    n_boot = 0
    units = None
    errcolor = None

    if x is None and y is not None:
        orient = "h"
        x = y
    elif y is None and x is not None:
        orient = "v"
        y = x
    elif x is not None and y is not None:
        raise TypeError("Cannot pass values for both `x` and `y`")
    else:
        raise TypeError("Must pass values for either `x` or `y`")

    plotter = _BarPlotter(x, y, hue, data, order, hue_order,
                          estimator, ci, n_boot, units,
                          orient, color, palette, saturation,
                          errcolor)

    plotter.value_label = "count"

    if ax is None:
        ax = plt.gca()

    plotter.plot(ax, kwargs)
    return ax


countplot.__doc__ = dedent("""\
    Show the counts of observations in each categorical bin using bars.

    A count plot can be thought of as a histogram across a categorical, instead
    of quantitative, variable. The basic API and options are identical to those
    for :func:`barplot`, so you can compare counts across nested variables.

    {main_api_narrative}

    Parameters
    ----------
    {input_params}
    {categorical_data}
    {order_vars}
    {orient}
    {color}
    {palette}
    {saturation}
    {ax_in}
    kwargs : key, value mappings
        Other keyword arguments are passed to ``plt.bar``.

    Returns
    -------
    {ax_out}

    See Also
    --------
    {barplot}
    {factorplot}

    Examples
    --------

    Show value counts for a single categorical variable:

    .. plot::
        :context: close-figs

        >>> import seaborn as sns
        >>> sns.set(style="darkgrid")
        >>> titanic = sns.load_dataset("titanic")
        >>> ax = sns.countplot(x="class", data=titanic)

    Show value counts for two categorical variables:

    .. plot::
        :context: close-figs

        >>> ax = sns.countplot(x="class", hue="who", data=titanic)

    Plot the bars horizontally:

    .. plot::
        :context: close-figs

        >>> ax = sns.countplot(y="class", hue="who", data=titanic)

    Use a different color palette:

    .. plot::
        :context: close-figs

        >>> ax = sns.countplot(x="who", data=titanic, palette="Set3")

    Use ``plt.bar`` keyword arguments for a different look:

    .. plot::
        :context: close-figs

        >>> ax = sns.countplot(x="who", data=titanic,
        ...                    facecolor=(0, 0, 0, 0),
        ...                    linewidth=5,
        ...                    edgecolor=sns.color_palette("dark", 3))

    """).format(**_categorical_docs)


def factorplot(x=None, y=None, hue=None, data=None, row=None, col=None,
               col_wrap=None, estimator=np.mean, ci=95, n_boot=1000,
               units=None, order=None, hue_order=None, row_order=None,
               col_order=None, kind="point", size=4, aspect=1,
               orient=None, color=None, palette=None,
               legend=True, legend_out=True, sharex=True, sharey=True,
               margin_titles=False, facet_kws=None, **kwargs):

    # Handle some deprecated arguments
    if "hline" in kwargs:
        kwargs.pop("hline")
        warnings.warn("The `hline` parameter has been removed", UserWarning)

    if "dropna" in kwargs:
        kwargs.pop("dropna")
        warnings.warn("The `dropna` parameter has been removed", UserWarning)

    if "x_order" in kwargs:
        order = kwargs.pop("x_order")
        warnings.warn("The `x_order` parameter has been renamed `order`",
                      UserWarning)

    # Determine the plotting function
    try:
        plot_func = globals()[kind + "plot"]
    except KeyError:
        err = "Plot kind '{}' is not recognized".format(kind)
        raise ValueError(err)

    # Alias the input variables to determine categorical order and palette
    # correctly in the case of a count plot
    if kind == "count":
        if x is None and y is not None:
            x_, y_, orient = y, y, "h"
        elif y is None and x is not None:
            x_, y_, orient = x, x, "v"
        else:
            raise ValueError("Either `x` or `y` must be None for count plots")
    else:
        x_, y_ = x, y

    # Determine the order for the whole dataset, which will be used in all
    # facets to ensure representation of all data in the final plot
    p = _CategoricalPlotter()
    p.establish_variables(x_, y_, hue, data, orient, order, hue_order)
    order = p.group_names
    hue_order = p.hue_names

    # Determine the palette to use
    # (FacetGrid will pass a value for ``color`` to the plotting function
    # so we need to define ``palette`` to get default behavior for the
    # categorical functions
    p.establish_colors(color, palette, 1)
    if kind != "point" or hue is not None:
        palette = p.colors

    # Determine keyword arguments for the facets
    facet_kws = {} if facet_kws is None else facet_kws
    facet_kws.update(
        data=data, row=row, col=col,
        row_order=row_order, col_order=col_order,
        col_wrap=col_wrap, size=size, aspect=aspect,
        sharex=sharex, sharey=sharey,
        legend_out=legend_out, margin_titles=margin_titles,
        dropna=False,
        )

    # Determine keyword arguments for the plotting function
    plot_kws = dict(
        order=order, hue_order=hue_order,
        orient=orient, color=color, palette=palette,
        )
    plot_kws.update(kwargs)

    if kind in ["bar", "point"]:
        plot_kws.update(
            estimator=estimator, ci=ci, n_boot=n_boot, units=units,
            )

    # Initialize the facets
    g = FacetGrid(**facet_kws)

    # Draw the plot onto the facets
    g.map_dataframe(plot_func, x, y, hue, **plot_kws)

    # Special case axis labels for a count type plot
    if kind == "count":
        if x is None:
            g.set_axis_labels(x_var="count")
        if y is None:
            g.set_axis_labels(y_var="count")

    if legend and (hue is not None) and (hue not in [x, row, col]):
        hue_order = list(map(str, hue_order))
        g.add_legend(title=hue, label_order=hue_order)

    return g


factorplot.__doc__ = dedent("""\
    Draw a categorical plot onto a FacetGrid.

    The default plot that is shown is a point plot, but other seaborn
    categorical plots can be chosen with the ``kind`` parameter, including
    box plots, violin plots, bar plots, or strip plots.

    It is important to choose how variables get mapped to the plot structure
    such that the most important comparisons are easiest to make. As a general
    rule, it is easier to compare positions that are closer together, so the
    ``hue`` variable should be used for the most important comparisons. For
    secondary comparisons, try to share the quantitative axis (so, use ``col``
    for vertical plots and ``row`` for horizontal plots). Note that, although
    it is possible to make rather complex plots using this function, in many
    cases you may be better served by created several smaller and more focused
    plots than by trying to stuff many comparisons into one figure.

    After plotting, the :class:`FacetGrid` with the plot is returned and can
    be used directly to tweak supporting plot details or add other layers.

    Note that, unlike when using the underlying plotting functions directly,
    data must be passed in a long-form DataFrame with variables specified by
    passing strings to ``x``, ``y``, ``hue``, and other parameters.

    As in the case with the underlying plot functions, if variables have a
    ``categorical`` data type, the correct orientation of the plot elements,
    the levels of the categorical variables, and their order will be inferred
    from the objects. Otherwise you may have to use the function parameters
    (``orient``, ``order``, ``hue_order``, etc.) to set up the plot correctly.

    Parameters
    ----------
    {string_input_params}
    {long_form_data}
    row, col : names of variables in ``data``, optional
        Categorical variables that will determine the faceting of the grid.
    {col_wrap}
    {stat_api_params}
    {order_vars}
    row_order, col_order : lists of strings, optional
        Order to organize the rows and/or columns of the grid in, otherwise the
        orders are inferred from the data objects.
    kind : {{``point``, ``bar``, ``count``, ``box``, ``violin``, ``strip``}}
        The kind of plot to draw.
    {size}
    {aspect}
    {orient}
    {color}
    {palette}
    legend : bool, optional
        If ``True`` and there is a ``hue`` variable, draw a legend on the plot.
    {legend_out}
    {share_xy}
    {margin_titles}
    facet_kws : dict, optional
        Dictionary of other keyword arguments to pass to :class:`FacetGrid`.
    kwargs : key, value pairings
        Other keyword arguments are passed through to the underlying plotting
        function.

    Returns
    -------
    g : :class:`FacetGrid`
        Returns the :class:`FacetGrid` object with the plot on it for further
        tweaking.

    Examples
    --------

    Draw a single facet to use the :class:`FacetGrid` legend placement:

    .. plot::
        :context: close-figs

        >>> import seaborn as sns
        >>> sns.set(style="ticks")
        >>> exercise = sns.load_dataset("exercise")
        >>> g = sns.factorplot(x="time", y="pulse", hue="kind", data=exercise)

    Use a different plot kind to visualize the same data:

    .. plot::
        :context: close-figs

        >>> g = sns.factorplot(x="time", y="pulse", hue="kind",
        ...                    data=exercise, kind="violin")

    Facet along the columns to show a third categorical variable:

    .. plot::
        :context: close-figs

        >>> g = sns.factorplot(x="time", y="pulse", hue="kind",
        ...                    col="diet", data=exercise)

    Use a different size and aspect ratio for the facets:

    .. plot::
        :context: close-figs

        >>> g = sns.factorplot(x="time", y="pulse", hue="kind",
        ...                    col="diet", data=exercise,
        ...                    size=5, aspect=.8)

    Make many column facets and wrap them into the rows of the grid:

    .. plot::
        :context: close-figs

        >>> titanic = sns.load_dataset("titanic")
        >>> g = sns.factorplot("alive", col="deck", col_wrap=4,
        ...                    data=titanic[titanic.deck.notnull()],
        ...                    kind="count", size=2.5, aspect=.8)

    Plot horizontally and pass other keyword arguments to the plot function:

    .. plot::
        :context: close-figs

        >>> g = sns.factorplot(x="age", y="embark_town",
        ...                    hue="sex", row="class",
        ...                    data=titanic[titanic.embark_town.notnull()],
        ...                    orient="h", size=2, aspect=3.5, palette="Set3",
        ...                    kind="violin", split=True, cut=0, bw=.2)

    Use methods on the returned :class:`FacetGrid` to tweak the presentation:

    .. plot::
        :context: close-figs

        >>> g = sns.factorplot(x="who", y="survived", col="class",
        ...                    data=titanic, saturation=.5,
        ...                    kind="bar", ci=None, aspect=.6)
        >>> (g.set_axis_labels("", "Survival Rate")
        ...   .set_xticklabels(["Men", "Women", "Children"])
        ...   .set_titles("{{col_name}} {{col_var}}")
        ...   .set(ylim=(0, 1))
        ...   .despine(left=True))  #doctest: +ELLIPSIS
        <seaborn.axisgrid.FacetGrid object at 0x...>

    """).format(**_categorical_docs)


def lvplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None,
           orient=None, color=None, palette=None, saturation=.75,
           width=.8, k_depth='proportion', linewidth=None, scale='exponential',
           outlier_prop=None, ax=None, **kwargs):

    plotter = _LVPlotter(x, y, hue, data, order, hue_order,
                         orient, color, palette, saturation,
                         width, k_depth, linewidth, scale, outlier_prop)

    if ax is None:
        ax = plt.gca()

    plotter.plot(ax, kwargs)
    return ax

lvplot.__doc__ = dedent("""\
    Create a letter value plot

    Letter value (LV) plots are non-parametric estimates of the distribution of
    a dataset, similar to boxplots. LV plots are also similar to violin plots
    but without the need to fit a kernel density estimate. Thus, LV plots are
    fast to generate, directly interpretable in terms of the distribution of
    data, and easy to understand. For a more extensive explanation of letter
    value plots and their properties, see Hadley Wickham's excellent paper on
    the topic:

    http://vita.had.co.nz/papers/letter-value-plot.html

    {main_api_narrative}

    Parameters
    ----------
    {input_params}
    {categorical_data}
    {order_vars}
    {orient}
    {color}
    {palette}
    {saturation}
    {width}
    k_depth : "proportion" | "tukey" | "trustworthy", optional
        The number of boxes, and by extension number of percentiles, to draw.
        All methods are detailed in Wickham's paper. Each makes different
        assumptions about the number of outliers and leverages different
        statistical properties.
    {linewidth}
    scale : "linear" | "exonential" | "area"
        Method to use for the width of the letter value boxes. All give similar
        results visually. "linear" reduces the width by a constant linear
        factor, "exponential" uses the proportion of data not covered, "area"
        is proportional to the percentage of data covered.
    outlier_prop : float, optional
        Proportion of data believed to be outliers. Is used in conjuction with
        k_depth to determine the number of percentiles to draw. Defaults to
        0.007 as a proportion of outliers. Should be in range [0, 1].
    {ax_in}
    kwargs : key, value mappings
        Other keyword arguments are passed through to ``plt.plot`` and
        ``plt.scatter`` at draw time.

    Returns
    -------
    {ax_out}

    See Also
    --------
    {violinplot}
    {boxplot}

    Examples
    --------

    Draw a single horizontal letter value plot:

    .. plot::
        :context: close-figs

        >>> import seaborn as sns
        >>> sns.set_style("whitegrid")
        >>> tips = sns.load_dataset("tips")
        >>> ax = sns.lvplot(x=tips["total_bill"])

    Draw a vertical letter value plot grouped by a categorical variable:

    .. plot::
        :context: close-figs

        >>> ax = sns.lvplot(x="day", y="total_bill", data=tips)

    Draw a letter value plot with nested grouping by two categorical variables:

    .. plot::
        :context: close-figs

        >>> ax = sns.lvplot(x="day", y="total_bill", hue="smoker",
        ...                 data=tips, palette="Set3")

    Draw a letter value plot with nested grouping when some bins are empty:

    .. plot::
        :context: close-figs

        >>> ax = sns.lvplot(x="day", y="total_bill", hue="time",
        ...                 data=tips, linewidth=2.5)

    Control box order by passing an explicit order:

    .. plot::
        :context: close-figs

        >>> ax = sns.lvplot(x="time", y="tip", data=tips,
        ...                 order=["Dinner", "Lunch"])

    Draw a letter value plot for each numeric variable in a DataFrame:

    .. plot::
        :context: close-figs

        >>> iris = sns.load_dataset("iris")
        >>> ax = sns.lvplot(data=iris, orient="h", palette="Set2")

    Use :func:`stripplot` to show the datapoints on top of the boxes:

    .. plot::
        :context: close-figs

        >>> ax = sns.lvplot(x="day", y="total_bill", data=tips)
        >>> ax = sns.stripplot(x="day", y="total_bill", data=tips,
        ...                    size=4, jitter=True, edgecolor="gray")

    Draw a letter value plot on to a :class:`FacetGrid` to group within an
    additional categorical variable:

    .. plot::
        :context: close-figs

        >>> g = sns.FacetGrid(tips, col="time", size=4, aspect=.7)
        >>> (g.map(sns.lvplot, "sex", "total_bill", "smoker")
        ...   .despine(left=True)
        ...   .add_legend(title="smoker"))  #doctest: +ELLIPSIS
        <seaborn.axisgrid.FacetGrid object at 0x...>

    """).format(**_categorical_docs)