This file is indexed.

/usr/src/spl-0.6.5.9/module/spl/spl-kmem-cache.c is in spl-dkms 0.6.5.9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
/*
 *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
 *  Copyright (C) 2007 The Regents of the University of California.
 *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
 *  UCRL-CODE-235197
 *
 *  This file is part of the SPL, Solaris Porting Layer.
 *  For details, see <http://zfsonlinux.org/>.
 *
 *  The SPL is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the
 *  Free Software Foundation; either version 2 of the License, or (at your
 *  option) any later version.
 *
 *  The SPL is distributed in the hope that it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <sys/kmem.h>
#include <sys/kmem_cache.h>
#include <sys/taskq.h>
#include <sys/timer.h>
#include <sys/vmem.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/mm_compat.h>
#include <linux/wait_compat.h>
#include <linux/prefetch.h>

/*
 * Within the scope of spl-kmem.c file the kmem_cache_* definitions
 * are removed to allow access to the real Linux slab allocator.
 */
#undef kmem_cache_destroy
#undef kmem_cache_create
#undef kmem_cache_alloc
#undef kmem_cache_free


/*
 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
 * with smp_mb__{before,after}_atomic() because they were redundant. This is
 * only used inside our SLAB allocator, so we implement an internal wrapper
 * here to give us smp_mb__{before,after}_atomic() on older kernels.
 */
#ifndef smp_mb__before_atomic
#define	smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
#endif

#ifndef smp_mb__after_atomic
#define	smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
#endif

/*
 * Cache expiration was implemented because it was part of the default Solaris
 * kmem_cache behavior.  The idea is that per-cpu objects which haven't been
 * accessed in several seconds should be returned to the cache.  On the other
 * hand Linux slabs never move objects back to the slabs unless there is
 * memory pressure on the system.  By default the Linux method is enabled
 * because it has been shown to improve responsiveness on low memory systems.
 * This policy may be changed by setting KMC_EXPIRE_AGE or KMC_EXPIRE_MEM.
 */
unsigned int spl_kmem_cache_expire = KMC_EXPIRE_MEM;
EXPORT_SYMBOL(spl_kmem_cache_expire);
module_param(spl_kmem_cache_expire, uint, 0644);
MODULE_PARM_DESC(spl_kmem_cache_expire, "By age (0x1) or low memory (0x2)");

/*
 * Cache magazines are an optimization designed to minimize the cost of
 * allocating memory.  They do this by keeping a per-cpu cache of recently
 * freed objects, which can then be reallocated without taking a lock. This
 * can improve performance on highly contended caches.  However, because
 * objects in magazines will prevent otherwise empty slabs from being
 * immediately released this may not be ideal for low memory machines.
 *
 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
 * magazine size.  When this value is set to 0 the magazine size will be
 * automatically determined based on the object size.  Otherwise magazines
 * will be limited to 2-256 objects per magazine (i.e per cpu).  Magazines
 * may never be entirely disabled in this implementation.
 */
unsigned int spl_kmem_cache_magazine_size = 0;
module_param(spl_kmem_cache_magazine_size, uint, 0444);
MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
	"Default magazine size (2-256), set automatically (0)\n");

/*
 * The default behavior is to report the number of objects remaining in the
 * cache.  This allows the Linux VM to repeatedly reclaim objects from the
 * cache when memory is low satisfy other memory allocations.  Alternately,
 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
 * is reclaimed.  This may increase the likelihood of out of memory events.
 */
unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
module_param(spl_kmem_cache_reclaim, uint, 0644);
MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");

unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");

unsigned int spl_kmem_cache_obj_per_slab_min = SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN;
module_param(spl_kmem_cache_obj_per_slab_min, uint, 0644);
MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab_min,
	"Minimal number of objects per slab");

unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
module_param(spl_kmem_cache_max_size, uint, 0644);
MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");

/*
 * For small objects the Linux slab allocator should be used to make the most
 * efficient use of the memory.  However, large objects are not supported by
 * the Linux slab and therefore the SPL implementation is preferred.  A cutoff
 * of 16K was determined to be optimal for architectures using 4K pages.
 */
#if PAGE_SIZE == 4096
unsigned int spl_kmem_cache_slab_limit = 16384;
#else
unsigned int spl_kmem_cache_slab_limit = 0;
#endif
module_param(spl_kmem_cache_slab_limit, uint, 0644);
MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
	"Objects less than N bytes use the Linux slab");

/*
 * This value defaults to a threshold designed to avoid allocations which
 * have been deemed costly by the kernel.
 */
unsigned int spl_kmem_cache_kmem_limit =
    ((1 << (PAGE_ALLOC_COSTLY_ORDER - 1)) * PAGE_SIZE) /
    SPL_KMEM_CACHE_OBJ_PER_SLAB;
module_param(spl_kmem_cache_kmem_limit, uint, 0644);
MODULE_PARM_DESC(spl_kmem_cache_kmem_limit,
	"Objects less than N bytes use the kmalloc");

/*
 * The number of threads available to allocate new slabs for caches.  This
 * should not need to be tuned but it is available for performance analysis.
 */
unsigned int spl_kmem_cache_kmem_threads = 4;
module_param(spl_kmem_cache_kmem_threads, uint, 0444);
MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
	"Number of spl_kmem_cache threads");

/*
 * Slab allocation interfaces
 *
 * While the Linux slab implementation was inspired by the Solaris
 * implementation I cannot use it to emulate the Solaris APIs.  I
 * require two features which are not provided by the Linux slab.
 *
 * 1) Constructors AND destructors.  Recent versions of the Linux
 *    kernel have removed support for destructors.  This is a deal
 *    breaker for the SPL which contains particularly expensive
 *    initializers for mutex's, condition variables, etc.  We also
 *    require a minimal level of cleanup for these data types unlike
 *    many Linux data types which do need to be explicitly destroyed.
 *
 * 2) Virtual address space backed slab.  Callers of the Solaris slab
 *    expect it to work well for both small are very large allocations.
 *    Because of memory fragmentation the Linux slab which is backed
 *    by kmalloc'ed memory performs very badly when confronted with
 *    large numbers of large allocations.  Basing the slab on the
 *    virtual address space removes the need for contiguous pages
 *    and greatly improve performance for large allocations.
 *
 * For these reasons, the SPL has its own slab implementation with
 * the needed features.  It is not as highly optimized as either the
 * Solaris or Linux slabs, but it should get me most of what is
 * needed until it can be optimized or obsoleted by another approach.
 *
 * One serious concern I do have about this method is the relatively
 * small virtual address space on 32bit arches.  This will seriously
 * constrain the size of the slab caches and their performance.
 */

struct list_head spl_kmem_cache_list;   /* List of caches */
struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
taskq_t *spl_kmem_cache_taskq;		/* Task queue for ageing / reclaim */

static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);

SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
	spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);

static void *
kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
{
	gfp_t lflags = kmem_flags_convert(flags);
	void *ptr;

	if (skc->skc_flags & KMC_KMEM) {
		ASSERT(ISP2(size));
		ptr = (void *)__get_free_pages(lflags, get_order(size));
	} else {
		ptr = __vmalloc(size, lflags | __GFP_HIGHMEM, PAGE_KERNEL);
	}

	/* Resulting allocated memory will be page aligned */
	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));

	return (ptr);
}

static void
kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
{
	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));

	/*
	 * The Linux direct reclaim path uses this out of band value to
	 * determine if forward progress is being made.  Normally this is
	 * incremented by kmem_freepages() which is part of the various
	 * Linux slab implementations.  However, since we are using none
	 * of that infrastructure we are responsible for incrementing it.
	 */
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;

	if (skc->skc_flags & KMC_KMEM) {
		ASSERT(ISP2(size));
		free_pages((unsigned long)ptr, get_order(size));
	} else {
		vfree(ptr);
	}
}

/*
 * Required space for each aligned sks.
 */
static inline uint32_t
spl_sks_size(spl_kmem_cache_t *skc)
{
	return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
	    skc->skc_obj_align, uint32_t));
}

/*
 * Required space for each aligned object.
 */
static inline uint32_t
spl_obj_size(spl_kmem_cache_t *skc)
{
	uint32_t align = skc->skc_obj_align;

	return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
	    P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
}

/*
 * Lookup the spl_kmem_object_t for an object given that object.
 */
static inline spl_kmem_obj_t *
spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
{
	return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
	    skc->skc_obj_align, uint32_t));
}

/*
 * Required space for each offslab object taking in to account alignment
 * restrictions and the power-of-two requirement of kv_alloc().
 */
static inline uint32_t
spl_offslab_size(spl_kmem_cache_t *skc)
{
	return (1UL << (fls64(spl_obj_size(skc)) + 1));
}

/*
 * It's important that we pack the spl_kmem_obj_t structure and the
 * actual objects in to one large address space to minimize the number
 * of calls to the allocator.  It is far better to do a few large
 * allocations and then subdivide it ourselves.  Now which allocator
 * we use requires balancing a few trade offs.
 *
 * For small objects we use kmem_alloc() because as long as you are
 * only requesting a small number of pages (ideally just one) its cheap.
 * However, when you start requesting multiple pages with kmem_alloc()
 * it gets increasingly expensive since it requires contiguous pages.
 * For this reason we shift to vmem_alloc() for slabs of large objects
 * which removes the need for contiguous pages.  We do not use
 * vmem_alloc() in all cases because there is significant locking
 * overhead in __get_vm_area_node().  This function takes a single
 * global lock when acquiring an available virtual address range which
 * serializes all vmem_alloc()'s for all slab caches.  Using slightly
 * different allocation functions for small and large objects should
 * give us the best of both worlds.
 *
 * KMC_ONSLAB                       KMC_OFFSLAB
 *
 * +------------------------+       +-----------------+
 * | spl_kmem_slab_t --+-+  |       | spl_kmem_slab_t |---+-+
 * | skc_obj_size    <-+ |  |       +-----------------+   | |
 * | spl_kmem_obj_t      |  |                             | |
 * | skc_obj_size    <---+  |       +-----------------+   | |
 * | spl_kmem_obj_t      |  |       | skc_obj_size    | <-+ |
 * | ...                 v  |       | spl_kmem_obj_t  |     |
 * +------------------------+       +-----------------+     v
 */
static spl_kmem_slab_t *
spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
{
	spl_kmem_slab_t *sks;
	spl_kmem_obj_t *sko, *n;
	void *base, *obj;
	uint32_t obj_size, offslab_size = 0;
	int i,  rc = 0;

	base = kv_alloc(skc, skc->skc_slab_size, flags);
	if (base == NULL)
		return (NULL);

	sks = (spl_kmem_slab_t *)base;
	sks->sks_magic = SKS_MAGIC;
	sks->sks_objs = skc->skc_slab_objs;
	sks->sks_age = jiffies;
	sks->sks_cache = skc;
	INIT_LIST_HEAD(&sks->sks_list);
	INIT_LIST_HEAD(&sks->sks_free_list);
	sks->sks_ref = 0;
	obj_size = spl_obj_size(skc);

	if (skc->skc_flags & KMC_OFFSLAB)
		offslab_size = spl_offslab_size(skc);

	for (i = 0; i < sks->sks_objs; i++) {
		if (skc->skc_flags & KMC_OFFSLAB) {
			obj = kv_alloc(skc, offslab_size, flags);
			if (!obj) {
				rc = -ENOMEM;
				goto out;
			}
		} else {
			obj = base + spl_sks_size(skc) + (i * obj_size);
		}

		ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
		sko = spl_sko_from_obj(skc, obj);
		sko->sko_addr = obj;
		sko->sko_magic = SKO_MAGIC;
		sko->sko_slab = sks;
		INIT_LIST_HEAD(&sko->sko_list);
		list_add_tail(&sko->sko_list, &sks->sks_free_list);
	}

out:
	if (rc) {
		if (skc->skc_flags & KMC_OFFSLAB)
			list_for_each_entry_safe(sko,
			    n, &sks->sks_free_list, sko_list)
				kv_free(skc, sko->sko_addr, offslab_size);

		kv_free(skc, base, skc->skc_slab_size);
		sks = NULL;
	}

	return (sks);
}

/*
 * Remove a slab from complete or partial list, it must be called with
 * the 'skc->skc_lock' held but the actual free must be performed
 * outside the lock to prevent deadlocking on vmem addresses.
 */
static void
spl_slab_free(spl_kmem_slab_t *sks,
    struct list_head *sks_list, struct list_head *sko_list)
{
	spl_kmem_cache_t *skc;

	ASSERT(sks->sks_magic == SKS_MAGIC);
	ASSERT(sks->sks_ref == 0);

	skc = sks->sks_cache;
	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(spin_is_locked(&skc->skc_lock));

	/*
	 * Update slab/objects counters in the cache, then remove the
	 * slab from the skc->skc_partial_list.  Finally add the slab
	 * and all its objects in to the private work lists where the
	 * destructors will be called and the memory freed to the system.
	 */
	skc->skc_obj_total -= sks->sks_objs;
	skc->skc_slab_total--;
	list_del(&sks->sks_list);
	list_add(&sks->sks_list, sks_list);
	list_splice_init(&sks->sks_free_list, sko_list);
}

/*
 * Reclaim empty slabs at the end of the partial list.
 */
static void
spl_slab_reclaim(spl_kmem_cache_t *skc)
{
	spl_kmem_slab_t *sks, *m;
	spl_kmem_obj_t *sko, *n;
	LIST_HEAD(sks_list);
	LIST_HEAD(sko_list);
	uint32_t size = 0;

	/*
	 * Empty slabs and objects must be moved to a private list so they
	 * can be safely freed outside the spin lock.  All empty slabs are
	 * at the end of skc->skc_partial_list, therefore once a non-empty
	 * slab is found we can stop scanning.
	 */
	spin_lock(&skc->skc_lock);
	list_for_each_entry_safe_reverse(sks, m,
	    &skc->skc_partial_list, sks_list) {

		if (sks->sks_ref > 0)
			break;

		spl_slab_free(sks, &sks_list, &sko_list);
	}
	spin_unlock(&skc->skc_lock);

	/*
	 * The following two loops ensure all the object destructors are
	 * run, any offslab objects are freed, and the slabs themselves
	 * are freed.  This is all done outside the skc->skc_lock since
	 * this allows the destructor to sleep, and allows us to perform
	 * a conditional reschedule when a freeing a large number of
	 * objects and slabs back to the system.
	 */
	if (skc->skc_flags & KMC_OFFSLAB)
		size = spl_offslab_size(skc);

	list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
		ASSERT(sko->sko_magic == SKO_MAGIC);

		if (skc->skc_flags & KMC_OFFSLAB)
			kv_free(skc, sko->sko_addr, size);
	}

	list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
		ASSERT(sks->sks_magic == SKS_MAGIC);
		kv_free(skc, sks, skc->skc_slab_size);
	}
}

static spl_kmem_emergency_t *
spl_emergency_search(struct rb_root *root, void *obj)
{
	struct rb_node *node = root->rb_node;
	spl_kmem_emergency_t *ske;
	unsigned long address = (unsigned long)obj;

	while (node) {
		ske = container_of(node, spl_kmem_emergency_t, ske_node);

		if (address < ske->ske_obj)
			node = node->rb_left;
		else if (address > ske->ske_obj)
			node = node->rb_right;
		else
			return (ske);
	}

	return (NULL);
}

static int
spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
{
	struct rb_node **new = &(root->rb_node), *parent = NULL;
	spl_kmem_emergency_t *ske_tmp;
	unsigned long address = ske->ske_obj;

	while (*new) {
		ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);

		parent = *new;
		if (address < ske_tmp->ske_obj)
			new = &((*new)->rb_left);
		else if (address > ske_tmp->ske_obj)
			new = &((*new)->rb_right);
		else
			return (0);
	}

	rb_link_node(&ske->ske_node, parent, new);
	rb_insert_color(&ske->ske_node, root);

	return (1);
}

/*
 * Allocate a single emergency object and track it in a red black tree.
 */
static int
spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
{
	gfp_t lflags = kmem_flags_convert(flags);
	spl_kmem_emergency_t *ske;
	int order = get_order(skc->skc_obj_size);
	int empty;

	/* Last chance use a partial slab if one now exists */
	spin_lock(&skc->skc_lock);
	empty = list_empty(&skc->skc_partial_list);
	spin_unlock(&skc->skc_lock);
	if (!empty)
		return (-EEXIST);

	ske = kmalloc(sizeof (*ske), lflags);
	if (ske == NULL)
		return (-ENOMEM);

	ske->ske_obj = __get_free_pages(lflags, order);
	if (ske->ske_obj == 0) {
		kfree(ske);
		return (-ENOMEM);
	}

	spin_lock(&skc->skc_lock);
	empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
	if (likely(empty)) {
		skc->skc_obj_total++;
		skc->skc_obj_emergency++;
		if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
			skc->skc_obj_emergency_max = skc->skc_obj_emergency;
	}
	spin_unlock(&skc->skc_lock);

	if (unlikely(!empty)) {
		free_pages(ske->ske_obj, order);
		kfree(ske);
		return (-EINVAL);
	}

	*obj = (void *)ske->ske_obj;

	return (0);
}

/*
 * Locate the passed object in the red black tree and free it.
 */
static int
spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
{
	spl_kmem_emergency_t *ske;
	int order = get_order(skc->skc_obj_size);

	spin_lock(&skc->skc_lock);
	ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
	if (ske) {
		rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
		skc->skc_obj_emergency--;
		skc->skc_obj_total--;
	}
	spin_unlock(&skc->skc_lock);

	if (ske == NULL)
		return (-ENOENT);

	free_pages(ske->ske_obj, order);
	kfree(ske);

	return (0);
}

/*
 * Release objects from the per-cpu magazine back to their slab.  The flush
 * argument contains the max number of entries to remove from the magazine.
 */
static void
__spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
{
	int i, count = MIN(flush, skm->skm_avail);

	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(skm->skm_magic == SKM_MAGIC);
	ASSERT(spin_is_locked(&skc->skc_lock));

	for (i = 0; i < count; i++)
		spl_cache_shrink(skc, skm->skm_objs[i]);

	skm->skm_avail -= count;
	memmove(skm->skm_objs, &(skm->skm_objs[count]),
	    sizeof (void *) * skm->skm_avail);
}

static void
spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
{
	spin_lock(&skc->skc_lock);
	__spl_cache_flush(skc, skm, flush);
	spin_unlock(&skc->skc_lock);
}

static void
spl_magazine_age(void *data)
{
	spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
	spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];

	ASSERT(skm->skm_magic == SKM_MAGIC);
	ASSERT(skm->skm_cpu == smp_processor_id());
	ASSERT(irqs_disabled());

	/* There are no available objects or they are too young to age out */
	if ((skm->skm_avail == 0) ||
	    time_before(jiffies, skm->skm_age + skc->skc_delay * HZ))
		return;

	/*
	 * Because we're executing in interrupt context we may have
	 * interrupted the holder of this lock.  To avoid a potential
	 * deadlock return if the lock is contended.
	 */
	if (!spin_trylock(&skc->skc_lock))
		return;

	__spl_cache_flush(skc, skm, skm->skm_refill);
	spin_unlock(&skc->skc_lock);
}

/*
 * Called regularly to keep a downward pressure on the cache.
 *
 * Objects older than skc->skc_delay seconds in the per-cpu magazines will
 * be returned to the caches.  This is done to prevent idle magazines from
 * holding memory which could be better used elsewhere.  The delay is
 * present to prevent thrashing the magazine.
 *
 * The newly released objects may result in empty partial slabs.  Those
 * slabs should be released to the system.  Otherwise moving the objects
 * out of the magazines is just wasted work.
 */
static void
spl_cache_age(void *data)
{
	spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
	taskqid_t id = 0;

	ASSERT(skc->skc_magic == SKC_MAGIC);

	/* Dynamically disabled at run time */
	if (!(spl_kmem_cache_expire & KMC_EXPIRE_AGE))
		return;

	atomic_inc(&skc->skc_ref);

	if (!(skc->skc_flags & KMC_NOMAGAZINE))
		on_each_cpu(spl_magazine_age, skc, 1);

	spl_slab_reclaim(skc);

	while (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && !id) {
		id = taskq_dispatch_delay(
		    spl_kmem_cache_taskq, spl_cache_age, skc, TQ_SLEEP,
		    ddi_get_lbolt() + skc->skc_delay / 3 * HZ);

		/* Destroy issued after dispatch immediately cancel it */
		if (test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && id)
			taskq_cancel_id(spl_kmem_cache_taskq, id);
	}

	spin_lock(&skc->skc_lock);
	skc->skc_taskqid = id;
	spin_unlock(&skc->skc_lock);

	atomic_dec(&skc->skc_ref);
}

/*
 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
 * When on-slab we want to target spl_kmem_cache_obj_per_slab.  However,
 * for very small objects we may end up with more than this so as not
 * to waste space in the minimal allocation of a single page.  Also for
 * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
 * lower than this and we will fail.
 */
static int
spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
{
	uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;

	if (skc->skc_flags & KMC_OFFSLAB) {
		tgt_objs = spl_kmem_cache_obj_per_slab;
		tgt_size = P2ROUNDUP(sizeof (spl_kmem_slab_t), PAGE_SIZE);

		if ((skc->skc_flags & KMC_KMEM) &&
		    (spl_obj_size(skc) > (SPL_MAX_ORDER_NR_PAGES * PAGE_SIZE)))
			return (-ENOSPC);
	} else {
		sks_size = spl_sks_size(skc);
		obj_size = spl_obj_size(skc);
		max_size = (spl_kmem_cache_max_size * 1024 * 1024);
		tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);

		/*
		 * KMC_KMEM slabs are allocated by __get_free_pages() which
		 * rounds up to the nearest order.  Knowing this the size
		 * should be rounded up to the next power of two with a hard
		 * maximum defined by the maximum allowed allocation order.
		 */
		if (skc->skc_flags & KMC_KMEM) {
			max_size = SPL_MAX_ORDER_NR_PAGES * PAGE_SIZE;
			tgt_size = MIN(max_size,
			    PAGE_SIZE * (1 << MAX(get_order(tgt_size) - 1, 1)));
		}

		if (tgt_size <= max_size) {
			tgt_objs = (tgt_size - sks_size) / obj_size;
		} else {
			tgt_objs = (max_size - sks_size) / obj_size;
			tgt_size = (tgt_objs * obj_size) + sks_size;
		}
	}

	if (tgt_objs == 0)
		return (-ENOSPC);

	*objs = tgt_objs;
	*size = tgt_size;

	return (0);
}

/*
 * Make a guess at reasonable per-cpu magazine size based on the size of
 * each object and the cost of caching N of them in each magazine.  Long
 * term this should really adapt based on an observed usage heuristic.
 */
static int
spl_magazine_size(spl_kmem_cache_t *skc)
{
	uint32_t obj_size = spl_obj_size(skc);
	int size;

	if (spl_kmem_cache_magazine_size > 0)
		return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));

	/* Per-magazine sizes below assume a 4Kib page size */
	if (obj_size > (PAGE_SIZE * 256))
		size = 4;  /* Minimum 4Mib per-magazine */
	else if (obj_size > (PAGE_SIZE * 32))
		size = 16; /* Minimum 2Mib per-magazine */
	else if (obj_size > (PAGE_SIZE))
		size = 64; /* Minimum 256Kib per-magazine */
	else if (obj_size > (PAGE_SIZE / 4))
		size = 128; /* Minimum 128Kib per-magazine */
	else
		size = 256;

	return (size);
}

/*
 * Allocate a per-cpu magazine to associate with a specific core.
 */
static spl_kmem_magazine_t *
spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
{
	spl_kmem_magazine_t *skm;
	int size = sizeof (spl_kmem_magazine_t) +
	    sizeof (void *) * skc->skc_mag_size;

	skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
	if (skm) {
		skm->skm_magic = SKM_MAGIC;
		skm->skm_avail = 0;
		skm->skm_size = skc->skc_mag_size;
		skm->skm_refill = skc->skc_mag_refill;
		skm->skm_cache = skc;
		skm->skm_age = jiffies;
		skm->skm_cpu = cpu;
	}

	return (skm);
}

/*
 * Free a per-cpu magazine associated with a specific core.
 */
static void
spl_magazine_free(spl_kmem_magazine_t *skm)
{
	ASSERT(skm->skm_magic == SKM_MAGIC);
	ASSERT(skm->skm_avail == 0);
	kfree(skm);
}

/*
 * Create all pre-cpu magazines of reasonable sizes.
 */
static int
spl_magazine_create(spl_kmem_cache_t *skc)
{
	int i;

	if (skc->skc_flags & KMC_NOMAGAZINE)
		return (0);

	skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
	    num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
	skc->skc_mag_size = spl_magazine_size(skc);
	skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;

	for_each_possible_cpu(i) {
		skc->skc_mag[i] = spl_magazine_alloc(skc, i);
		if (!skc->skc_mag[i]) {
			for (i--; i >= 0; i--)
				spl_magazine_free(skc->skc_mag[i]);

			kfree(skc->skc_mag);
			return (-ENOMEM);
		}
	}

	return (0);
}

/*
 * Destroy all pre-cpu magazines.
 */
static void
spl_magazine_destroy(spl_kmem_cache_t *skc)
{
	spl_kmem_magazine_t *skm;
	int i;

	if (skc->skc_flags & KMC_NOMAGAZINE)
		return;

	for_each_possible_cpu(i) {
		skm = skc->skc_mag[i];
		spl_cache_flush(skc, skm, skm->skm_avail);
		spl_magazine_free(skm);
	}

	kfree(skc->skc_mag);
}

/*
 * Create a object cache based on the following arguments:
 * name		cache name
 * size		cache object size
 * align	cache object alignment
 * ctor		cache object constructor
 * dtor		cache object destructor
 * reclaim	cache object reclaim
 * priv		cache private data for ctor/dtor/reclaim
 * vmp		unused must be NULL
 * flags
 *	KMC_NOTOUCH	Disable cache object aging (unsupported)
 *	KMC_NODEBUG	Disable debugging (unsupported)
 *	KMC_NOHASH      Disable hashing (unsupported)
 *	KMC_QCACHE	Disable qcache (unsupported)
 *	KMC_NOMAGAZINE	Enabled for kmem/vmem, Disabled for Linux slab
 *	KMC_KMEM	Force kmem backed cache
 *	KMC_VMEM        Force vmem backed cache
 *	KMC_SLAB        Force Linux slab backed cache
 *	KMC_OFFSLAB	Locate objects off the slab
 */
spl_kmem_cache_t *
spl_kmem_cache_create(char *name, size_t size, size_t align,
    spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, spl_kmem_reclaim_t reclaim,
    void *priv, void *vmp, int flags)
{
	gfp_t lflags = kmem_flags_convert(KM_SLEEP);
	spl_kmem_cache_t *skc;
	int rc;

	/*
	 * Unsupported flags
	 */
	ASSERT0(flags & KMC_NOMAGAZINE);
	ASSERT0(flags & KMC_NOHASH);
	ASSERT0(flags & KMC_QCACHE);
	ASSERT(vmp == NULL);

	might_sleep();

	skc = kzalloc(sizeof (*skc), lflags);
	if (skc == NULL)
		return (NULL);

	skc->skc_magic = SKC_MAGIC;
	skc->skc_name_size = strlen(name) + 1;
	skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags);
	if (skc->skc_name == NULL) {
		kfree(skc);
		return (NULL);
	}
	strncpy(skc->skc_name, name, skc->skc_name_size);

	skc->skc_ctor = ctor;
	skc->skc_dtor = dtor;
	skc->skc_reclaim = reclaim;
	skc->skc_private = priv;
	skc->skc_vmp = vmp;
	skc->skc_linux_cache = NULL;
	skc->skc_flags = flags;
	skc->skc_obj_size = size;
	skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
	skc->skc_delay = SPL_KMEM_CACHE_DELAY;
	skc->skc_reap = SPL_KMEM_CACHE_REAP;
	atomic_set(&skc->skc_ref, 0);

	INIT_LIST_HEAD(&skc->skc_list);
	INIT_LIST_HEAD(&skc->skc_complete_list);
	INIT_LIST_HEAD(&skc->skc_partial_list);
	skc->skc_emergency_tree = RB_ROOT;
	spin_lock_init(&skc->skc_lock);
	init_waitqueue_head(&skc->skc_waitq);
	skc->skc_slab_fail = 0;
	skc->skc_slab_create = 0;
	skc->skc_slab_destroy = 0;
	skc->skc_slab_total = 0;
	skc->skc_slab_alloc = 0;
	skc->skc_slab_max = 0;
	skc->skc_obj_total = 0;
	skc->skc_obj_alloc = 0;
	skc->skc_obj_max = 0;
	skc->skc_obj_deadlock = 0;
	skc->skc_obj_emergency = 0;
	skc->skc_obj_emergency_max = 0;

	/*
	 * Verify the requested alignment restriction is sane.
	 */
	if (align) {
		VERIFY(ISP2(align));
		VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
		VERIFY3U(align, <=, PAGE_SIZE);
		skc->skc_obj_align = align;
	}

	/*
	 * When no specific type of slab is requested (kmem, vmem, or
	 * linuxslab) then select a cache type based on the object size
	 * and default tunables.
	 */
	if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB))) {

		/*
		 * Objects smaller than spl_kmem_cache_slab_limit can
		 * use the Linux slab for better space-efficiency.  By
		 * default this functionality is disabled until its
		 * performance characteristics are fully understood.
		 */
		if (spl_kmem_cache_slab_limit &&
		    size <= (size_t)spl_kmem_cache_slab_limit)
			skc->skc_flags |= KMC_SLAB;

		/*
		 * Small objects, less than spl_kmem_cache_kmem_limit per
		 * object should use kmem because their slabs are small.
		 */
		else if (spl_obj_size(skc) <= spl_kmem_cache_kmem_limit)
			skc->skc_flags |= KMC_KMEM;

		/*
		 * All other objects are considered large and are placed
		 * on vmem backed slabs.
		 */
		else
			skc->skc_flags |= KMC_VMEM;
	}

	/*
	 * Given the type of slab allocate the required resources.
	 */
	if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
		rc = spl_slab_size(skc,
		    &skc->skc_slab_objs, &skc->skc_slab_size);
		if (rc)
			goto out;

		rc = spl_magazine_create(skc);
		if (rc)
			goto out;
	} else {
		unsigned long slabflags = 0;

		if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) {
			rc = EINVAL;
			goto out;
		}

#if defined(SLAB_USERCOPY)
		/*
		 * Required for PAX-enabled kernels if the slab is to be
		 * used for coping between user and kernel space.
		 */
		slabflags |= SLAB_USERCOPY;
#endif

		skc->skc_linux_cache = kmem_cache_create(
		    skc->skc_name, size, align, slabflags, NULL);
		if (skc->skc_linux_cache == NULL) {
			rc = ENOMEM;
			goto out;
		}

#if defined(HAVE_KMEM_CACHE_ALLOCFLAGS)
		skc->skc_linux_cache->allocflags |= __GFP_COMP;
#elif defined(HAVE_KMEM_CACHE_GFPFLAGS)
		skc->skc_linux_cache->gfpflags |= __GFP_COMP;
#endif
		skc->skc_flags |= KMC_NOMAGAZINE;
	}

	if (spl_kmem_cache_expire & KMC_EXPIRE_AGE)
		skc->skc_taskqid = taskq_dispatch_delay(spl_kmem_cache_taskq,
		    spl_cache_age, skc, TQ_SLEEP,
		    ddi_get_lbolt() + skc->skc_delay / 3 * HZ);

	down_write(&spl_kmem_cache_sem);
	list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
	up_write(&spl_kmem_cache_sem);

	return (skc);
out:
	kfree(skc->skc_name);
	kfree(skc);
	return (NULL);
}
EXPORT_SYMBOL(spl_kmem_cache_create);

/*
 * Register a move callback for cache defragmentation.
 * XXX: Unimplemented but harmless to stub out for now.
 */
void
spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
    kmem_cbrc_t (move)(void *, void *, size_t, void *))
{
	ASSERT(move != NULL);
}
EXPORT_SYMBOL(spl_kmem_cache_set_move);

/*
 * Destroy a cache and all objects associated with the cache.
 */
void
spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
{
	DECLARE_WAIT_QUEUE_HEAD(wq);
	taskqid_t id;

	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB));

	down_write(&spl_kmem_cache_sem);
	list_del_init(&skc->skc_list);
	up_write(&spl_kmem_cache_sem);

	/* Cancel any and wait for any pending delayed tasks */
	VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));

	spin_lock(&skc->skc_lock);
	id = skc->skc_taskqid;
	spin_unlock(&skc->skc_lock);

	taskq_cancel_id(spl_kmem_cache_taskq, id);

	/*
	 * Wait until all current callers complete, this is mainly
	 * to catch the case where a low memory situation triggers a
	 * cache reaping action which races with this destroy.
	 */
	wait_event(wq, atomic_read(&skc->skc_ref) == 0);

	if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
		spl_magazine_destroy(skc);
		spl_slab_reclaim(skc);
	} else {
		ASSERT(skc->skc_flags & KMC_SLAB);
		kmem_cache_destroy(skc->skc_linux_cache);
	}

	spin_lock(&skc->skc_lock);

	/*
	 * Validate there are no objects in use and free all the
	 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
	 */
	ASSERT3U(skc->skc_slab_alloc, ==, 0);
	ASSERT3U(skc->skc_obj_alloc, ==, 0);
	ASSERT3U(skc->skc_slab_total, ==, 0);
	ASSERT3U(skc->skc_obj_total, ==, 0);
	ASSERT3U(skc->skc_obj_emergency, ==, 0);
	ASSERT(list_empty(&skc->skc_complete_list));

	spin_unlock(&skc->skc_lock);

	kfree(skc->skc_name);
	kfree(skc);
}
EXPORT_SYMBOL(spl_kmem_cache_destroy);

/*
 * Allocate an object from a slab attached to the cache.  This is used to
 * repopulate the per-cpu magazine caches in batches when they run low.
 */
static void *
spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
{
	spl_kmem_obj_t *sko;

	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(sks->sks_magic == SKS_MAGIC);
	ASSERT(spin_is_locked(&skc->skc_lock));

	sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
	ASSERT(sko->sko_magic == SKO_MAGIC);
	ASSERT(sko->sko_addr != NULL);

	/* Remove from sks_free_list */
	list_del_init(&sko->sko_list);

	sks->sks_age = jiffies;
	sks->sks_ref++;
	skc->skc_obj_alloc++;

	/* Track max obj usage statistics */
	if (skc->skc_obj_alloc > skc->skc_obj_max)
		skc->skc_obj_max = skc->skc_obj_alloc;

	/* Track max slab usage statistics */
	if (sks->sks_ref == 1) {
		skc->skc_slab_alloc++;

		if (skc->skc_slab_alloc > skc->skc_slab_max)
			skc->skc_slab_max = skc->skc_slab_alloc;
	}

	return (sko->sko_addr);
}

/*
 * Generic slab allocation function to run by the global work queues.
 * It is responsible for allocating a new slab, linking it in to the list
 * of partial slabs, and then waking any waiters.
 */
static void
spl_cache_grow_work(void *data)
{
	spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
	spl_kmem_cache_t *skc = ska->ska_cache;
	spl_kmem_slab_t *sks;

	fstrans_cookie_t cookie = spl_fstrans_mark();
	sks = spl_slab_alloc(skc, ska->ska_flags);
	spl_fstrans_unmark(cookie);

	spin_lock(&skc->skc_lock);
	if (sks) {
		skc->skc_slab_total++;
		skc->skc_obj_total += sks->sks_objs;
		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
	}

	atomic_dec(&skc->skc_ref);
	smp_mb__before_atomic();
	clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
	clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
	smp_mb__after_atomic();
	wake_up_all(&skc->skc_waitq);
	spin_unlock(&skc->skc_lock);

	kfree(ska);
}

/*
 * Returns non-zero when a new slab should be available.
 */
static int
spl_cache_grow_wait(spl_kmem_cache_t *skc)
{
	return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
}

/*
 * No available objects on any slabs, create a new slab.  Note that this
 * functionality is disabled for KMC_SLAB caches which are backed by the
 * Linux slab.
 */
static int
spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
{
	int remaining, rc = 0;

	ASSERT0(flags & ~KM_PUBLIC_MASK);
	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
	might_sleep();
	*obj = NULL;

	/*
	 * Before allocating a new slab wait for any reaping to complete and
	 * then return so the local magazine can be rechecked for new objects.
	 */
	if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
		rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
		    TASK_UNINTERRUPTIBLE);
		return (rc ? rc : -EAGAIN);
	}

	/*
	 * This is handled by dispatching a work request to the global work
	 * queue.  This allows us to asynchronously allocate a new slab while
	 * retaining the ability to safely fall back to a smaller synchronous
	 * allocations to ensure forward progress is always maintained.
	 */
	if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
		spl_kmem_alloc_t *ska;

		ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
		if (ska == NULL) {
			clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
			smp_mb__after_atomic();
			wake_up_all(&skc->skc_waitq);
			return (-ENOMEM);
		}

		atomic_inc(&skc->skc_ref);
		ska->ska_cache = skc;
		ska->ska_flags = flags;
		taskq_init_ent(&ska->ska_tqe);
		taskq_dispatch_ent(spl_kmem_cache_taskq,
		    spl_cache_grow_work, ska, 0, &ska->ska_tqe);
	}

	/*
	 * The goal here is to only detect the rare case where a virtual slab
	 * allocation has deadlocked.  We must be careful to minimize the use
	 * of emergency objects which are more expensive to track.  Therefore,
	 * we set a very long timeout for the asynchronous allocation and if
	 * the timeout is reached the cache is flagged as deadlocked.  From
	 * this point only new emergency objects will be allocated until the
	 * asynchronous allocation completes and clears the deadlocked flag.
	 */
	if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
		rc = spl_emergency_alloc(skc, flags, obj);
	} else {
		remaining = wait_event_timeout(skc->skc_waitq,
		    spl_cache_grow_wait(skc), HZ / 10);

		if (!remaining) {
			spin_lock(&skc->skc_lock);
			if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
				set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
				skc->skc_obj_deadlock++;
			}
			spin_unlock(&skc->skc_lock);
		}

		rc = -ENOMEM;
	}

	return (rc);
}

/*
 * Refill a per-cpu magazine with objects from the slabs for this cache.
 * Ideally the magazine can be repopulated using existing objects which have
 * been released, however if we are unable to locate enough free objects new
 * slabs of objects will be created.  On success NULL is returned, otherwise
 * the address of a single emergency object is returned for use by the caller.
 */
static void *
spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
{
	spl_kmem_slab_t *sks;
	int count = 0, rc, refill;
	void *obj = NULL;

	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(skm->skm_magic == SKM_MAGIC);

	refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
	spin_lock(&skc->skc_lock);

	while (refill > 0) {
		/* No slabs available we may need to grow the cache */
		if (list_empty(&skc->skc_partial_list)) {
			spin_unlock(&skc->skc_lock);

			local_irq_enable();
			rc = spl_cache_grow(skc, flags, &obj);
			local_irq_disable();

			/* Emergency object for immediate use by caller */
			if (rc == 0 && obj != NULL)
				return (obj);

			if (rc)
				goto out;

			/* Rescheduled to different CPU skm is not local */
			if (skm != skc->skc_mag[smp_processor_id()])
				goto out;

			/*
			 * Potentially rescheduled to the same CPU but
			 * allocations may have occurred from this CPU while
			 * we were sleeping so recalculate max refill.
			 */
			refill = MIN(refill, skm->skm_size - skm->skm_avail);

			spin_lock(&skc->skc_lock);
			continue;
		}

		/* Grab the next available slab */
		sks = list_entry((&skc->skc_partial_list)->next,
		    spl_kmem_slab_t, sks_list);
		ASSERT(sks->sks_magic == SKS_MAGIC);
		ASSERT(sks->sks_ref < sks->sks_objs);
		ASSERT(!list_empty(&sks->sks_free_list));

		/*
		 * Consume as many objects as needed to refill the requested
		 * cache.  We must also be careful not to overfill it.
		 */
		while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
		    ++count) {
			ASSERT(skm->skm_avail < skm->skm_size);
			ASSERT(count < skm->skm_size);
			skm->skm_objs[skm->skm_avail++] =
			    spl_cache_obj(skc, sks);
		}

		/* Move slab to skc_complete_list when full */
		if (sks->sks_ref == sks->sks_objs) {
			list_del(&sks->sks_list);
			list_add(&sks->sks_list, &skc->skc_complete_list);
		}
	}

	spin_unlock(&skc->skc_lock);
out:
	return (NULL);
}

/*
 * Release an object back to the slab from which it came.
 */
static void
spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
{
	spl_kmem_slab_t *sks = NULL;
	spl_kmem_obj_t *sko = NULL;

	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(spin_is_locked(&skc->skc_lock));

	sko = spl_sko_from_obj(skc, obj);
	ASSERT(sko->sko_magic == SKO_MAGIC);
	sks = sko->sko_slab;
	ASSERT(sks->sks_magic == SKS_MAGIC);
	ASSERT(sks->sks_cache == skc);
	list_add(&sko->sko_list, &sks->sks_free_list);

	sks->sks_age = jiffies;
	sks->sks_ref--;
	skc->skc_obj_alloc--;

	/*
	 * Move slab to skc_partial_list when no longer full.  Slabs
	 * are added to the head to keep the partial list is quasi-full
	 * sorted order.  Fuller at the head, emptier at the tail.
	 */
	if (sks->sks_ref == (sks->sks_objs - 1)) {
		list_del(&sks->sks_list);
		list_add(&sks->sks_list, &skc->skc_partial_list);
	}

	/*
	 * Move empty slabs to the end of the partial list so
	 * they can be easily found and freed during reclamation.
	 */
	if (sks->sks_ref == 0) {
		list_del(&sks->sks_list);
		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
		skc->skc_slab_alloc--;
	}
}

/*
 * Allocate an object from the per-cpu magazine, or if the magazine
 * is empty directly allocate from a slab and repopulate the magazine.
 */
void *
spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
{
	spl_kmem_magazine_t *skm;
	void *obj = NULL;

	ASSERT0(flags & ~KM_PUBLIC_MASK);
	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));

	/*
	 * Allocate directly from a Linux slab.  All optimizations are left
	 * to the underlying cache we only need to guarantee that KM_SLEEP
	 * callers will never fail.
	 */
	if (skc->skc_flags & KMC_SLAB) {
		struct kmem_cache *slc = skc->skc_linux_cache;
		do {
			obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
		} while ((obj == NULL) && !(flags & KM_NOSLEEP));

		goto ret;
	}

	local_irq_disable();

restart:
	/*
	 * Safe to update per-cpu structure without lock, but
	 * in the restart case we must be careful to reacquire
	 * the local magazine since this may have changed
	 * when we need to grow the cache.
	 */
	skm = skc->skc_mag[smp_processor_id()];
	ASSERT(skm->skm_magic == SKM_MAGIC);

	if (likely(skm->skm_avail)) {
		/* Object available in CPU cache, use it */
		obj = skm->skm_objs[--skm->skm_avail];
		skm->skm_age = jiffies;
	} else {
		obj = spl_cache_refill(skc, skm, flags);
		if ((obj == NULL) && !(flags & KM_NOSLEEP))
			goto restart;

		local_irq_enable();
		goto ret;
	}

	local_irq_enable();
	ASSERT(obj);
	ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));

ret:
	/* Pre-emptively migrate object to CPU L1 cache */
	if (obj) {
		if (obj && skc->skc_ctor)
			skc->skc_ctor(obj, skc->skc_private, flags);
		else
			prefetchw(obj);
	}

	return (obj);
}
EXPORT_SYMBOL(spl_kmem_cache_alloc);

/*
 * Free an object back to the local per-cpu magazine, there is no
 * guarantee that this is the same magazine the object was originally
 * allocated from.  We may need to flush entire from the magazine
 * back to the slabs to make space.
 */
void
spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
{
	spl_kmem_magazine_t *skm;
	unsigned long flags;
	int do_reclaim = 0;
	int do_emergency = 0;

	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));

	/*
	 * Run the destructor
	 */
	if (skc->skc_dtor)
		skc->skc_dtor(obj, skc->skc_private);

	/*
	 * Free the object from the Linux underlying Linux slab.
	 */
	if (skc->skc_flags & KMC_SLAB) {
		kmem_cache_free(skc->skc_linux_cache, obj);
		return;
	}

	/*
	 * While a cache has outstanding emergency objects all freed objects
	 * must be checked.  However, since emergency objects will never use
	 * a virtual address these objects can be safely excluded as an
	 * optimization.
	 */
	if (!is_vmalloc_addr(obj)) {
		spin_lock(&skc->skc_lock);
		do_emergency = (skc->skc_obj_emergency > 0);
		spin_unlock(&skc->skc_lock);

		if (do_emergency && (spl_emergency_free(skc, obj) == 0))
			return;
	}

	local_irq_save(flags);

	/*
	 * Safe to update per-cpu structure without lock, but
	 * no remote memory allocation tracking is being performed
	 * it is entirely possible to allocate an object from one
	 * CPU cache and return it to another.
	 */
	skm = skc->skc_mag[smp_processor_id()];
	ASSERT(skm->skm_magic == SKM_MAGIC);

	/*
	 * Per-CPU cache full, flush it to make space for this object,
	 * this may result in an empty slab which can be reclaimed once
	 * interrupts are re-enabled.
	 */
	if (unlikely(skm->skm_avail >= skm->skm_size)) {
		spl_cache_flush(skc, skm, skm->skm_refill);
		do_reclaim = 1;
	}

	/* Available space in cache, use it */
	skm->skm_objs[skm->skm_avail++] = obj;

	local_irq_restore(flags);

	if (do_reclaim)
		spl_slab_reclaim(skc);
}
EXPORT_SYMBOL(spl_kmem_cache_free);

/*
 * The generic shrinker function for all caches.  Under Linux a shrinker
 * may not be tightly coupled with a slab cache.  In fact Linux always
 * systematically tries calling all registered shrinker callbacks which
 * report that they contain unused objects.  Because of this we only
 * register one shrinker function in the shim layer for all slab caches.
 * We always attempt to shrink all caches when this generic shrinker
 * is called.
 *
 * If sc->nr_to_scan is zero, the caller is requesting a query of the
 * number of objects which can potentially be freed.  If it is nonzero,
 * the request is to free that many objects.
 *
 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
 * in struct shrinker and also require the shrinker to return the number
 * of objects freed.
 *
 * Older kernels require the shrinker to return the number of freeable
 * objects following the freeing of nr_to_free.
 *
 * Linux semantics differ from those under Solaris, which are to
 * free all available objects which may (and probably will) be more
 * objects than the requested nr_to_scan.
 */
static spl_shrinker_t
__spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
    struct shrink_control *sc)
{
	spl_kmem_cache_t *skc;
	int alloc = 0;

	/*
	 * No shrinking in a transaction context.  Can cause deadlocks.
	 */
	if (sc->nr_to_scan && spl_fstrans_check())
		return (SHRINK_STOP);

	down_read(&spl_kmem_cache_sem);
	list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
		if (sc->nr_to_scan) {
#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
			uint64_t oldalloc = skc->skc_obj_alloc;
			spl_kmem_cache_reap_now(skc,
			    MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
			if (oldalloc > skc->skc_obj_alloc)
				alloc += oldalloc - skc->skc_obj_alloc;
#else
			spl_kmem_cache_reap_now(skc,
			    MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
			alloc += skc->skc_obj_alloc;
#endif /* HAVE_SPLIT_SHRINKER_CALLBACK */
		} else {
			/* Request to query number of freeable objects */
			alloc += skc->skc_obj_alloc;
		}
	}
	up_read(&spl_kmem_cache_sem);

	/*
	 * When KMC_RECLAIM_ONCE is set allow only a single reclaim pass.
	 * This functionality only exists to work around a rare issue where
	 * shrink_slabs() is repeatedly invoked by many cores causing the
	 * system to thrash.
	 */
	if ((spl_kmem_cache_reclaim & KMC_RECLAIM_ONCE) && sc->nr_to_scan)
		return (SHRINK_STOP);

	return (MAX(alloc, 0));
}

SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);

/*
 * Call the registered reclaim function for a cache.  Depending on how
 * many and which objects are released it may simply repopulate the
 * local magazine which will then need to age-out.  Objects which cannot
 * fit in the magazine we will be released back to their slabs which will
 * also need to age out before being release.  This is all just best
 * effort and we do not want to thrash creating and destroying slabs.
 */
void
spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
{
	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));

	atomic_inc(&skc->skc_ref);

	/*
	 * Execute the registered reclaim callback if it exists.
	 */
	if (skc->skc_flags & KMC_SLAB) {
		if (skc->skc_reclaim)
			skc->skc_reclaim(skc->skc_private);
		goto out;
	}

	/*
	 * Prevent concurrent cache reaping when contended.
	 */
	if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
		goto out;

	/*
	 * When a reclaim function is available it may be invoked repeatedly
	 * until at least a single slab can be freed.  This ensures that we
	 * do free memory back to the system.  This helps minimize the chance
	 * of an OOM event when the bulk of memory is used by the slab.
	 *
	 * When free slabs are already available the reclaim callback will be
	 * skipped.  Additionally, if no forward progress is detected despite
	 * a reclaim function the cache will be skipped to avoid deadlock.
	 *
	 * Longer term this would be the correct place to add the code which
	 * repacks the slabs in order minimize fragmentation.
	 */
	if (skc->skc_reclaim) {
		uint64_t objects = UINT64_MAX;
		int do_reclaim;

		do {
			spin_lock(&skc->skc_lock);
			do_reclaim =
			    (skc->skc_slab_total > 0) &&
			    ((skc->skc_slab_total-skc->skc_slab_alloc) == 0) &&
			    (skc->skc_obj_alloc < objects);

			objects = skc->skc_obj_alloc;
			spin_unlock(&skc->skc_lock);

			if (do_reclaim)
				skc->skc_reclaim(skc->skc_private);

		} while (do_reclaim);
	}

	/* Reclaim from the magazine and free all now empty slabs. */
	if (spl_kmem_cache_expire & KMC_EXPIRE_MEM) {
		spl_kmem_magazine_t *skm;
		unsigned long irq_flags;

		local_irq_save(irq_flags);
		skm = skc->skc_mag[smp_processor_id()];
		spl_cache_flush(skc, skm, skm->skm_avail);
		local_irq_restore(irq_flags);
	}

	spl_slab_reclaim(skc);
	clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
	smp_mb__after_atomic();
	wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
out:
	atomic_dec(&skc->skc_ref);
}
EXPORT_SYMBOL(spl_kmem_cache_reap_now);

/*
 * Reap all free slabs from all registered caches.
 */
void
spl_kmem_reap(void)
{
	struct shrink_control sc;

	sc.nr_to_scan = KMC_REAP_CHUNK;
	sc.gfp_mask = GFP_KERNEL;

	(void) __spl_kmem_cache_generic_shrinker(NULL, &sc);
}
EXPORT_SYMBOL(spl_kmem_reap);

int
spl_kmem_cache_init(void)
{
	init_rwsem(&spl_kmem_cache_sem);
	INIT_LIST_HEAD(&spl_kmem_cache_list);
	spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
	    spl_kmem_cache_kmem_threads, maxclsyspri,
	    spl_kmem_cache_kmem_threads * 8, INT_MAX,
	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
	spl_register_shrinker(&spl_kmem_cache_shrinker);

	return (0);
}

void
spl_kmem_cache_fini(void)
{
	spl_unregister_shrinker(&spl_kmem_cache_shrinker);
	taskq_destroy(spl_kmem_cache_taskq);
}