This file is indexed.

/usr/lib/python2.7/dist-packages/spambayes/hammiebulk.py is in spambayes 1.1b1-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#! /usr/bin/env python

"""Usage: %(program)s [-D|-d] [options]

Where:
    -h
        show usage and exit
    -d FILE
        use the DBM store.  A DBM file is larger than the pickle and
        creating it is slower, but loading it is much faster,
        especially for large word databases.  Recommended for use with
        hammiefilter or any procmail-based filter.
        Default filename: %(DEFAULTDB)s
    -p FILE
        use the pickle store.  A pickle is smaller and faster to create,
        but much slower to load.  Recommended for use with sb_server and
        sb_xmlrpcserver.
        Default filename: %(DEFAULTDB)s
    -U
        Untrain instead of train.  The interpretation of -g and -s remains
        the same.
    -f
        run as a filter: read a single message from stdin, add a new
        header, and write it to stdout.  If you want to run from
        procmail, this is your option.
    -g PATH
        mbox or directory of known good messages (non-spam) to train on.
        Can be specified more than once, or use - for stdin.
    -s PATH
        mbox or directory of known spam messages to train on.
        Can be specified more than once, or use - for stdin.
    -u PATH
        mbox of unknown messages.  A ham/spam decision is reported for each.
        Can be specified more than once.
    -r
        reverse the meaning of the check (report ham instead of spam).
        Only meaningful with the -u option.
"""

import sys
import os
import getopt

from spambayes.Options import options, get_pathname_option
from spambayes import mboxutils, hammie, Corpus, storage

Corpus.Verbose = True

program = sys.argv[0] # For usage(); referenced by docstring above

# Default database name
# This is a bit of a hack to counter the default for
# persistent_storage_file changing from ~/.hammiedb to hammie.db
# This will work unless a user had hammie.db as their value for
# persistent_storage_file
if options["Storage", "persistent_storage_file"] == \
   options.default("Storage", "persistent_storage_file"):
    options["Storage", "persistent_storage_file"] = \
                       os.path.join("~", ".hammiedb")
DEFAULTDB = get_pathname_option("Storage", "persistent_storage_file")

# Probability at which a message is considered spam
SPAM_THRESHOLD = options["Categorization", "spam_cutoff"]
HAM_THRESHOLD = options["Categorization", "ham_cutoff"]


def train(h, msgs, is_spam):
    """Train bayes with all messages from a mailbox."""
    mbox = mboxutils.getmbox(msgs)
    i = 0
    for msg in mbox:
        i += 1
        if i % 10 == 0:
            sys.stdout.write("\r%6d" % i)
            sys.stdout.flush()
        h.train(msg, is_spam)
    sys.stdout.write("\r%6d" % i)
    sys.stdout.flush()
    print

def untrain(h, msgs, is_spam):
    """Untrain bayes with all messages from a mailbox."""
    mbox = mboxutils.getmbox(msgs)
    i = 0
    for msg in mbox:
        i += 1
        if i % 10 == 0:
            sys.stdout.write("\r%6d" % i)
            sys.stdout.flush()
        h.untrain(msg, is_spam)
    sys.stdout.write("\r%6d" % i)
    sys.stdout.flush()
    print

def score(h, msgs, reverse=0):
    """Score (judge) all messages from a mailbox."""
    # XXX The reporting needs work!
    mbox = mboxutils.getmbox(msgs)
    i = 0
    spams = hams = unsures = 0
    for msg in mbox:
        i += 1
        prob, clues = h.score(msg, True)
        if hasattr(msg, '_mh_msgno'):
            msgno = msg._mh_msgno
        else:
            msgno = i
        isspam = (prob >= SPAM_THRESHOLD)
        isham = (prob <= HAM_THRESHOLD)
        if isspam:
            spams += 1
            if not reverse:
                print "%6s %4.2f %1s" % (msgno, prob, isspam and "S" or "."),
                print h.formatclues(clues)
        elif isham:
            hams += 1
            if reverse:
                print "%6s %4.2f %1s" % (msgno, prob, isham and "S" or "."),
                print h.formatclues(clues)
        else:
            unsures += 1
            print "%6s %4.2f U" % (msgno, prob),
            print h.formatclues(clues)
    return (spams, hams, unsures)

def usage(code, msg=''):
    """Print usage message and sys.exit(code)."""
    if msg:
        print >> sys.stderr, msg
        print >> sys.stderr
    print >> sys.stderr, __doc__ % globals()
    sys.exit(code)

def main():
    """Main program; parse options and go."""
    try:
        opts, args = getopt.getopt(sys.argv[1:], 'hd:Ufg:s:p:u:r')
    except getopt.error, msg:
        usage(2, msg)

    if not opts:
        usage(2, "No options given")

    pck = DEFAULTDB
    good = []
    spam = []
    unknown = []
    reverse = 0
    untrain_mode = 0
    do_filter = False
    usedb = None
    mode = 'r'
    for opt, arg in opts:
        if opt == '-h':
            usage(0)
        elif opt == '-g':
            good.append(arg)
            mode = 'c'
        elif opt == '-s':
            spam.append(arg)
            mode = 'c'
        elif opt == "-f":
            do_filter = True
        elif opt == '-u':
            unknown.append(arg)
        elif opt == '-U':
            untrain_mode = 1
        elif opt == '-r':
            reverse = 1
    pck, usedb = storage.database_type(opts)
    if args:
        usage(2, "Positional arguments not allowed")

    if usedb == None:
        usage(2, "Must specify one of -d or -D")

    save = False

    h = hammie.open(pck, usedb, mode)

    if not untrain_mode:
        for g in good:
            print "Training ham (%s):" % g
            train(h, g, False)
            save = True

        for s in spam:
            print "Training spam (%s):" % s
            train(h, s, True)
            save = True
    else:
        for g in good:
            print "Untraining ham (%s):" % g
            untrain(h, g, False)
            save = True

        for s in spam:
            print "Untraining spam (%s):" % s
            untrain(h, s, True)
            save = True

    if save:
        h.store()

    if do_filter:
        msg = sys.stdin.read()
        filtered = h.filter(msg)
        sys.stdout.write(filtered)

    if unknown:
        spams = hams = unsures = 0
        for u in unknown:
            if len(unknown) > 1:
                print "Scoring", u
            s, g, u = score(h, u, reverse)
            spams += s
            hams += g
            unsures += u
        print "Total %d spam, %d ham, %d unsure" % (spams, hams, unsures)

if __name__ == "__main__":
    main()