This file is indexed.

/usr/lib/python2.7/dist-packages/spambayes/hammie.py is in spambayes 1.1b1-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#! /usr/bin/env python

import math

from spambayes import mboxutils
from spambayes import storage
from spambayes.Options import options
from spambayes.tokenizer import tokenize

class Hammie:
    """A spambayes mail filter.

    This implements the basic functionality needed to score, filter, or
    train.

    """

    def __init__(self, bayes, mode):
        self.bayes = bayes
        self.mode = mode

    def _scoremsg(self, msg, evidence=False):
        """Score a Message.

        msg can be a string, a file object, or a Message object.

        Returns the probability the message is spam.  If evidence is
        true, returns a tuple: (probability, clues), where clues is a
        list of the words which contributed to the score.

        """

        return self.bayes.spamprob(tokenize(msg), evidence)

    def formatclues(self, clues, sep="; "):
        """Format the clues into something readable."""

        return sep.join(["%r: %.2f" % (word, prob)
                         for word, prob in clues
                         if (word[0] == '*' or
                             prob <= options["Headers",
                                             "clue_mailheader_cutoff"] or
                             prob >= 1.0 - options["Headers",
                                                   "clue_mailheader_cutoff"])])

    def score(self, msg, evidence=False):
        """Score (judge) a message.

        msg can be a string, a file object, or a Message object.

        Returns the probability the message is spam.  If evidence is
        true, returns a tuple: (probability, clues), where clues is a
        list of the words which contributed to the score.

        """

        return self._scoremsg(msg, evidence)

    def score_and_filter(self, msg, header=None, spam_cutoff=None,
                         ham_cutoff=None, debugheader=None,
                         debug=None, train=None):
        """Score (judge) a message and add a disposition header.

        msg can be a string, a file object, or a Message object.

        Optionally, set header to the name of the header to add, and/or
        spam_cutoff/ham_cutoff to the probability values which must be met
        or exceeded for a message to get a 'Spam' or 'Ham' classification.

        An extra debugging header can be added if 'debug' is set to True.
        The name of the debugging header is given as 'debugheader'.

        If 'train' is True, also train on the result of scoring the
        message (ie. train as ham if it's ham, train as spam if it's
        spam).  If the message already has a trained header, it will be
        untrained first.  You'll want to be very dilligent about
        retraining mistakes if you use this option.

        All defaults for optional parameters come from the Options file.

        Returns the score and same message with a new disposition header.
        """

        if header == None:
            header = options["Headers", "classification_header_name"]
        if spam_cutoff == None:
            spam_cutoff = options["Categorization", "spam_cutoff"]
        if ham_cutoff == None:
            ham_cutoff = options["Categorization", "ham_cutoff"]
        if debugheader == None:
            debugheader = options["Headers", "evidence_header_name"]
        if debug == None:
            debug = options["Headers", "include_evidence"]
        if train == None:
            train = options["Hammie", "train_on_filter"]

        msg = mboxutils.get_message(msg)
        try:
            del msg[header]
        except KeyError:
            pass
        if train:
            self.untrain_from_header(msg)
        prob, clues = self._scoremsg(msg, True)
        if prob < ham_cutoff:
            is_spam = False
            disp = options["Headers", "header_ham_string"]
        elif prob > spam_cutoff:
            is_spam = True
            disp = options["Headers", "header_spam_string"]
        else:
            is_spam = False
            disp = options["Headers", "header_unsure_string"]
        if train:
            self.train(msg, is_spam, True)
        basic_disp = disp
        disp += "; %.*f" % (options["Headers", "header_score_digits"], prob)
        if options["Headers", "header_score_logarithm"]:
            if prob <= 0.005 and prob > 0.0:
                import math
                x = -math.log10(prob)
                disp += " (%d)" % x
            if prob >= 0.995 and prob < 1.0:
                x = -math.log10(1.0-prob)
                disp += " (%d)" % x
        del msg[header]
        msg.add_header(header, disp)

        # Obey notate_to and notate_subject.
        for header in ('to', 'subject'):
            if basic_disp in options["Headers", "notate_"+header]:
                orig = msg[header]
                del msg[header]
                msg[header] = "%s,%s" % (basic_disp, orig)

        if debug:
            disp = self.formatclues(clues)
            del msg[debugheader]
            msg.add_header(debugheader, disp)
        result = mboxutils.as_string(msg, unixfrom=(msg.get_unixfrom()
                                                    is not None))
        return prob, result

    def filter(self, msg, header=None, spam_cutoff=None,
               ham_cutoff=None, debugheader=None,
               debug=None, train=None):
        _prob, result = self.score_and_filter(
            msg, header, spam_cutoff, ham_cutoff, debugheader,
            debug, train)
        return result

    def train(self, msg, is_spam, add_header=False):
        """Train bayes with a message.

        msg can be a string, a file object, or a Message object.

        is_spam should be 1 if the message is spam, 0 if not.

        If add_header is True, add a header with how it was trained (in
        case we need to untrain later)

        """

        self.bayes.learn(tokenize(msg), is_spam)
        if add_header:
            if is_spam:
                trained = options["Headers", "header_spam_string"]
            else:
                trained = options["Headers", "header_ham_string"]
            del msg[options["Headers", "trained_header_name"]]
            msg.add_header(options["Headers", "trained_header_name"], trained)

    def untrain(self, msg, is_spam):
        """Untrain bayes with a message.

        msg can be a string, a file object, or a Message object.

        is_spam should be True if the message is spam, False if not.

        """

        self.bayes.unlearn(tokenize(msg), is_spam)

    def untrain_from_header(self, msg):
        """Untrain bayes based on X-Spambayes-Trained header.

        msg can be a string, a file object, or a Message object.

        If no such header is present, nothing happens.

        If add_header is True, add a header with how it was trained (in
        case we need to untrain later)

        """

        msg = mboxutils.get_message(msg)
        trained = msg.get(options["Headers", "trained_header_name"])
        if not trained:
            return
        del msg[options["Headers", "trained_header_name"]]
        if trained == options["Headers", "header_ham_string"]:
            self.untrain_ham(msg)
        elif trained == options["Headers", "header_spam_string"]:
            self.untrain_spam(msg)
        else:
            raise ValueError('%s header value unrecognized'
                             % options["Headers", "trained_header_name"])

    def train_ham(self, msg, add_header=False):
        """Train bayes with ham.

        msg can be a string, a file object, or a Message object.

        If add_header is True, add a header with how it was trained (in
        case we need to untrain later)

        """

        self.train(msg, False, add_header)

    def train_spam(self, msg, add_header=False):
        """Train bayes with spam.

        msg can be a string, a file object, or a Message object.

        If add_header is True, add a header with how it was trained (in
        case we need to untrain later)

        """

        self.train(msg, True, add_header)

    def untrain_ham(self, msg):
        """Untrain bayes with a message previously trained as ham.

        msg can be a string, a file object, or a Message object.

        """

        self.untrain(msg, False)

    def untrain_spam(self, msg):
        """Untrain bayes with a message previously traned as spam.

        msg can be a string, a file object, or a Message object.

        """

        self.untrain(msg, True)

    def store(self):
        """Write out the persistent store.

        This makes sure the persistent store reflects what is currently
        in memory.  You would want to do this after a write and before
        exiting.

        """

        self.bayes.store()

    def close(self):
        if self.mode != 'r':
            self.store()

def open(filename, useDB="dbm", mode='r'):
    """Open a file, returning a Hammie instance.

    mode is used as the flag to open DBDict objects.  'c' for read-write
    (create if needed), 'r' for read-only, 'w' for read-write.
    """
    return Hammie(storage.open_storage(filename, useDB, mode), mode)


if __name__ == "__main__":
    # Everybody's used to running hammie.py.  Why mess with success?  ;)
    from spambayes import hammiebulk

    hammiebulk.main()