This file is indexed.

/usr/share/sugar/activities/Calculate.activity/functions.py is in sugar-calculate-activity 43-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
# functions.py, functions available in Calculate,
# by Reinier Heeres <reinier@heeres.eu>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

# Any variable or function in this module that does not start with an
# underscore ('_') will be available in Calculate through astparser.py.
# Docstrings will automatically be added to the help index for that function.
# However, instead of setting the docstring on a function in the simple way we
# add it after the function definition so that they can more easily be
# localized through gettext.

import types
import math
import random
from decimal import Decimal as _Decimal
from rational import Rational as _Rational

from gettext import gettext as _

# List of functions to allow translating the function names.
_FUNCTIONS = [
    _('add'),
    _('abs'),
    _('acos'),
    _('acosh'),
    _('asin'),
    _('asinh'),
    _('atan'),
    _('atanh'),
    _('and'),
    _('b10bin'),
    _('ceil'),
    _('cos'),
    _('cosh'),
    _('div'),
    _('gcd'),
    _('exp'),
    _('factorial'),
    _('factorize'),
    _('floor'),
    _('inv'),
    _('is_int'),
    _('is_prime'),
    _('ln'),
    _('log10'),
    _('mul'),
    _('or'),
    _('rand_float'),
    _('rand_int'),
    _('round'),
    _('sin'),
    _('sinh'),
    _('sinc'),
    _('sqrt'),
    _('sub'),
    _('square'),
    _('tan'),
    _('tanh'),
    _('xor'),
]


def _d(val):
    '''Return a _Decimal object.'''

    if isinstance(val, _Decimal):
        return val
    elif type(val) in (types.IntType, types.LongType):
        return _Decimal(val)
    elif isinstance(val, types.StringType):
        d = _Decimal(val)
        return d.normalize()
    elif isinstance(val, types.FloatType) or hasattr(val, '__float__'):
        s = '%.18e' % float(val)
        d = _Decimal(s)
        return d.normalize()
    else:
        return None


class ClassValue:

    """
    Class to share a value with the outside world.
    This is required because plain floats / integers are not asigned by
    reference, and can therefore not easily be changed in a different place.
    """

    def __init__(self, val):
        self.value = val

angle_scaling = ClassValue(1.0)


def _scale_angle(x):
    return x * angle_scaling.value


def _inv_scale_angle(x):
    return x / angle_scaling.value


def abs(x):
    return math.fabs(x)
abs.__doc__ = _(
    'abs(x), return absolute value of x, which means -x for x < 0')


def acos(x):
    if x > 1 or x < -1:
        raise ValueError(_('acos(x) only defined for x E [-1,1]'))
    else:
        return _inv_scale_angle(math.acos(x))
acos.__doc__ = _(
    'acos(x), return the arc cosine of x. This is the angle for which the \
cosine is x. Defined for -1 <= x < 1')


def acosh(x):
    return math.acosh(x)
acosh.__doc__ = _(
    'acosh(x), return the arc hyperbolic cosine of x. This is the value y \
for which the hyperbolic cosine equals x.')


def And(x, y):
    return x & y
And.__doc__ = _(
    'And(x, y), logical and. Returns True if x and y are True,\
else returns False')


def add(x, y):
    if isinstance(x, _Decimal) or isinstance(y, _Decimal):
        x = _d(x)
        y = _d(y)
    return x + y
add.__doc__ = _('add(x, y), return x + y')


def asin(x):
    if x > 1 or x < -1:
        raise ValueError(_('asin(x) only defined for x E [-1,1]'))
    return _inv_scale_angle(math.asin(x))
asin.__doc__ = _(
    'asin(x), return the arc sine of x. This is the angle for which \
the sine is x. Defined for -1 <= x <= 1')


def asinh(x):
    return math.asinh(x)
asinh.__doc__ = _(
    'asinh(x), return the arc hyperbolic sine of x. This is the value y for \
which the hyperbolic sine equals x.')


def atan(x):
    return _inv_scale_angle(math.atan(x))
atan.__doc__ = _(
    'atan(x), return the arc tangent of x. This is the angle for \
which the tangent is x. Defined for all x')


def atanh(x):
    return math.atanh(x)
atanh.__doc__ = _(
    'atanh(x), return the arc hyperbolic tangent of x. \
This is the value y for which the hyperbolic tangent equals x.')


def b10bin(x):
    ret = 0
    value = 1

    while x > 0:
        y = x % 10
        if y > 1:
            raise ValueError(_('Number does not look binary.'))
        ret += y * value
        value = value * 2
        x /= 10

    return ret

b10bin.__doc__ = _(
    'b10bin(x), interpret a number written in base 10 as binary, e.g.: \
b10bin(10111) = 23,')


def ceil(x):
    return math.ceil(float(x))
ceil.__doc__ = _('ceil(x), return the smallest integer larger than x.')


def cos(x):
    return math.cos(_scale_angle(x))
cos.__doc__ = _(
    'cos(x), return the cosine of x. This is the x-coordinate on \
the unit circle at the angle x')


def cosh(x):
    return math.cosh(x)
cosh.__doc__ = _(
    'cosh(x), return the hyperbolic cosine of x.\
Given by (exp(x) + exp(-x)) / 2')


def div(x, y):
    if y == 0 or y == 0.0:
        raise ValueError(_('Can not divide by zero'))

    if is_int(x) and float(abs(x)) < 1e12 and \
            is_int(y) and float(abs(y)) < 1e12:
        return _Rational(x, y)

    if isinstance(x, _Decimal) or isinstance(y, _Decimal):
        x = _d(x)
        y = _d(y)

    return x / y


def _do_gcd(a, b):
    if b == 0:
        return a
    else:
        return _do_gcd(b, a % b)


def gcd(a, b):
    TYPES = (types.IntType, types.LongType)
    if type(a) not in TYPES or type(b) not in TYPES:
        raise ValueError(_('Invalid argument'))
    return _do_gcd(a, b)
gcd.__doc__ = _(
    'gcd(a, b), determine the greatest common denominator of a and b. \
For example, the biggest factor that is shared by the numbers 15 and \
18 is 3.')


def exp(x):
    return math.exp(float(x))
exp.__doc__ = _('exp(x), return the natural exponent of x. Given by e^x')


def factorial(n):
    if n < 0:
        raise ValueError(_('Factorial(x) is only defined for integers x>=0'))

    if type(n) not in (types.IntType, types.LongType):
        raise ValueError(_('Factorial only defined for integers'))

    if n == 0:
        return 1

    n = long(n)
    res = long(n)
    while n > 2:
        res *= n - 1
        n -= 1

    return res
factorial.__doc__ = _(
    'factorial(n), return the factorial of n. \
Given by n * (n - 1) * (n - 2) * ...')


def factorize(x):
    if not is_int(x):
        return 0

    factors = []
    num = x
    i = 2
    while i <= math.sqrt(num):
        if num % i == 0:
            factors.append(i)
            num /= i
            i = 2
        elif i == 2:
            i += 1
        else:
            i += 2
    factors.append(num)

    if len(factors) == 1:
        return "1 * %d" % x
    else:
        ret = "%d" % factors[0]
        for fac in factors[1:]:
            ret += " * %d" % fac
        return ret
factorize.__doc__ = (
    'factorize(x), determine the prime factors that together form x. \
For examples: 15 = 3 * 5.')


def floor(x):
    return math.floor(float(x))
floor.__doc__ = _('floor(x), return the largest integer smaller than x.')


def inv(x):
    if x == 0:
        raise ValueError(_('Can not divide by zero'))
    return div(1, x)
inv.__doc__ = _('inv(x), return the inverse of x, which is 1 / x')


def is_int(n):
    if type(n) in (types.IntType, types.LongType):
        return True

    if isinstance(n, _Rational):
        return (n.n == 0 or n.d == 1)

    if not isinstance(n, _Decimal):
        n = _d(n)
        if n is None:
            return False

    (sign, d, e) = n.normalize().as_tuple()
    return e >= 0
is_int.__doc__ = ('is_int(n), determine whether n is an integer.')


def _primality_test(n):
    if n == 1:
        return False
    if n <= 3:
        return True
    if n % 2 == 0 or n % 3 == 0:
        return False
    for i in range(5, int(n ** 0.5) + 1, 6):
        if n % i == 0 or n % (i + 2) == 0:
            return False
    return True


def is_prime(x):
    if not is_int(x):
        raise ValueError(_('Argument must be int'))
    if x <= 0:
        raise ValueError(_('Prime numbers is defined for natural numbers'))
    return _primality_test(x)
is_prime.__doc__ = ('is_prime(x), Check if a number is a prime. \
                   For examples: is_prime(2).')


def ln(x):
    if float(x) > 0:
        return math.log(float(x))
    else:
        raise ValueError(_('Logarithm(x) only defined for x > 0'))
ln.__doc__ = _(
    'ln(x), return the natural logarithm of x. This is the value for \
which the exponent exp() equals x. Defined for x >= 0.')


def log10(x):
    if float(x) > 0:
        return math.log10(float(x))
    else:
        raise ValueError(_('Logarithm(x) only defined for x > 0'))
log10.__doc__ = _(
    'log10(x), return the base 10 logarithm of x. \
This is the value y for which 10^y equals x. Defined for x >= 0.')


def mod(x, y):
    if is_int(y):
        return x % y
    else:
        raise ValueError(_('Can only calculate x modulo <integer>'))
mod.__doc__ = _(
    'mod(x, y), return the modulus of x with respect to y.\
This is the remainder after dividing x by y.')


def mul(x, y):
    if isinstance(x, _Decimal) or isinstance(y, _Decimal):
        x = _d(x)
        y = _d(y)
    return x * y
mul.__doc__ = _('mul(x, y), return x * y')


def negate(x):
    return -x
negate.__doc__ = _('negate(x), return -x')


def Or(x, y):
    return x | y
Or.__doc__ = _(
    'Or(x, y), logical or. Returns True if x or y is True, \
else returns False')


def pow(x, y):
    if is_int(y):
        if is_int(x):
            return long(x) ** int(y)
        elif hasattr(x, '__pow__'):
            return x ** y
        else:
            return float(x) ** int(y)
    else:
        if isinstance(x, _Decimal) or isinstance(y, _Decimal):
            x = _d(x)
            y = _d(y)
        return _d(math.pow(float(x), float(y)))
pow.__doc__ = _('pow(x, y), return x to the power y (x**y)')


def rand_float():
    return random.random()
rand_float.__doc__ = _(
    'rand_float(), return a random floating point number between 0.0 and 1.0')


def rand_int(maxval=65535):
    return random.randint(0, maxval)
rand_int.__doc__ = _(
    'rand_int([<maxval>]), return a random integer between 0 and <maxval>. \
<maxval> is an optional argument and is set to 65535 by default.')


def round(x):
    return math.round(float(x))
round.__doc__ = _('round(x), return the integer nearest to x.')


def shift_left(x, y):
    if is_int(x) and is_int(y):
        return _d(int(x) << int(y))
    else:
        raise ValueError(_('Bitwise operations only apply to integers'))
shift_left.__doc__ = _(
    'shift_left(x, y), shift x by y bits to the left (multiply by 2 per bit)')


def shift_right(x, y):
    if is_int(x) and is_int(y):
        return _d(int(x) >> int(y))
    else:
        raise ValueError(_('Bitwise operations only apply to integers'))
shift_right.__doc__ = _(
    'shift_right(x, y), shift x by y bits to the right (divide by 2 per bit)')


def sin(x):
    return math.sin(_scale_angle(x))
sin.__doc__ = _(
    'sin(x), return the sine of x. This is the y-coordinate on the \
unit circle at the angle x')


def sinh(x):
    return math.sinh(x)
sinh.__doc__ = _(
    'sinh(x), return the hyperbolic sine of x. \
Given by (exp(x) - exp(-x)) / 2')


def sinc(x):
    if float(x) == 0.0:
        return 1
    return sin(x) / x
sinc.__doc__ = _(
    'sinc(x), return the sinc of x. This is given by sin(x) / x.')


def sqrt(x):
    return math.sqrt(float(x))
sqrt.__doc__ = _(
    'sqrt(x), return the square root of x. This is the value for which \
the square equals x. Defined for x >= 0.')


def square(x):
    return x ** 2
square.__doc__ = _('square(x), return x * x')


def sub(x, y):
    if isinstance(x, _Decimal) or isinstance(y, _Decimal):
        x = _d(x)
        y = _d(y)
    return x - y
sub.__doc__ = _('sub(x, y), return x - y')


def tan(x):
    return math.tan(_scale_angle(x))
tan.__doc__ = _(
    'tan(x), return the tangent of x. This is the slope of the line \
from the origin of the unit circle to the point on the unit circle \
defined by the angle x. Given by sin(x) / cos(x)')


def tanh(x):
    return math.tanh(x)
tanh.__doc__ = _(
    'tanh(x), return the hyperbolic tangent of x. Given by sinh(x) / cosh(x)')


def xor(x, y):
    return x ^ y
xor.__doc__ = _(
    'xor(x, y), logical xor. Returns True if either x is True \
(and y is False) or y is True (and x is False), else returns False')