This file is indexed.

/usr/share/snd/CM_patterns.scm is in snd 17.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
;;; **********************************************************************
;;; Copyright (c) 2008, 2009 Rick Taube.
;;; This program is free software; you can redistribute it and/or modify
;;; it under the terms of the Lisp Lesser Gnu Public License. The text of
;;; this agreement is available at http://www.cliki.net/LLGPL            
;;; **********************************************************************

;;; [2015-06-11, AV]: adapting to stand-alone loading in a running 's7' (i.e. snd), start
;;; snd, then load this file

(require r7rs.scm)

;; some functions collect from various places (s7.scm, utilities.scm)

(define-macro (with-optkeys spec . body)
  ((lambda (user rawspec body)
	   
     (define (string->keyword str) (symbol->keyword (string->symbol str)))
	   
     (define (key-parse-clause info mode args argn user)
       ;; return a cond clause that parses one keyword. info for each
       ;; var is: (<got> <var> <val>)
       (let* ((got (car info))
	      (var (cadr info))
	      (key (string->keyword (symbol->string var))))
	 `((eq? (car ,args) ,key )
	   (if ,got (error "duplicate keyword: ~S" , key))
	   (set! ,var (if (null? (cdr ,args))
			  (error "missing value for keyword: ~S" 
				 , user)
			  (cadr ,args)))
	   (set! ,got #t)   ; mark that we have a value for this param
	   (set! ,mode #t)  ; mark that we are now parsing keywords
	   (set! ,argn (+ ,argn 1))
	   (set! ,args (cddr ,args)))))
	   
     (define (pos-parse-clause info mode args argn I)
       ;; return a cond clause that parses one positional. info for
       ;; each var is: (<got> <var> <val>)
       (let ((got (car info))
	     (var (cadr info)))
	 `((= ,argn ,I)
	   (set! ,var (car ,args))
	   (set! ,got #t)   ; mark that we have a value for this param
	   (set! ,argn (+ ,argn 1))
	   (set! ,args (cdr ,args)))))
	   
     (let* ((otherkeys? (member '&allow-other-keys rawspec))
	    ;; remove &allow-other-keys from spec
	    (spec (if otherkeys? (reverse (cdr (reverse rawspec))) rawspec))
	    (data (map (lambda (v)
			 ;; for each optkey variable v return a list
			 ;; (<got> <var> <val>) where the <got>
			 ;; variable indicates that <var> has been
			 ;; set, <var> is the optkey variable itself
			 ;; and <val> is its default value
			 (if (pair? v)
			     (cons (gensym (symbol->string (car v))) v)
			     (list (gensym (symbol->string v)) v #f)))
		       spec))
	    (args (gensym "args"))	; holds arg data as its parsed
	    (argn (gensym "argn"))
	    (SIZE (length data))
	    (mode (gensym "keyp"))	; true if parsing keywords
	    ;; keyc are cond clauses that parse valid keyword
	    (keyc (map (lambda (d) (key-parse-clause d mode args argn user))
		       data))
	    (posc (let lup ((tail data) (I 0))
		    (if (null? tail) (list)
			(cons (pos-parse-clause (car tail) mode args argn I)
			      (lup (cdr tail) (+ I 1))))))
	    (bindings (map cdr data))	; optkey variable bindings
	    )
	     
       (if otherkeys?
	   (set! bindings (cons '(&allow-other-keys (list)) bindings)))
	     
       `(let* ,bindings ; bind all the optkey variables with default values
	  ;; bind status and parsing vars
	  (let ,(append (map (lambda (i) (list (car i) #f)) data)
			`((,args ,user)
			  (,argn 0)
			  (,mode #f)))
	    ;; iterate arglist and set opt/key values
	    (do ()
		((null? ,args) #f)
	      (cond 
	       ;; add valid keyword clauses first
	       ,@ keyc
		  ;; a keyword in (car args) is now either added to
		  ;; &allow-other-keys or an error
	       , (if otherkeys?
		     `((keyword? (car ,args))
		       (if (not (pair? (cdr ,args)))
			   (error "missing value for keyword ~S" (car ,args)))
		       (set! &allow-other-keys (append &allow-other-keys
						       (list (car ,args)
							     (cadr ,args))))
		       (set! ,mode #t)	; parsing keys now...
		       (set! ,args (cddr ,args)) )
		     `((keyword? (car ,args)) ;(and ,mode (keyword? (car ,args)))
		       (error "invalid keyword: ~S" (car ,args)) )
		     )
		 ;; positional clauses illegal if keywords have happened
	       (,mode (error "positional after keywords: ~S" (car ,args)))
	       ;; too many value specified
	       ((not (< ,argn ,SIZE)) (error "too many args: ~S" , args))
	       ;; add the valid positional clauses
	       ,@ posc
	       ))
	    ,@ body))
       ))
   (car spec)
   (cdr spec)
   body
   ))

;;; based on define-record-type from snd/r7rs.scm.  Works with srfi-17?

(define-macro (define-record typename . fields)
  `(define-record-type ,typename
     (,(symbol (format #f "make-~A" typename)) ,@fields)
     ,(symbol (format #f "~A?" typename))
     ,@(map (lambda (x) `(,x
			  ,(symbol (format #f "~A-~A" typename x))
			  ,(symbol (format #f "~A-~A-set!" typename x))))
	    fields)))


;; grabbed from s7.scm:

(define (string->keyword s)
  (make-keyword s))

(define (logtest a b)
  (not (zero? (logand a b))))

(define sort sort!)

;; grabbed from utilities.scm:

(define (list-index p l)
  (do ((tail l (cdr tail))
       (i 0  (+ i 1))
       (f #f))
      ((or f (null? tail ))
       f)
    (if ( p (car tail)) (set! f i))))

;; (autoload 'with-optkeys "scm/utilities.scm") ; + quite some others
;; (autoload 'string->keyword "scm/s7.scm")

;; scm/toolboox.scm:

(define (decimals value places)
  (let ((n (expt 10.0 places)))
    (if (list? value)
	(map (lambda (v) (/ (round (* v n)) n)) value)
	(/ (round (* value n)) n))))

;;;
;;; patterns using structs instead of classes.
;;; requires with-optkeys, arithmetic-test, list-set, tb:rani tb:ranf
;;;
;;;
;;; [AV, 2015-06-11]: various ffi_ random functions are substituded
;;; with schemes standard random


(define-constant +constant-data+    (ash 1 0)) ; avoid hair when possible
(define-constant +default-period+   (ash 1 1)) ; no period specified
(define-constant +constant-weights+ (ash 1 2)) ; avoid random index recalc
(define-constant +count-periods+    (ash 1 3)) ; period counts subperiods
(define-constant +count-values+     (ash 1 4)) ; period counts values
(define-constant +depth-first+      (ash 1 5)) ; pattern moves on eop
(define-constant +breadth-first+    (ash 1 6)) ; pattern moves each time

(define-constant +nad+ '#:nad)         ; "not a datum" marker
(define-constant +eop+ '#:eop)         ; "end of period" marker
(define-constant +eod+ '#:eod)         ; "end of data" marker

;;; the period struct holds information for period calculation.  count
;;; is number of reads remaining in current period. when count=0 the
;;; period is reinitialized. length is maximum count of the period,
;;; either a number or #t if dynamic length. if stream is not #f a new
;;; length will be read from it each time the period is initialized.
;;; omit is the number of times this stream is skipped in its parent's
;;; pattern, if dynamic. Reps keeps track of the number of
;;; periods. Max is the max number of periods allowed, after which the
;;; pattern always returns +eod+

(define-record period count length stream default omit reps )

(define (pperiod obj )
  (list 'period
	(period-count obj) (period-length obj) (period-stream obj)
	(period-default obj) (period-omit obj) (period-reps obj)
	))

(define-record pattern flags data length datum period value state 
	       repeat returning counting traversing next mapr cache)

(define (ppattern obj )
  (list 'pattern
	#:flags (pattern-flags obj)
	#:data (pattern-data obj)
	#:length (pattern-length obj)
	#:datum (pattern-datum obj)
	#:period (pperiod (pattern-period obj))
	#:value (pattern-value obj)
	#:state (pattern-state obj)
	#:repeat (pattern-repeat obj)
	#:returning (pattern-returning obj)
	#:cache (pattern-cache obj)
	))

(define (%alloc-pattern)
  ;; flags data length datum period value state limit returning counting traversing next mapr cache
  (make-pattern 0 (list) #f +nad+ #f +nad+ +nad+ most-positive-fixnum #f #:periods #:depth-first
		#f #f #f))

(define (initialize-pattern obj data for rep flags len dper getr mapr)
  (pattern-data-set! obj data)
  (pattern-length-set! obj len)
  (pattern-mapr-set! obj mapr)
  (pattern-next-set! obj getr)
  ;; map data to see if it is constant data or has subpatterns
  (let ((con? #t))
    (map-pattern-data (lambda (x) (if (pattern? x) (set! con? #f))) 
		      obj)
    (if con? (set! flags (logior flags +constant-data+))))
  ;; parse counting option
  (let ((counting (pattern-counting obj)))
    (case counting
      ((#:periods )
       (set! flags (logior flags +count-periods+)))
      ((#:values )     
       (set! flags (logior flags +count-values+)))
      (else
       (error "illegal counting value ~S" counting))))
  ;; parse traversing option
  (let ((traversing (pattern-traversing obj)))
    (case traversing
      ((#:depth-first ) 
       (set! flags (logior flags +depth-first+)))
      ((#:breadth-first )
       (set! flags (logior flags +breadth-first+)))
      (else
       (error "illegal traversing value ~S" traversing))))
  ;; if constant data and counting subperiods, switch to counting
  ;; values instead since its the same thing and we can avoid
  ;; resetting subperiods if period length is nevertheless expressed
  ;; dynamically.
  (cond ((logtest flags +count-values+)
	 (set! flags (logand flags (lognot +count-periods+))))
	(else
	 (if (logtest flags +constant-data+)
	     (set! flags (logior 
			  (logand 
			   flags (lognot +count-periods+))
			  +count-values+))
	     (set! flags (logior flags +count-periods+)))))
  (pattern-repeat-set! obj (if (and (number? rep) (> rep 0))
			       rep most-positive-fixnum))
  (let ((per (or for dper)))
    ;; period not specified so mark that we are using default period
    (when (not for)
      (set! flags (logior flags +default-period+)))
    (pattern-period-set! obj
			 (if (or (number? per)
				 (eqv? per #t))
			     ;;           count len src dper omit reps
			     (make-period 0     per #f  dper 0    0)
			     ;;           count len src dper omit reps 
			     (make-period 0     #f  per dper 0    0))))
  (pattern-flags-set! obj flags)
  (values))

;;;
;;; Predicates for testing end-of-period and end-of-data.
;;;

(define (eop? x)
  (if (pattern? x)
      (eop? (pattern-state x))
      (eqv? x +eop+)))

(define (eod? x)
  (if (pattern? x)
      (eod? (pattern-value x))
      (eqv? x +eod+)))

;;;
;;; next returns the next value read from the object.  this around
;;; method implements the basic behavior of patterns.  it first checks
;;; the stream's period length and calls reset-period if at end. if
;;; the next period length is 0 it immediately returns +nad+, which
;;; causes a superior stream (if any) to skip over the current stream
;;; as it increments its pattern.  otherwise, the method then
;;; increments the streams pattern until it yields a datum that is not
;;; +nad+ and that call-next-method does not return +nad+ from. if the
;;; stream's data is known to contain only constant values, ie no
;;; substreams, the testing loop is skipped. once call-next-method
;;; returns a value (not +nad+), the period and pattern of the stream
;;; are incremented according to their mode. for period incrementing,
;;; +count-periods+ increments the period count only on +eop+, and
;;; +count-values+ increments the period count every time. for pattern
;;; incrementing, +depth-first+ increments the pattern only on +eop+,
;;; and +breadth-first+ increments the pattern every time.
;;;

(define (next obj . args)
  (let ((num (if (null? args) #f (car args))))
    (if num
      (if (number? num )
        (let ((l (list #f)))
          (do ((i 0 (+ 1 i))
               (e l (cdr e)))
              ((>= i num)
               (cdr l))
            (set-cdr! e (list (next-1 obj)))))
        (if (pattern? obj)
          (let ((l (list #f)))
            (do ((n (next-1 obj) )
                 (e l (cdr e))
                 (f #f))
                ((or (eqv? n +eod+) f)
                 (cdr l))
              (set-cdr! e (list n))
              (if (eop? obj)
                (set! f #t)
                (set! n (next-1 obj))))) 
          (list obj)))
      (next-1 obj))))

(define (next-1 obj)
  (cond ((pattern? obj)
	 (let ((period (pattern-period obj))
	       (nomore #f))
	   ;; reset period, return
	   (when (= (period-count period) 0)
		 (when (>= (period-reps period)
			   (pattern-repeat obj))
		       (pattern-value-set! obj +eod+)
		       (pattern-state-set! obj +eop+)
		       (set! nomore +eod+))
		 (when (and (not nomore)
			    (= (reset-period obj) 0))
		       (set! nomore +nad+)
		       (pattern-value-set! obj +nad+)
		       (pattern-state-set! obj +eop+)))
	   (if nomore
	       nomore
	       (let ((flags (pattern-flags obj))
		     (retfn (pattern-returning obj))
		     (value #f)
		     (state #f))
		 ;; increment datum until not +nad+
		 (if (logtest flags +constant-data+)
		     (begin
		       (pattern-datum-set! obj (next-in-pattern obj))
		       (set! value (next-1 (pattern-datum obj)))
		       (set! state +eop+)
		       ;;(print (list #:consant!))
		       )
		     (do ((dyn? (and (logtest flags +count-periods+)
				     (eqv? (period-length period) #t)))
			  (stop #f))
			 (stop #f)
		       ;; increment over 0 length substreams
		       (do ()
			   ((not (eqv? (pattern-datum obj) +nad+)) #f)
			 (pattern-datum-set! obj
					     (if dyn?
						 (skip-datum? (next-in-pattern obj))
						 (next-in-pattern obj))))
		       (set! value (next-1 (pattern-datum obj)))
		       (if (pattern? (pattern-datum obj))
			   (set! state (pattern-state (pattern-datum obj)))
			   (set! state +eop+))
		       ;; increment over +nad+ values returned by obj.
		       (if (eqv? value +nad+)
			   (pattern-datum-set! obj value)
			   (set! stop #t ))) )
		 ;; increment period and pattern as appropriate.
		 (cond ((eqv? state +eop+)
			;;(print (list #:state-eop!))
			(period-count-set! period (- (period-count period) 1))
			(pattern-datum-set! obj +nad+)
			(set! state #f))
		       (else
			(if (logtest flags +breadth-first+)
			    (pattern-datum-set! obj +nad+))
			(if (logtest flags +count-values+)
			    (period-count-set! period
					       (- (period-count period) 1)))))
		 ;;(print (list #:period-count (period-count period)))
		 (if (= (period-count period) 0)
		     (begin (set! state +eop+)
			    (period-reps-set! period
					      (+ 1 (period-reps period))))
		     (set! state state))
		 
		 (if retfn
		     (set! value ( retfn value)));; thunk
		 
		 (pattern-state-set! obj state)
		 (pattern-value-set! obj value)
		 value))))
	((procedure? obj)
	 (obj )	 )

	(else
	 obj)))

(define (next-in-pattern obj)
  ( (pattern-next obj) obj)
  )

(define (map-pattern-data fn obj)
  ( (pattern-mapr obj) fn obj)
  )

;;;
;;; skip-datum? returns +nad+ if the current stream should be skipped
;;; in the pattern. this only happens if we have dynamic periodicity
;;; and the datum had a 0 length period when it was encountered by
;;; reset-period.
;;;

(define (skip-datum? obj)
  (if (not (pattern? obj))
      obj
      (let ((period (pattern-period obj)))
	(if (> (period-omit period) 0)
	    (begin (period-omit-set! period
				     (- (period-omit period) 1))
		   +nad+)
	    obj))))

;;;
;;; reset-period sets and returns the length of the next
;;; period. period length of constant datum is always 1.
;;;

(define (reset-period obj)
  (if (not (pattern? obj)) 1
      (let ((period (pattern-period obj))
	    (dyn #f)
	    (len #f))
	
	;; if period is supplied as a stream get next length via item
	(when (period-stream period)
	  (period-length-set! period
			      (next-1 (period-stream period))))
	(set! dyn (eqv? (period-length period) #t))
	(set! len
	      (if dyn
		  (period-default period)
		  (period-length period)))
	;; if we have dynamic period length we adjust next period
	;; length for the number of 0 subperiods that this period will
	;; encounter.  in order for this to work, all substream
	;; periods must be reset now, at the same that the super
	;; stream is reset. we can only do this if we know that all
	;; subperiods are currently at end of period, ie if we are
	;; counting by subperiods. if so, then by definition all the
	;; substreams must be at end-of-period or we couldn't have
	;; gotton here in the first place. after resetting substream
	;; period lengths we decrement our current stream's period
	;; length by the number of zero periods found.
	(when (and dyn
		   (logtest (pattern-flags obj) +count-periods+))
	  (let ((zeros 0))
	    (map-pattern-data
	     (lambda (x)
	       (when (= (reset-period x) 0) 
		 (let ((p (pattern-period x)))
		   (period-omit-set! p 
				     (+ (period-omit p)
					1)))
		 (set! zeros (+ zeros 1))
		 ))
	     obj)
	    (when (> zeros 0)
	      (set! len (max (- len zeros) 0)))))
	(period-count-set! period len)

	len)))

;;;
;;; pattern implementations.
;;;
;;; cycle continously loops over its data. the data are held in a list
;;; of the form: (data . data). successive elements are popped from
;;; the cdr and when the cdr is null it's reset to the car.
;;;

(define (make-cycle data . args)
  (unless (pair? data) (set! data (list data)))
  (with-optkeys (args for limit)
    (let ((obj (%alloc-pattern))
	  (flags 0)
	  (len (length data)))
      (initialize-pattern obj (cons data data) for limit
			  flags len len next-in-cycle
			  (lambda (fn obj) 
			    (for-each fn (car (pattern-data obj)))))
      obj)))

(define (next-in-cycle obj)
  (let ((data (pattern-data obj)))
    (if (null? (cdr data))
	(set-cdr! data (car data)))
    (let ((x (cadr data)))
      (set-cdr! data (cddr data))
      x)))

; (define aaa (make-cycle (list 1 2 3)))
; (next aaa #t)
; (define aaa (make-cycle (list 1 2 3) :for 2))
; (next aaa #t)
; (define aaa (make-cycle (list 1 2 3) :for (make-cycle (list 3 2 1))))
; (next aaa #t)
; (define aaa (make-cycle (list 1 2 3) :limit 2))
; (next aaa #t)
; (define aaa (make-cycle (list (make-cycle (list 'a 'b) ) (make-cycle (list 1 2) ))))
; (next aaa #t)
; (define aaa (make-cycle (list 1 (make-cycle (list 'a 'b)))))
; (next aaa #t)
; (define aaa (make-cycle (list 1 (make-cycle (list 'a 'b) :for (make-cycle (list 3 2 1 0))))))
; (next aaa #t)

;;;
;;; palindrome
;;;

(define-record-type palin
  (make-palin pos len inc mode elide)
  palin?
  (pos palin-pos palin-pos-set!)
  (len palin-len palin-len-set!)
  (inc palin-inc palin-inc-set!)
  (mode palin-mode palin-mode-set!)
  (elide palin-elide palin-elide-set!))


(define (ppalin obj port)
  (list 'palin 
	(palin-pos obj) (palin-len obj) (palin-inc obj)
	(palin-mode obj) (palin-elide obj)))

(define (make-palindrome data . args)
  (unless (pair? data) (set! data (list data)))
  (with-optkeys (args for limit elide)
    (let ((obj (%alloc-pattern))
	  (flags 0)
	  (len (length data)))
      (initialize-pattern obj data for limit
			  flags len (* len 2) next-in-palindrome
			  (lambda (fn obj)
			    (for-each fn (pattern-data obj))))
      ;; pattern cache holds palin structure
      (pattern-cache-set! obj (make-palin -2 (length data) #f #f
					  elide))
      obj)))

(define (next-in-palindrome obj)
  (let* ((cache (pattern-cache obj))
	 (pos (palin-pos cache)))
    (cond ((< pos 0 ) 
	   ;; starting new up-and-back cycle
	   (let ((m (next-1 (palin-elide cache)))
		 (l (palin-len cache))
		 (i (= pos -2)))
	     (palin-mode-set! cache m)
	     (palin-inc-set! cache 1)
	     ;; see if we skip repeat of first element
	     (if (or (eqv? m #t) (and (pair? m) (eqv? (car m) #t)))
		 ;; -2 marks very first call, dont skip inital element
		 (if i (set! pos 0) (set! pos 1))
		 (set! pos 0))	     
	     (if (logtest (pattern-flags obj) +default-period+)
		 (let* ((p (pattern-period obj))
			(c (* l 2)))
		   (cond ((eqv? m #f)
			  (period-count-set! p c))
			 ((eqv? m #t)
			  (period-count-set! p (if i (- c 2) (- c 3))))
			 ((equal? m '(#f #t))
			  (period-count-set! p (- c 1)))
			 ((equal? m '(#t #f))
			  (period-count-set! p (if i (- c 1) (- c 2))))
			 (else (period-count-set! p c)))
		   ))
	     ))
	  ((= pos (palin-len cache))
	   ;; reversing direction
	   (palin-inc-set! cache -1)
	   (let ((m (palin-mode cache)))
	     ;; test if we skip repeat of last element
	     (if (or (eqv? m #t) (and (pair? m) (pair? (cdr m))
				      (eqv? (cadr m) #t)))
		 (set! pos (- pos 2))
		 (set! pos (- pos 1))))
	   ))
    (palin-pos-set! cache (+ pos (palin-inc cache)))
    (list-ref (pattern-data obj) pos)))

; (define aaa (make-palindrome '(a b c d) ))
; (next aaa #t)
; (define aaa (make-palindrome '(a b c d) :elide #t))
; (next aaa #t)
; (define aaa (make-palindrome '(a b c d) :elide '(#f #t)))
; (next aaa #t)
; (define aaa (make-palindrome '(a b c d) :elide '(#t #f)))
; (next aaa #t)
; (define aaa (make-palindrome '(a b c d) :for 3))
; (next aaa #t)

;;;
;;; line sticks on the last element.
;;;

(define (make-line data . args)
  (unless (pair? data) (set! data (list data)))
  (with-optkeys (args for limit)
    (let ((obj (%alloc-pattern))
	  (flags 0)
	  (len (length data)))
      (initialize-pattern obj data for limit flags
			  len len next-in-line
			  (lambda (fn obj)
			    (for-each fn (pattern-data obj))))
      obj)))

(define (next-in-line obj)
  (let ((line (pattern-data obj)))
    (if (null? (cdr line))
	(begin 
	  (period-count-set! (pattern-period obj) 1)
	  (car line)
	  )
	(let ((x (car line)))
	  (pattern-data-set! obj (cdr line))
	  x))))

;;; (define aaa (make-line '(a b c)))
;;; (next aaa #t)
;;; (define aaa (make-line (list 'a 'b (make-cycle '(1 2 3 4)))))
;;; (next aaa #t)
;;; (define aaa (make-line (list 'a 'b (make-cycle '(1 2 3 4) :for (lambda () (+ 1 (random 4)))))))
;;; (next aaa #t)
;;; aaa

;;;
;;; heap shuffles its elements each time through
;;;

(define (make-heap data . args)
  ;; copy data because heap destructively modifies it
  (if (pair? data)
      (set! data (append data (list)))
      (set! data (list data)))
  (with-optkeys (args for limit)
    (let ((obj (%alloc-pattern))
	  (flags 0)
	  (len (length data)))
      (initialize-pattern obj (list data) for limit
			  flags len len next-in-heap
			  (lambda (fn obj)
			    (for-each fn (car (pattern-data obj)))))
      obj)))
  
(define (next-in-heap obj)
  (let ((data (pattern-data obj)))
    (when (null? (cdr data))
      (let ((len (pattern-length obj))
	    (lis (car data)))
	(do ((i 0 (+ i 1))
	     (j (random len) (random len))
	     ;; (j (ffi_ranint len ) (ffi_ranint len))
	     (v #f))
	    ((= i len)
	     (set-cdr! data lis))
	  (set! v (list-ref lis i))
	  (list-set! lis i (list-ref lis j))
	  (list-set! lis j v))))
    (let ((x (cadr data)))
      (set-cdr! data (cddr data))
      x)))

;; (define xxx '(1 2 3 4))
;; (define aaa (make-heap xxx))
;; (next aaa #t)
;; xxx
;; (define aaa (make-heap (list 1 2 3 (make-cycle '(a b c)) 4 5)))
;; (next aaa #t)

;;;
;;; rotation
;;;

(define (make-rotation data . args)
  ;; copy user's data (rotation side effects data)
  (if (pair? data)
      (set! data (append data (list)))
      (set! data (list data)))
  (with-optkeys (args for limit (rotate 0))
    (let ((obj (%alloc-pattern))
	  (flags 0)
	  (len (length data)))
      ;; cdr of data initialized now so that rotations only happen
      ;; after the first cycle.
      ;; (initialize-pattern obj data args flags len dper getr mapr allow)
      (initialize-pattern obj (cons data data) for limit
			  flags len len next-in-rotation
			  (lambda (fn obj) 
			    (for-each fn (car (pattern-data obj)))))
      ;; pattern cache holds palin structure
      (pattern-cache-set! obj rotate)
      obj)))
  
(define (next-in-rotation obj)
  (define (rotate-items items start step width end)
    (do ((i start (+ i step)))
	((not (< i end)) items)
      (let ((a (list-ref items i))
	    (b (list-ref items (+ i width))))
	(list-set! items i b)
	(list-set! items (+ i width) a))))
  (let ((data (pattern-data obj)))
    (when (null? (cdr data))
      (let ((l (car data))
	    (r (next-1 (pattern-cache obj))))
	;; start step width end
	(set-cdr! data
		  (if (pair? r)
		      (if (pair? (cdr r))
			  (if (pair? (cddr r))
			      (if (pair? (cdddr r))
				  (apply rotate-items l r)
				  (rotate-items l (car r) 
						(cadr r) (caddr r)
						;; len - width
						(- (pattern-length obj) 
						   (caddr r))))
			      (rotate-items l (car r) (cadr r) 1
					    (- (pattern-length obj) 1)))
			  (rotate-items l (car r) 1 1 
					(- (pattern-length obj) 1)))
		      (rotate-items l r 1 1 
				    (- (pattern-length obj) 1))))))
    (let ((x (car (cdr data))))
      (set-cdr! data (cddr data))
      x)))

; (define aaa (make-rotation '(a b c d)))
; (next aaa #t)
; (define aaa (make-rotation '(a b c d) :rotations '(1 2)))
; (next aaa #t)

;;;
;;; weighting chooses items using weighted selection. its data are
;;; kept in a list of the form#: ((&rest choices) . last-choice).
;;;

;; (define-record random-item datum index weight min max count id minmax)
(define-record-type random-item
  (make-random-item datum index weight min max count id minmax)
  random-item?
  (datum random-item-datum random-item-datum-set!)
  (index random-item-index random-item-index-set!)
  (weight random-item-weight random-item-weight-set!)
  (min random-item-min random-item-min-set!)
  (max random-item-max random-item-max-set!)
  (count random-item-count random-item-count-set!)
  (id random-item-id random-item-id-set!)
  (minmax random-item-minmax random-item-minmax-set!))

(define (prandom-item obj )
  (list 'random-item
	#:datum (random-item-datum obj)
	#:index (random-item-index obj)
	#:weight (random-item-weight obj)
	#:min (random-item-min obj)
	#:max (random-item-max obj)
	#:count (random-item-count obj)
	#:id (random-item-id obj)
	#:minmax (random-item-minmax obj)))

(define (make-weighting data . args)
  (let* ((pool (canonicalize-weighting-data data))
	 (obj (%alloc-pattern))
	 (len (length pool))
	 (dper #f)
	 (const-weight #t)
	 (const-datums #t)
	 (num-patterns 0)
	 (flags 0))
    (for-each (lambda (item)
		(let ((min (random-item-min item))
		      (max (random-item-max item))
		      (wei (random-item-weight item))
		      (dat (random-item-datum item)))
		  (when (pattern? dat)
		    (set! const-datums #f)
		    (set! num-patterns (+ num-patterns 1)))
		  ;; check the stream for constant weights. if true,
		  ;; calculate the range now and set a flag so we dont
		  ;; recalulate each period.
		  (unless (number? wei)
		    (set! const-weight #f))))
	      pool)
    ;; set the default period length of an all-subpattern weighting to
    ;; 1 otherwise to the number of elements. since a weighting
    ;; pattern establishes no particular order itself, setting the
    ;; period to 1 allows the number of elements in the current period
    ;; to reflect the sub patterns.
    (set! dper (if (= num-patterns len) 1 len))
    (if const-weight (set! flags (logior flags +constant-weights+)))
    ;; pool is ((&rest choices) . last-choice) no initial last
    ;; choice. a first choice for the stream could be implemented as a
    ;; last with min=1
    (with-optkeys (args for limit)
      (initialize-pattern obj (list pool) for limit
			  flags len dper next-in-weighting
			  (lambda (fn obj)
			    (for-each (lambda (i)
					( fn (random-item-datum i)))
				      (car (pattern-data obj))))))
    ;; if we have constant weights calculate the range now as fixnums
    (if const-weight (recalc-weightings obj #t))
    obj))

(define (canonicalize-weighting-data data)
  (define (%make-random-item w)
    (let ((item #f)
	  (args (list)))
      (cond ((pair? w)
	     (set! item (car w))
	     (set! args (cdr w)))
	    (else (set! item w)))
      (with-optkeys (args (weight 1) (min 1) max)
	(make-random-item item #f weight min max 0 #f #f))))
  (map %make-random-item data))

;;; (canonicalize-weighting-data '(a b c))
;;; (canonicalize-weighting-data '(a (b 33) c))
;;; (canonicalize-weighting-data '(a (b :max 33) c))

(define (recalc-weightings obj fix?)
  (let ((data (car (pattern-data obj)))
	(range 0.0))
    (do ((tail data (cdr tail)))
	((null? tail) #f)
      (set! range (+ range (next-1 (random-item-weight (car tail)))))
      (random-item-index-set! (car tail) range))
    (if fix?
	(do ((tail data (cdr tail))
	     (index 0)
	     (total 0))
	    ((null? tail)
	     (pattern-cache-set! obj total) )
	  (set! index (/ (random-item-index (car tail))
			 range))
	  (random-item-index-set! (car tail) index)
	  (set! total index))
	(pattern-cache-set! obj range))))

(define (next-in-weighting obj)
  ;; pool is ((&rest choices) . last-item)
  (let* ((pool (pattern-data obj))
	 (per (pattern-period obj))
	 (flags (pattern-flags obj))
         (last (cdr pool)))
    (unless (logtest flags +constant-weights+)
      ;; at beginning of new period?
      (when (= (period-count per) (period-length per))
	(recalc-weightings obj #f)))
    ;; if we have a last item with an unfulfilled :min value return it
    (if (and (not (null? last))
	     (begin
	      (random-item-count-set! last
				      (+ 1 (random-item-count last)))
	      (< (random-item-count last)
		 (random-item-min last))))
	(random-item-datum last)
	(let ((range (pattern-cache obj))
	      (choices (car pool))
	      (pick (lambda (c r)
		      (do ((tail c (cdr tail))
			   (index (random r))
			   ;; (index (ffi_ranfloat r ))
			   )
			  ( (< index (random-item-index (car tail)))
			    (car tail)))))
	      (next #f))
	  (do ((item (pick choices range) (pick choices range)))
	      ((not (and (random-item-max item)
			 (= (random-item-count item)
			    (random-item-max item))))
	       (set! next item))
	    )
	  (unless (eqv? next last)
	    (do ((tail choices (cdr tail)))
		((null? tail) #f)
	      (random-item-count-set! (car tail) 0)))
	  (set-cdr! pool next)
	  ;; adjust the weight of the newly selected item
	  (random-item-datum next)))))

;;; (define aaa (make-weighting '(a b c d e)))
;;; (next aaa #t)
;;; (define aaa (make-weighting '(a b (c :weight 10) d e)))
;;; (next aaa #t)
;;; (define aaa (make-weighting '(a b (c :min 4) d e)))
;;; (next aaa #t)

;;;
;;; markov 
;;;

(define (canonicalize-markov-data data)
  (define (parse-markov-spec spec)
    (if (not (pair? spec))
	(error "transition ~S is not a list" spec))
    (let ((rhside (or (member '-> spec)
		      (member '#:-> spec)
		      (error "no right hand side in transition ~S"
			     spec)))
	  (lhside (list))
	  (range 0) 
	  (outputs (list)))
      ;; separate lh and rh sides
      (let* ((head (list #f))
	     (tail head))
	(do ()
	    ((eqv? spec rhside)
	     (set! lhside (cdr head))
	     (set! rhside (cdr rhside)))
	  (set-cdr! tail (list (car spec)))
	  (set! tail (cdr tail))
	  (set! spec (cdr spec))))
      (for-each (lambda (s)
		  (let ((val #f)
			(pat #f)
			(wei #f))
		    (if (pair? s)
			(begin (set! val (car s))
			       (set! wei (if (null? (cdr s)) 1 (cadr s)))
			       ;; weight may be number or pattern
			       (set! pat wei)
			       (unless (number? wei)
				 (set! wei #f)))
			(begin (set! val s) (set! wei 1) (set! pat 1)))
		    ;; set range to #f if any weight is pattern
		    ;; else precalc range for the constant weights
		    (if (and wei range)
			(set! range (+ range wei))
			(set! range #f))
		    ;;(push (list val range pat) outputs)
		    (set! outputs (cons (list val range pat) outputs))
		    ))
		rhside)
      (cons lhside (cons range (reverse outputs)))))
    (let ((transitions (list #f)))
      (do ((tail data (cdr tail))
	   (order #f)
	   (lis transitions)
	   (p #f))
	  ((null? tail)
	   (cdr transitions) )
	(set! p (parse-markov-spec (car tail)))
	(if (not order)
	    (set! order (length (car p)))
	    ;;(set! order (max order (length (first p))))
	    (if (not (= order (length (car p))))
		(error "found left hand sides with different number of items in ~S" 
		       data))
	    )
	(set-cdr! lis (list p))
	(set! lis (cdr lis)))))

;;; (parse-markov-spec '(a a -> b  c ))
;;; (canonicalize-markov-data '((a a -> b  c ) ( a b -> a) (c a -> c a)))

(define (make-markov data . args)
  (if (not (pair? data))
      (error "~S is not list of markov transitions" data)
      (set! data (canonicalize-markov-data data)))
  (with-optkeys (args for limit past)
    (let* ((obj (%alloc-pattern))
	   (len (length data))
	   (flags 0))
      (initialize-pattern obj data for limit
			  flags len len next-in-markov
			  (lambda (fn obj)
			    (for-each fn (pattern-data obj))))
      (unless (pair? past)
	(set! past (make-list (length (car (car data))) '*)))
      (pattern-cache-set! obj past)
      obj)))
  
(define (next-in-markov obj)
  ;; markov data kept as a list of lists. each list is in the form#:
  ;; ((<inputs>) range . <output>)
  (letrec ((select-output
            (lambda (range outputs)
              ;; if range is #f then one or more weights in the
              ;; outputs are patterns. in this case we map all the
              ;; outputs to update weights of every outcome and then
              ;; select.  otherwise (range is number) we simply select
              ;; an outcome from the precalculated distribution.
              (if (not range)
		  (do ((tail outputs (cdr tail))
		       (out #f)
		       (sum 0))
		      ((null? tail)
		       (select-output sum outputs))
		    ;; out is outcome#: (val rng <pat/wei>)
		    (set! out (car tail))
		    ;; if third element is number use it else read it
		    (set! sum (+ sum (if (number? (caddr out))
					 (caddr out)
					 (next-1 (caddr out)))))
		    ;; always update second element to new value
		    (set-car! (cdr out) sum))
                (let (
		      (n (random range))
		      ;; (n (ffi_ranfloat range))
		      )
		  (do ((tail outputs (cdr tail)))
		      ((< n (cadr (car tail)))
		       (car (car tail)))))
		)))
	   (match-past
	    (lambda (inputs past)
	      (do ((i inputs (cdr i))
		   (j past (cdr j))
		   (f #t))
		  ((or (null? i) (null? j) (not f))
		   f)
		(set! f (or (eqv? (car i) '*)
			    (equal? (car i) (car j))
			    (eqv? (car j) '*))))
	      )))
    (do ((tail (pattern-data obj) (cdr tail))
	 (past (pattern-cache obj))
	 (item #f)
	 )
	((or (null? tail) (null? past) 
	     (match-past (car (car tail)) past))
	 (when (null? tail)
	   (error "no transition matches past ~S"  past))
	 (set! item (select-output (cadr (car tail))
				   (cddr (car tail))))
	 (unless (null? past)
	   (if (null? (cdr past))
	       (set-car! past item)
	       (do ((last past (cdr last)))
		   ((null? (cdr last))
		    ;; rotate past choices leftward
		    (set-car! past item)
		    (set-cdr! last past)
		    (pattern-cache-set! obj (cdr past))
		    (set-cdr! (cdr last) (list))))))
	 item))
    ))
   
;;; (define aaa (make-markov '((a -> b c d) (b -> a) (c -> d) (d -> (a 3) b c))))
;;; (next aaa 30)

(define (last-pair l)
  (if (pair? (cdr l)) 
      (last-pair (cdr l)) l))

(define (markov-analyze seq . args) 
  (let* ((morder #f) ; markov order
	 (result #f) ; what to return
	 (len (length seq)) 
	 (labels '())			; the set of all outcomes 
	 (table '())
	 (row-label-width 8) 
	 (print-decimals 3)
	 (field (+ print-decimals 2)))	; n.nnn 
    (with-optkeys (args (order 1) (mode 1))
      (set! morder order)
      (set! result mode))
    (unless (member result '(1 2 3))
      (error "~S is not a valid mode value" result))
    (letrec ((add-outcome
	      (lambda (prev next) 
		(let ((entry (find-if (lambda (x)
					  (equal? prev (car x)))
				   table)))
		  (if (not entry) 
		      (set! table (cons (list prev
					      (format #f "~s" prev) 
					      (list next 1))
					table)) 
		      (let ((e (assoc next (cddr entry)))) 
			(if e 
			    (set-car! (cdr e) (+ 1 (cadr e)))
			    (set-cdr! (last-pair (cdr entry))
				      (list (list next 1)))))))))
	     (before?
	      (lambda (x y l) 
		(if (null? x) #t 
                    (let ((p1 (list-index (lambda (z) (equal? (car x) z))
					  l)) 
                          (p2 (list-index (lambda (z) (equal? (car y) z))
					  l)))
                      (cond ((< p1 p2) #t) 
                            ; bug!
                            ;((= p1 p2) (before? (cdr x) (cdr y) l)) 
                            (else #f))))))
	     (liststring 
	      (lambda (l)
		(if (null? l) ""
		    (let ((a (format #f "~a" (car l))))
		      (do ((x (cdr l) (cdr x)))
			  ((null? x) a)
			(set! a
			      (string-append 
			       a (format #f " ~a" (car x))))))))))
      (do ((i 0 (+ i 1)))
	  ((= i len) #f)
	(do ((prev (list))
	     (j 0 (+ j 1))  ; j to morder
	     (x #f))
	    ((> j morder)
	     (add-outcome (reverse prev) x ) 
	     (if (not (member x labels))
		 (set! labels (cons x labels))))
	  (set! x (list-ref seq (modulo (+ i j) len)))
	  ;; gather history in reverse order 
	  (when (< j morder) (set! prev (cons x prev)))))
      ;; sort the outcomes according to data
      (cond ((number? (car labels))
	     (set! labels (sort labels <)))
	    ((and (car labels) (symbol? (car labels)))
	     (set! labels (sort labels
				(lambda (x y) 
				  (string-ci<? (format #f "~a" x)
					       (format #f "~a" y))))))
	    (else 
	     (set! labels (reverse labels))))
      ;; map over data, normalize weights 
      (do ((tail table (cdr tail))
	   (len 0))
	  ((null? tail)
	   (set! row-label-width (max len row-label-width)) )
	(let* ((row (car tail))
	       (lab (cadr row))	; label
	       (val (cddr row)))
	  (set! len (max len (string-length lab)))
	  (let ((total (do ((e val (cdr e)) ; sum all e
			    (s 0))
			   ((null? e) s)
			 (set! s (+ s (cadr (car e))))))) 
	    (set! total (* total 1.0)) 
	    (do ((e val (cdr e)))
		((null? e) #f)
	      (set-car! (cdr (car e))
			(decimals (/ (cadr (car e)) total) 
				  print-decimals))))))
      ;; sort table by labels
      (set! table 
	    (sort table (lambda (x y) (before? (car x) (car y) labels)))) 
      ;; print table
      (when (eqv? result 1)
	(let* ((port (open-output-string))
               (sp " ")
	       (ln (make-string field #\-))) 
	  ;; print column header row
	  (newline port)
	  (do ((i 0 (+ i 1)))
	      ((= i row-label-width) #f)
	    (write-char #\* port))
	  (do ((l labels (cdr l)))
	      ((null? l) #f)
	    (display sp port) ;; column separator
	    (let* ((s (format #f "~a" (car l)))
		   (n (string-length s)))
	      ;; write column pad
	      (do ((i 0 (+ i 1))
		   (m (max (- field n) 0)))
		  ((= i m) #f)
		(write-char #\space port))
	      (display s port)))
	  ;; print each row
	  (do ((tail table (cdr tail)))
	      ((null? tail) #f)
	    (let ((row (car tail)))
	      (newline port)
	      (let* ((s (liststring (car row)))
		     (n (string-length s)))
		;; print left pad for row label
		(do ((i 0 (+ i 1))
		     (m (max (- row-label-width n) 0)))
		    ((= i m) #f)
		  (write-char #\space port))
		;; print row label min row-label-width.
		(do ((i 0 (+ i 1))
		     (m (min row-label-width n)))
		    ((= i m) #f)
		  (write-char (string-ref s i) port)))
	      (do ((l labels (cdr l)))
		  ((null? l) #f)
		(let ((v (assoc (car l) (cddr row))))
		  (if (not v)
		      (begin (display sp port) (display ln port))
		      (let* ((s (number->string (cadr v)))
			     (n (string-length s)))
			(display sp port)
			;; s7: trim number to fit field
			(if (>= n field)
			    (let ((d (char-position #\. s)))
			      (set! s (substring s 0 (min (+ d 4) n)))
			      (set! n (string-length s))))
			;; pad number
			(do ((i 0 (+ i 1))
			     (m (max (- field n) 0)))
			    ((= i m) #f)
			  (write-char #\space port))
			(display s port)
			))))))
	  (newline port)
          (display (get-output-string port))
          (close-output-port port)
          )))

    (if (= result 1)
	(values)
	;; if returning pattern or data convert table to markov lists
	(let ((pat (map (lambda (row)
			  (append (car row) '(->) (cddr row)))
			table)))
	  (if (= result 2)
	      (make-markov pat)
	      pat)))))

; (define aaa '(c4 c4 d4 c4 f4 e4 c4 c4 d4 c4 g4 f4 c4 c4 c5 a4 f4 e4 d4 bf4 bf4 a4 f4 g4 f4))
; (define markovpat (markov-analyze aaa 1 2))
; (next markovpat 30)

;;;
;;; Graph
;;;

;; (define-record graph-node datum to id)
(define-record-type graph-node
  (make-graph-node datum to id)
  graph-node?
  (datum graph-node-datum graph-node-datum-set!)
  (to graph-node-to graph-node-to-set!)
  (id graph-node-id graph-node-id-set!))


(define (pgraph-node obj port)
  (list 'graph-node
	(graph-node-datum obj) (graph-node-to obj)
	(graph-node-id obj)))

(define (make-graph data . args)
  (if (not (pair? data))
      (error "~S is not a list of graph data" data)
      (set! data (canonicalize-graph-data data)))
  (with-optkeys (args for limit)
    (let* ((obj (%alloc-pattern))
	   (len (length data))
	   (flags 0))
      (initialize-pattern obj (cons #f data ) for limit
			  flags len len next-in-graph
			  (lambda (fn obj)
			    (for-each (lambda (n) ( fn (graph-node-datum n)))
				      (cdr (pattern-data obj)))))
      obj)))

(define (canonicalize-graph-data data)
  (let ((pos 1))
    (define (parse-graph-item extern)
      (unless (pair? extern) 
	(error "~S is not a graph node list" extern))
      (apply (lambda (item . args)
	       (with-optkeys (args to id)
		 (unless id (set! id pos))
		 (set! pos (+ pos 1))
		 (make-graph-node item to id)))
	     extern))
    (map parse-graph-item data)))

;; (canonicalize-graph-data '((a :to 2) (b :id 2 :to a)))
;; (canonicalize-graph-data '((a :id 1 :to b) (b :id 2 :to a)))

(define (next-in-graph obj)
  (let* ((graph (pattern-data obj))
         (nodes (cdr graph))
         (this (car graph)))
    (if (not this)
	(begin
	  (set-car! graph (car nodes))
	  (graph-node-datum (car nodes)))
	;; read the to: link and search for next node
	(let ((link (next-1 (graph-node-to this)))
	      (next #f))
	  (do ((tail nodes (cdr tail)))
	      ((or next (null? tail))
	       (if (not next)
		   (error "no graph node for id ~S" link)
		   (set-car! graph next))
	       (graph-node-datum next))
	    (if (eqv? link (graph-node-id (car tail)))
		(set! next (car tail))))))))

;;; (define aaa (make-graph '((a :to b) (b :to a))))
;;; (next aaa)
;;; (define aaa (make-graph `((a :to 2) (b :id 2 :to 3) (c :id 3 :to ,(make-weighting '(1 2 3))))))
;;; (next aaa 20)


;;;
;;; Repeater
;;;

(define (make-repeater pat . args)
  (with-optkeys (args for repeat limit)
		(let ((obj (%alloc-pattern))
		      (flags 0)
		      )
		  (initialize-pattern obj (list) for limit
				      flags
				      0
				      1
				      next-in-repeater
				      (lambda (fn obj)
					(for-each fn (pattern-data obj))))
		  ;; pattern cache holds palin structure
		  (pattern-cache-set! obj (list pat repeat))
		  obj)))

(define (next-in-repeater obj)
  (let ((data (pattern-data obj)))
    (if (null? data)
	(let* ((per (pattern-period obj))
	       (res (next (car (pattern-cache obj)) #t))
	       (len (length res))
	       (for (period-length per))
	       (rep (cadr (pattern-cache obj))))
	  (if rep
	      (begin
		(set! for (next rep))
		(period-length-set! per len)
		(period-count-set! per len))
	      (period-count-set! per (* len for)))
	  (let ((sav res)
		(don (- for 1)))
	    (do ((i 0 (+ i 1)))
		((not (< i don)) #f)
	      (set! res (append res sav))))
	  (pattern-data-set! obj (cdr res))
	  (car res))
	(begin
	  (pattern-data-set! obj (cdr data))
	  (car data)))))


;; (define aaa (make-repeater (make-weighting '(a b c d)) :for 2))
;; (next aaa #t)