This file is indexed.

/usr/lib/python3/dist-packages/seaborn/distributions.py is in python3-seaborn 0.7.1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
"""Plotting functions for visualizing distributions."""
from __future__ import division
import numpy as np
from scipy import stats
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings

from six import string_types

try:
    import statsmodels.nonparametric.api as smnp
    _has_statsmodels = True
except ImportError:
    _has_statsmodels = False

from .utils import set_hls_values, iqr, _kde_support
from .palettes import color_palette, blend_palette
from .axisgrid import JointGrid


__all__ = ["distplot", "kdeplot", "rugplot", "jointplot"]


def _freedman_diaconis_bins(a):
    """Calculate number of hist bins using Freedman-Diaconis rule."""
    # From http://stats.stackexchange.com/questions/798/
    a = np.asarray(a)
    h = 2 * iqr(a) / (len(a) ** (1 / 3))
    # fall back to sqrt(a) bins if iqr is 0
    if h == 0:
        return int(np.sqrt(a.size))
    else:
        return int(np.ceil((a.max() - a.min()) / h))


def distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None,
             hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None,
             color=None, vertical=False, norm_hist=False, axlabel=None,
             label=None, ax=None):
    """Flexibly plot a univariate distribution of observations.

    This function combines the matplotlib ``hist`` function (with automatic
    calculation of a good default bin size) with the seaborn :func:`kdeplot`
    and :func:`rugplot` functions. It can also fit ``scipy.stats``
    distributions and plot the estimated PDF over the data.

    Parameters
    ----------

    a : Series, 1d-array, or list.
        Observed data. If this is a Series object with a ``name`` attribute,
        the name will be used to label the data axis.
    bins : argument for matplotlib hist(), or None, optional
        Specification of hist bins, or None to use Freedman-Diaconis rule.
    hist : bool, optional
        Whether to plot a (normed) histogram.
    kde : bool, optional
        Whether to plot a gaussian kernel density estimate.
    rug : bool, optional
        Whether to draw a rugplot on the support axis.
    fit : random variable object, optional
        An object with `fit` method, returning a tuple that can be passed to a
        `pdf` method a positional arguments following an grid of values to
        evaluate the pdf on.
    {hist, kde, rug, fit}_kws : dictionaries, optional
        Keyword arguments for underlying plotting functions.
    color : matplotlib color, optional
        Color to plot everything but the fitted curve in.
    vertical : bool, optional
        If True, oberved values are on y-axis.
    norm_hist : bool, optional
        If True, the histogram height shows a density rather than a count.
        This is implied if a KDE or fitted density is plotted.
    axlabel : string, False, or None, optional
        Name for the support axis label. If None, will try to get it
        from a.namel if False, do not set a label.
    label : string, optional
        Legend label for the relevent component of the plot
    ax : matplotlib axis, optional
        if provided, plot on this axis

    Returns
    -------
    ax : matplotlib Axes
        Returns the Axes object with the plot for further tweaking.

    See Also
    --------
    kdeplot : Show a univariate or bivariate distribution with a kernel
              density estimate.
    rugplot : Draw small vertical lines to show each observation in a
              distribution.

    Examples
    --------

    Show a default plot with a kernel density estimate and histogram with bin
    size determined automatically with a reference rule:

    .. plot::
        :context: close-figs

        >>> import seaborn as sns, numpy as np
        >>> sns.set(rc={"figure.figsize": (8, 4)}); np.random.seed(0)
        >>> x = np.random.randn(100)
        >>> ax = sns.distplot(x)

    Use Pandas objects to get an informative axis label:

    .. plot::
        :context: close-figs

        >>> import pandas as pd
        >>> x = pd.Series(x, name="x variable")
        >>> ax = sns.distplot(x)

    Plot the distribution with a kenel density estimate and rug plot:

    .. plot::
        :context: close-figs

        >>> ax = sns.distplot(x, rug=True, hist=False)

    Plot the distribution with a histogram and maximum likelihood gaussian
    distribution fit:

    .. plot::
        :context: close-figs

        >>> from scipy.stats import norm
        >>> ax = sns.distplot(x, fit=norm, kde=False)

    Plot the distribution on the vertical axis:

    .. plot::
        :context: close-figs

        >>> ax = sns.distplot(x, vertical=True)

    Change the color of all the plot elements:

    .. plot::
        :context: close-figs

        >>> sns.set_color_codes()
        >>> ax = sns.distplot(x, color="y")

    Pass specific parameters to the underlying plot functions:

    .. plot::
        :context: close-figs

        >>> ax = sns.distplot(x, rug=True, rug_kws={"color": "g"},
        ...                   kde_kws={"color": "k", "lw": 3, "label": "KDE"},
        ...                   hist_kws={"histtype": "step", "linewidth": 3,
        ...                             "alpha": 1, "color": "g"})

    """
    if ax is None:
        ax = plt.gca()

    # Intelligently label the support axis
    label_ax = bool(axlabel)
    if axlabel is None and hasattr(a, "name"):
        axlabel = a.name
        if axlabel is not None:
            label_ax = True

    # Make a a 1-d array
    a = np.asarray(a).squeeze()

    # Decide if the hist is normed
    norm_hist = norm_hist or kde or (fit is not None)

    # Handle dictionary defaults
    if hist_kws is None:
        hist_kws = dict()
    if kde_kws is None:
        kde_kws = dict()
    if rug_kws is None:
        rug_kws = dict()
    if fit_kws is None:
        fit_kws = dict()

    # Get the color from the current color cycle
    if color is None:
        if vertical:
            line, = ax.plot(0, a.mean())
        else:
            line, = ax.plot(a.mean(), 0)
        color = line.get_color()
        line.remove()

    # Plug the label into the right kwarg dictionary
    if label is not None:
        if hist:
            hist_kws["label"] = label
        elif kde:
            kde_kws["label"] = label
        elif rug:
            rug_kws["label"] = label
        elif fit:
            fit_kws["label"] = label

    if hist:
        if bins is None:
            bins = min(_freedman_diaconis_bins(a), 50)
        hist_kws.setdefault("alpha", 0.4)
        hist_kws.setdefault("normed", norm_hist)
        orientation = "horizontal" if vertical else "vertical"
        hist_color = hist_kws.pop("color", color)
        ax.hist(a, bins, orientation=orientation,
                color=hist_color, **hist_kws)
        if hist_color != color:
            hist_kws["color"] = hist_color

    if kde:
        kde_color = kde_kws.pop("color", color)
        kdeplot(a, vertical=vertical, ax=ax, color=kde_color, **kde_kws)
        if kde_color != color:
            kde_kws["color"] = kde_color

    if rug:
        rug_color = rug_kws.pop("color", color)
        axis = "y" if vertical else "x"
        rugplot(a, axis=axis, ax=ax, color=rug_color, **rug_kws)
        if rug_color != color:
            rug_kws["color"] = rug_color

    if fit is not None:
        fit_color = fit_kws.pop("color", "#282828")
        gridsize = fit_kws.pop("gridsize", 200)
        cut = fit_kws.pop("cut", 3)
        clip = fit_kws.pop("clip", (-np.inf, np.inf))
        bw = stats.gaussian_kde(a).scotts_factor() * a.std(ddof=1)
        x = _kde_support(a, bw, gridsize, cut, clip)
        params = fit.fit(a)
        pdf = lambda x: fit.pdf(x, *params)
        y = pdf(x)
        if vertical:
            x, y = y, x
        ax.plot(x, y, color=fit_color, **fit_kws)
        if fit_color != "#282828":
            fit_kws["color"] = fit_color

    if label_ax:
        if vertical:
            ax.set_ylabel(axlabel)
        else:
            ax.set_xlabel(axlabel)

    return ax


def _univariate_kdeplot(data, shade, vertical, kernel, bw, gridsize, cut,
                        clip, legend, ax, cumulative=False, **kwargs):
    """Plot a univariate kernel density estimate on one of the axes."""

    # Sort out the clipping
    if clip is None:
        clip = (-np.inf, np.inf)

    # Calculate the KDE
    if _has_statsmodels:
        # Prefer using statsmodels for kernel flexibility
        x, y = _statsmodels_univariate_kde(data, kernel, bw,
                                           gridsize, cut, clip,
                                           cumulative=cumulative)
    else:
        # Fall back to scipy if missing statsmodels
        if kernel != "gau":
            kernel = "gau"
            msg = "Kernel other than `gau` requires statsmodels."
            warnings.warn(msg, UserWarning)
        if cumulative:
            raise ImportError("Cumulative distributions are currently"
                              "only implemented in statsmodels."
                              "Please install statsmodels.")
        x, y = _scipy_univariate_kde(data, bw, gridsize, cut, clip)

    # Make sure the density is nonnegative
    y = np.amax(np.c_[np.zeros_like(y), y], axis=1)

    # Flip the data if the plot should be on the y axis
    if vertical:
        x, y = y, x

    # Check if a label was specified in the call
    label = kwargs.pop("label", None)

    # Otherwise check if the data object has a name
    if label is None and hasattr(data, "name"):
        label = data.name

    # Decide if we're going to add a legend
    legend = label is not None and legend
    label = "_nolegend_" if label is None else label

    # Use the active color cycle to find the plot color
    line, = ax.plot(x, y, **kwargs)
    color = line.get_color()
    line.remove()
    kwargs.pop("color", None)

    # Draw the KDE plot and, optionally, shade
    ax.plot(x, y, color=color, label=label, **kwargs)
    alpha = kwargs.get("alpha", 0.25)
    if shade:
        if vertical:
            ax.fill_betweenx(y, 1e-12, x, facecolor=color, alpha=alpha)
        else:
            ax.fill_between(x, 1e-12, y, facecolor=color, alpha=alpha)

    # Draw the legend here
    if legend:
        ax.legend(loc="best")

    return ax


def _statsmodels_univariate_kde(data, kernel, bw, gridsize, cut, clip,
                                cumulative=False):
    """Compute a univariate kernel density estimate using statsmodels."""
    fft = kernel == "gau"
    kde = smnp.KDEUnivariate(data)
    kde.fit(kernel, bw, fft, gridsize=gridsize, cut=cut, clip=clip)
    if cumulative:
        grid, y = kde.support, kde.cdf
    else:
        grid, y = kde.support, kde.density
    return grid, y


def _scipy_univariate_kde(data, bw, gridsize, cut, clip):
    """Compute a univariate kernel density estimate using scipy."""
    try:
        kde = stats.gaussian_kde(data, bw_method=bw)
    except TypeError:
        kde = stats.gaussian_kde(data)
        if bw != "scott":  # scipy default
            msg = ("Ignoring bandwidth choice, "
                   "please upgrade scipy to use a different bandwidth.")
            warnings.warn(msg, UserWarning)
    if isinstance(bw, string_types):
        bw = "scotts" if bw == "scott" else bw
        bw = getattr(kde, "%s_factor" % bw)() * np.std(data)
    grid = _kde_support(data, bw, gridsize, cut, clip)
    y = kde(grid)
    return grid, y


def _bivariate_kdeplot(x, y, filled, fill_lowest,
                       kernel, bw, gridsize, cut, clip,
                       axlabel, ax, **kwargs):
    """Plot a joint KDE estimate as a bivariate contour plot."""
    # Determine the clipping
    if clip is None:
        clip = [(-np.inf, np.inf), (-np.inf, np.inf)]
    elif np.ndim(clip) == 1:
        clip = [clip, clip]

    # Calculate the KDE
    if _has_statsmodels:
        xx, yy, z = _statsmodels_bivariate_kde(x, y, bw, gridsize, cut, clip)
    else:
        xx, yy, z = _scipy_bivariate_kde(x, y, bw, gridsize, cut, clip)

    # Plot the contours
    n_levels = kwargs.pop("n_levels", 10)
    cmap = kwargs.get("cmap", "BuGn" if filled else "BuGn_d")
    if isinstance(cmap, string_types):
        if cmap.endswith("_d"):
            pal = ["#333333"]
            pal.extend(color_palette(cmap.replace("_d", "_r"), 2))
            cmap = blend_palette(pal, as_cmap=True)
        else:
            cmap = mpl.cm.get_cmap(cmap)

    kwargs["cmap"] = cmap
    contour_func = ax.contourf if filled else ax.contour
    cset = contour_func(xx, yy, z, n_levels, **kwargs)
    if filled and not fill_lowest:
        cset.collections[0].set_alpha(0)
    kwargs["n_levels"] = n_levels

    # Label the axes
    if hasattr(x, "name") and axlabel:
        ax.set_xlabel(x.name)
    if hasattr(y, "name") and axlabel:
        ax.set_ylabel(y.name)

    return ax


def _statsmodels_bivariate_kde(x, y, bw, gridsize, cut, clip):
    """Compute a bivariate kde using statsmodels."""
    if isinstance(bw, string_types):
        bw_func = getattr(smnp.bandwidths, "bw_" + bw)
        x_bw = bw_func(x)
        y_bw = bw_func(y)
        bw = [x_bw, y_bw]
    elif np.isscalar(bw):
        bw = [bw, bw]

    if isinstance(x, pd.Series):
        x = x.values
    if isinstance(y, pd.Series):
        y = y.values

    kde = smnp.KDEMultivariate([x, y], "cc", bw)
    x_support = _kde_support(x, kde.bw[0], gridsize, cut, clip[0])
    y_support = _kde_support(y, kde.bw[1], gridsize, cut, clip[1])
    xx, yy = np.meshgrid(x_support, y_support)
    z = kde.pdf([xx.ravel(), yy.ravel()]).reshape(xx.shape)
    return xx, yy, z


def _scipy_bivariate_kde(x, y, bw, gridsize, cut, clip):
    """Compute a bivariate kde using scipy."""
    data = np.c_[x, y]
    kde = stats.gaussian_kde(data.T)
    data_std = data.std(axis=0, ddof=1)
    if isinstance(bw, string_types):
        bw = "scotts" if bw == "scott" else bw
        bw_x = getattr(kde, "%s_factor" % bw)() * data_std[0]
        bw_y = getattr(kde, "%s_factor" % bw)() * data_std[1]
    elif np.isscalar(bw):
        bw_x, bw_y = bw, bw
    else:
        msg = ("Cannot specify a different bandwidth for each dimension "
               "with the scipy backend. You should install statsmodels.")
        raise ValueError(msg)
    x_support = _kde_support(data[:, 0], bw_x, gridsize, cut, clip[0])
    y_support = _kde_support(data[:, 1], bw_y, gridsize, cut, clip[1])
    xx, yy = np.meshgrid(x_support, y_support)
    z = kde([xx.ravel(), yy.ravel()]).reshape(xx.shape)
    return xx, yy, z


def kdeplot(data, data2=None, shade=False, vertical=False, kernel="gau",
            bw="scott", gridsize=100, cut=3, clip=None, legend=True,
            cumulative=False, shade_lowest=True, ax=None, **kwargs):
    """Fit and plot a univariate or bivariate kernel density estimate.

    Parameters
    ----------
    data : 1d array-like
        Input data.
    data2: 1d array-like, optional
        Second input data. If present, a bivariate KDE will be estimated.
    shade : bool, optional
        If True, shade in the area under the KDE curve (or draw with filled
        contours when data is bivariate).
    vertical : bool, optional
        If True, density is on x-axis.
    kernel : {'gau' | 'cos' | 'biw' | 'epa' | 'tri' | 'triw' }, optional
        Code for shape of kernel to fit with. Bivariate KDE can only use
        gaussian kernel.
    bw : {'scott' | 'silverman' | scalar | pair of scalars }, optional
        Name of reference method to determine kernel size, scalar factor,
        or scalar for each dimension of the bivariate plot.
    gridsize : int, optional
        Number of discrete points in the evaluation grid.
    cut : scalar, optional
        Draw the estimate to cut * bw from the extreme data points.
    clip : pair of scalars, or pair of pair of scalars, optional
        Lower and upper bounds for datapoints used to fit KDE. Can provide
        a pair of (low, high) bounds for bivariate plots.
    legend : bool, optional
        If True, add a legend or label the axes when possible.
    cumulative : bool, optional
        If True, draw the cumulative distribution estimated by the kde.
    shade_lowest : bool, optional
        If True, shade the lowest contour of a bivariate KDE plot. Not
        relevant when drawing a univariate plot or when ``shade=False``.
        Setting this to ``False`` can be useful when you want multiple
        densities on the same Axes.
    ax : matplotlib axis, optional
        Axis to plot on, otherwise uses current axis.
    kwargs : key, value pairings
        Other keyword arguments are passed to ``plt.plot()`` or
        ``plt.contour{f}`` depending on whether a univariate or bivariate
        plot is being drawn.

    Returns
    -------
    ax : matplotlib Axes
        Axes with plot.

    See Also
    --------
    distplot: Flexibly plot a univariate distribution of observations.
    jointplot: Plot a joint dataset with bivariate and marginal distributions.

    Examples
    --------

    Plot a basic univariate density:

    .. plot::
        :context: close-figs

        >>> import numpy as np; np.random.seed(10)
        >>> import seaborn as sns; sns.set(color_codes=True)
        >>> mean, cov = [0, 2], [(1, .5), (.5, 1)]
        >>> x, y = np.random.multivariate_normal(mean, cov, size=50).T
        >>> ax = sns.kdeplot(x)

    Shade under the density curve and use a different color:

    .. plot::
        :context: close-figs

        >>> ax = sns.kdeplot(x, shade=True, color="r")

    Plot a bivariate density:

    .. plot::
        :context: close-figs

        >>> ax = sns.kdeplot(x, y)

    Use filled contours:

    .. plot::
        :context: close-figs

        >>> ax = sns.kdeplot(x, y, shade=True)

    Use more contour levels and a different color palette:

    .. plot::
        :context: close-figs

        >>> ax = sns.kdeplot(x, y, n_levels=30, cmap="Purples_d")

    Use a narrower bandwith:

    .. plot::
        :context: close-figs

        >>> ax = sns.kdeplot(x, bw=.15)

    Plot the density on the vertical axis:

    .. plot::
        :context: close-figs

        >>> ax = sns.kdeplot(y, vertical=True)

    Limit the density curve within the range of the data:

    .. plot::
        :context: close-figs

        >>> ax = sns.kdeplot(x, cut=0)

    Plot two shaded bivariate densities:

    .. plot::
        :context: close-figs

        >>> iris = sns.load_dataset("iris")
        >>> setosa = iris.loc[iris.species == "setosa"]
        >>> virginica = iris.loc[iris.species == "virginica"]
        >>> ax = sns.kdeplot(setosa.sepal_width, setosa.sepal_length,
        ...                  cmap="Reds", shade=True, shade_lowest=False)
        >>> ax = sns.kdeplot(virginica.sepal_width, virginica.sepal_length,
        ...                  cmap="Blues", shade=True, shade_lowest=False)

    """
    if ax is None:
        ax = plt.gca()

    data = data.astype(np.float64)
    if data2 is not None:
        data2 = data2.astype(np.float64)

    bivariate = False
    if isinstance(data, np.ndarray) and np.ndim(data) > 1:
        bivariate = True
        x, y = data.T
    elif isinstance(data, pd.DataFrame) and np.ndim(data) > 1:
        bivariate = True
        x = data.iloc[:, 0].values
        y = data.iloc[:, 1].values
    elif data2 is not None:
        bivariate = True
        x = data
        y = data2

    if bivariate and cumulative:
        raise TypeError("Cumulative distribution plots are not"
                        "supported for bivariate distributions.")
    if bivariate:
        ax = _bivariate_kdeplot(x, y, shade, shade_lowest,
                                kernel, bw, gridsize, cut, clip, legend,
                                ax, **kwargs)
    else:
        ax = _univariate_kdeplot(data, shade, vertical, kernel, bw,
                                 gridsize, cut, clip, legend, ax,
                                 cumulative=cumulative, **kwargs)

    return ax


def rugplot(a, height=.05, axis="x", ax=None, **kwargs):
    """Plot datapoints in an array as sticks on an axis.

    Parameters
    ----------
    a : vector
        1D array of observations.
    height : scalar, optional
        Height of ticks as proportion of the axis.
    axis : {'x' | 'y'}, optional
        Axis to draw rugplot on.
    ax : matplotlib axes, optional
        Axes to draw plot into; otherwise grabs current axes.
    kwargs : key, value pairings
        Other keyword arguments are passed to ``axvline`` or ``axhline``.

    Returns
    -------
    ax : matplotlib axes
        The Axes object with the plot on it.

    """
    if ax is None:
        ax = plt.gca()
    a = np.asarray(a)
    vertical = kwargs.pop("vertical", axis == "y")
    func = ax.axhline if vertical else ax.axvline
    kwargs.setdefault("linewidth", 1)
    for pt in a:
        func(pt, 0, height, **kwargs)

    return ax


def jointplot(x, y, data=None, kind="scatter", stat_func=stats.pearsonr,
              color=None, size=6, ratio=5, space=.2,
              dropna=True, xlim=None, ylim=None,
              joint_kws=None, marginal_kws=None, annot_kws=None, **kwargs):
    """Draw a plot of two variables with bivariate and univariate graphs.

    This function provides a convenient interface to the :class:`JointGrid`
    class, with several canned plot kinds. This is intended to be a fairly
    lightweight wrapper; if you need more flexibility, you should use
    :class:`JointGrid` directly.

    Parameters
    ----------
    x, y : strings or vectors
        Data or names of variables in ``data``.
    data : DataFrame, optional
        DataFrame when ``x`` and ``y`` are variable names.
    kind : { "scatter" | "reg" | "resid" | "kde" | "hex" }, optional
        Kind of plot to draw.
    stat_func : callable or None, optional
        Function used to calculate a statistic about the relationship and
        annotate the plot. Should map `x` and `y` either to a single value
        or to a (value, p) tuple. Set to ``None`` if you don't want to
        annotate the plot.
    color : matplotlib color, optional
        Color used for the plot elements.
    size : numeric, optional
        Size of the figure (it will be square).
    ratio : numeric, optional
        Ratio of joint axes size to marginal axes height.
    space : numeric, optional
        Space between the joint and marginal axes
    dropna : bool, optional
        If True, remove observations that are missing from ``x`` and ``y``.
    {x, y}lim : two-tuples, optional
        Axis limits to set before plotting.
    {joint, marginal, annot}_kws : dicts, optional
        Additional keyword arguments for the plot components.
    kwargs : key, value pairings
        Additional keyword arguments are passed to the function used to
        draw the plot on the joint Axes, superseding items in the
        ``joint_kws`` dictionary.

    Returns
    -------
    grid : :class:`JointGrid`
        :class:`JointGrid` object with the plot on it.

    See Also
    --------
    JointGrid : The Grid class used for drawing this plot. Use it directly if
                you need more flexibility.

    Examples
    --------

    Draw a scatterplot with marginal histograms:

    .. plot::
        :context: close-figs

        >>> import numpy as np, pandas as pd; np.random.seed(0)
        >>> import seaborn as sns; sns.set(style="white", color_codes=True)
        >>> tips = sns.load_dataset("tips")
        >>> g = sns.jointplot(x="total_bill", y="tip", data=tips)

    Add regression and kernel density fits:

    .. plot::
        :context: close-figs

        >>> g = sns.jointplot("total_bill", "tip", data=tips, kind="reg")

    Replace the scatterplot with a joint histogram using hexagonal bins:

    .. plot::
        :context: close-figs

        >>> g = sns.jointplot("total_bill", "tip", data=tips, kind="hex")

    Replace the scatterplots and histograms with density estimates and align
    the marginal Axes tightly with the joint Axes:

    .. plot::
        :context: close-figs

        >>> iris = sns.load_dataset("iris")
        >>> g = sns.jointplot("sepal_width", "petal_length", data=iris,
        ...                   kind="kde", space=0, color="g")

    Use a different statistic for the annotation:

    .. plot::
        :context: close-figs

        >>> from scipy.stats import spearmanr
        >>> g = sns.jointplot("size", "total_bill", data=tips,
        ...                   stat_func=spearmanr, color="m")

    Draw a scatterplot, then add a joint density estimate:

    .. plot::
        :context: close-figs

        >>> g = (sns.jointplot("sepal_length", "sepal_width",
        ...                    data=iris, color="k")
        ...         .plot_joint(sns.kdeplot, zorder=0, n_levels=6))

    Pass vectors in directly without using Pandas, then name the axes:

    .. plot::
        :context: close-figs

        >>> x, y = np.random.randn(2, 300)
        >>> g = (sns.jointplot(x, y, kind="hex", stat_func=None)
        ...         .set_axis_labels("x", "y"))

    Draw a smaller figure with more space devoted to the marginal plots:

    .. plot::
        :context: close-figs

        >>> g = sns.jointplot("total_bill", "tip", data=tips,
        ...                   size=5, ratio=3, color="g")

    Pass keyword arguments down to the underlying plots:

    .. plot::
        :context: close-figs

        >>> g = sns.jointplot("petal_length", "sepal_length", data=iris,
        ...                   marginal_kws=dict(bins=15, rug=True),
        ...                   annot_kws=dict(stat="r"),
        ...                   s=40, edgecolor="w", linewidth=1)

    """
    # Set up empty default kwarg dicts
    if joint_kws is None:
        joint_kws = {}
    joint_kws.update(kwargs)
    if marginal_kws is None:
        marginal_kws = {}
    if annot_kws is None:
        annot_kws = {}

    # Make a colormap based off the plot color
    if color is None:
        color = color_palette()[0]
    color_rgb = mpl.colors.colorConverter.to_rgb(color)
    colors = [set_hls_values(color_rgb, l=l) for l in np.linspace(1, 0, 12)]
    cmap = blend_palette(colors, as_cmap=True)

    # Initialize the JointGrid object
    grid = JointGrid(x, y, data, dropna=dropna,
                     size=size, ratio=ratio, space=space,
                     xlim=xlim, ylim=ylim)

    # Plot the data using the grid
    if kind == "scatter":

        joint_kws.setdefault("color", color)
        grid.plot_joint(plt.scatter, **joint_kws)

        marginal_kws.setdefault("kde", False)
        marginal_kws.setdefault("color", color)
        grid.plot_marginals(distplot, **marginal_kws)

    elif kind.startswith("hex"):

        x_bins = _freedman_diaconis_bins(grid.x)
        y_bins = _freedman_diaconis_bins(grid.y)
        gridsize = int(np.mean([x_bins, y_bins]))

        joint_kws.setdefault("gridsize", gridsize)
        joint_kws.setdefault("cmap", cmap)
        grid.plot_joint(plt.hexbin, **joint_kws)

        marginal_kws.setdefault("kde", False)
        marginal_kws.setdefault("color", color)
        grid.plot_marginals(distplot, **marginal_kws)

    elif kind.startswith("kde"):

        joint_kws.setdefault("shade", True)
        joint_kws.setdefault("cmap", cmap)
        grid.plot_joint(kdeplot, **joint_kws)

        marginal_kws.setdefault("shade", True)
        marginal_kws.setdefault("color", color)
        grid.plot_marginals(kdeplot, **marginal_kws)

    elif kind.startswith("reg"):

        from .linearmodels import regplot

        marginal_kws.setdefault("color", color)
        grid.plot_marginals(distplot, **marginal_kws)

        joint_kws.setdefault("color", color)
        grid.plot_joint(regplot, **joint_kws)

    elif kind.startswith("resid"):

        from .linearmodels import residplot

        joint_kws.setdefault("color", color)
        grid.plot_joint(residplot, **joint_kws)

        x, y = grid.ax_joint.collections[0].get_offsets().T
        marginal_kws.setdefault("color", color)
        marginal_kws.setdefault("kde", False)
        distplot(x, ax=grid.ax_marg_x, **marginal_kws)
        distplot(y, vertical=True, fit=stats.norm, ax=grid.ax_marg_y,
                 **marginal_kws)
        stat_func = None
    else:
        msg = "kind must be either 'scatter', 'reg', 'resid', 'kde', or 'hex'"
        raise ValueError(msg)

    if stat_func is not None:
        grid.annotate(stat_func, **annot_kws)

    return grid