/usr/share/tcltk/tcllib1.18/math/exact.tcl is in tcllib 1.18-dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 | # exact.tcl --
#
# Tcl package for exact real arithmetic.
#
# Copyright (c) 2015 by Kevin B. Kenny
#
# See the file "license.terms" for information on usage and redistribution of
# this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# This package provides a library for performing exact
# computations over the computable real numbers. The algorithms
# are largely based on the ones described in:
#
# Potts, Peter John. _Exact Real Arithmetic using Möbius Transformations._
# PhD thesis, University of London, July 1998.
# http://www.doc.ic.ac.uk/~ae/papers/potts-phd.pdf
#
# Some of the algorithms for the elementary functions are found instead
# in:
#
# Menissier-Morain, Valérie. _Arbitrary Precision Real Arithmetic:
# Design and Algorithms. J. Symbolic Computation 11 (1996)
# http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.8983
#
#-----------------------------------------------------------------------------
package require Tcl 8.6
package require grammar::aycock 1.0
namespace eval math::exact {
namespace eval function {
namespace path ::math::exact
}
namespace path ::tcl::mathop
# math::exact::parser --
#
# Grammar for parsing expressions in the exact real calculator
#
# The expression syntax is almost exactly that of Tcl expressions,
# minus Tcl arrays, square-bracket substitution, and noncomputable
# operations such as equality, comparisons, bit and Boolean operations,
# and ?:.
variable parser [grammar::aycock::parser {
target ::= expression {
lindex $_ 0
}
expression ::= expression addop term {
{*}$_
}
expression ::= term {
lindex $_ 0
}
addop ::= + {
lindex $_ 0
}
addop ::= - {
lindex $_ 0
}
term ::= term mulop factor {
{*}$_
}
term ::= factor {
lindex $_ 0
}
mulop ::= * {
lindex $_ 0
}
mulop ::= / {
lindex $_ 0
}
factor ::= addop factor {
switch -exact -- [lindex $_ 0] {
+ {
set result [lindex $_ 1]
}
- {
set result [[lindex $_ 1] U-]
}
}
set result
}
factor ::= primary ** factor {
{*}$_
}
factor ::= primary {
lindex $_ 0
}
primary ::= {$} bareword {
uplevel [dict get $clientData caller] set [lindex $_ 1]
}
primary ::= number {
[dict get $clientData namespace]::V new [list [lindex $_ 0] 1]
}
primary ::= bareword ( ) {
[dict get $clientData namespace]::function::[lindex $_ 0]
}
primary ::= bareword ( arglist ) {
[dict get $clientData namespace]::function::[lindex $_ 0] \
{*}[lindex $_ 2]
}
primary ::= ( expression ) {
lindex $_ 1
}
arglist ::= expression {
set _
}
arglist ::= arglist , expression {
linsert [lindex $_ 0] end [lindex $_ 2]
}
}]
}
# math::exact::Lexer --
#
# Lexer for the arithmetic expressions that the 'math::exact' package
# can evaluate.
#
# Results:
# Returns a two element list. The first element is a list of the
# lexical values of the tokens that were found in the expression;
# the second is a list of the semantic values of the tokens. The
# two sublists are the same length.
proc math::exact::Lexer {expression} {
set start 0
set tokens {}
set values {}
while {$expression ne {}} {
if {[regexp {^\*\*(.*)} $expression -> rest]} {
# Exponentiation
lappend tokens **
lappend values **
} elseif {[regexp {^([-+/*$(),])(.*)} $expression -> token rest]} {
# Single-character operators
lappend tokens $token
lappend values $token
} elseif {[regexp {^([[:alpha:]][[:alnum:]_]*)(.*)} \
$expression -> token rest]} {
# Variable and function names
lappend tokens bareword
lappend values $token
} elseif {[regexp -nocase {^([[:digit:]]+)(.*)} $expression -> \
token rest] } {
# Numbers
lappend tokens number
lappend values $token
} elseif {[regexp {^[[:space:]]+(.*)} $expression -> rest]} {
# Whitespace
} else {
# Anything else is an error
return -code error \
-errorcode [list MATH EXACT EXPR INVCHAR \
[string index $expression 0]] \
[list invalid character [string index $expression 0]] \
}
set expression $rest
}
return [list $tokens $values]
}
# math::exact::K --
#
# K combinator. Returns its first argumetn
#
# Parameters:
# a - Return value
# b - Value to discard
#
# Results:
# Returns the first argument
proc math::exact::K {a b} {return $a}
# math::exact::exactexpr --
#
# Evaluates an exact real expression.
#
# Parameters:
# expr - Expression to evaluate. Variables in the expression are
# assumed to be reals, which are represented as Tcl objects.
#
# Results:
# Returns a Tcl object representing the expression's value.
#
# The returned object must have its refcount incremented with [ref] if
# the caller retains a reference, and in general it is expected that a
# user of a real will [ref] the object when storing it in a variable and
# [unref] it again when the variable goes out of scope or is overwritten.
proc math::exact::exactexpr {expr} {
variable parser
set result [$parser parse {*}[Lexer $expr] \
[dict create \
caller "#[expr {[info level] - 1}]" \
namespace [namespace current]]]
}
# Basic data types
# A vector is a list {a b}. It can represent the rational number {a/b}
# A matrix is a list of its columns {{a b} {c d}}. In addition to
# the ordinary rules of linear algebra, it represents the linear
# transform (ax+b)/(cx+d).
# If x is presumed to lie in the interval [0, Inf) then this transform
# applied to x will lie in the interval [b/d, a/c), so the matrix
# {{a b} {c d}} can represent that interval. The interval [0,Inf)
# can be represented by the identity matrix {{1 0} {0 1}}
# Moreover, if x = {p/q} is a rational number, then
# (ax+b)/(cx+d) = (a(p/q)+b)/(c(p/q)+d)
# = ((ap+bq)/q)/(cp+dq)/q)
# = (ap+bq)/(cp+dq)
# which is the rational number represented by {{a c} {b d}} {p q}
# using the conventional rule of vector-matrix multiplication.
# Note that matrices used for this purpose are unique only up to scaling.
# If (ax+b)/(cx+d) is a rational number, then (eax+eb)/(ecx+ed) represents
# the same rational number. This means that matrix inversion may be replaced
# by matrix reversion: for {{a b} {c d}}, simply form the list of cofactors
# {{d -b} {-c a}}, without dividing by the determinant. The reverse of a matrix
# is well defined even if the matrix is singular.
# A tensor of the third degree is a list of its levels:
# {{{a b} {c d}} {{e f} {g h}}}
# math::exact::gcd --
#
# Greatest common divisor of a set of integers
#
# Parameters:
# The integers whose gcd is to be found
#
# Results:
# Returns the gcd
proc math::exact::gcd {a args} {
foreach b $args {
if {$a > $b} {
set t $b; set b $a; set a $t
}
while {$b > 0} {
set t $b
set b [expr {$a % $b}]
set a $t
}
}
return $a
}
# math::exact::trans --
#
# Transposes a 2x2 matrix or a 2x2x2 tensor
#
# Parameters:
# x - Object to transpose
#
# Results:
# Returns the transpose
proc math::exact::trans {x} {
lassign $x ab cd
lassign $ab a b
lassign $cd c d
tailcall list [list $a $c] [list $b $d]
}
# math::exact::determinant --
#
# Calculates the determinant of a 2x2 matrix
#
# Parameters:
# x - Matrix
#
# Results:
# Returns the determinant.
proc math::exact::determinant {x} {
lassign $x ab cd
lassign $ab a b
lassign $cd c d
return [expr {$a*$d - $b*$c}]
}
# math::exact::reverse --
#
# Calculates the reverse of a 2x2 matrix, which is its inverse times
# its determinant.
#
# Parameters:
# x - Matrix
#
# Results:
# Returns reverse[x].
#
# Notes:
# The reverse is well defined even for singular matrices.
proc math::exact::reverse {x} {
lassign $x ab cd
lassign $ab a b
lassign $cd c d
tailcall list [list $d [expr {-$b}]] [list [expr {-$c}] $a]
}
# math::exact::veven --
#
# Tests if both components of a 2-vector are even.
#
# Parameters:
# x - Vector to test
#
# Results:
# Returns 1 if both components are even, 0 otherwise.
proc math::exact::veven {x} {
lassign $x a b
return [expr {($a % 2 == 0) && ($b % 2 == 0)}]
}
# math::exact::meven --
#
# Tests if all components of a 2x2 matrix are even.
#
# Parameters:
# x - Matrix to test
#
# Results:
# Returns 1 if all components are even, 0 otherwise.
proc math::exact::meven {x} {
lassign $x a b
return [expr {[veven $a] && [veven $b]}]
}
# math::exact::teven --
#
# Tests if all components of a 2x2x2 tensor are even
#
# Parameters:
# x - Tensor to test
#
# Results:
# Returns 1 if all components are even, 0 otherwise
proc math::exact::teven {x} {
lassign $x a b
return [expr {[meven $a] && [meven $b]}]
}
# math::exact::vhalf --
#
# Divides both components of a 2-vector by 2
#
# Parameters:
# x - Vector to scale
#
# Results:
# Returns the scaled vector
proc math::exact::vhalf {x} {
lassign $x a b
tailcall list [expr {$a / 2}] [expr {$b / 2}]
}
# math::exact::mhalf --
#
# Divides all components of a 2x2 matrix by 2
#
# Parameters:
# x - Matrix to scale
#
# Results:
# Returns the scaled matrix
proc math::exact::mhalf {x} {
lassign $x a b
tailcall list [vhalf $a] [vhalf $b]
}
# math::exact::thalf --
#
# Divides all components of a 2x2x2 tensor by 2
#
# Parameters:
# x - Tensor to scale
#
# Results:
# Returns the scaled tensor
proc math::exact::thalf {x} {
lassign $x a b
tailcall list [mhalf $a] [mhalf $b]
}
# math::exact::vscale --
#
# Removes all common factors of 2 from the two components of a 2-vector
#
# Paramters:
# x - Vector to scale
#
# Results:
# Returns the scaled vector
proc math::exact::vscale {x} {
while {[veven $x]} {
set x [vhalf $x]
}
return $x
}
# math::exact::mscale --
#
# Removes all common factors of 2 from the two components of a
# 2x2 matrix
#
# Paramters:
# x - Matrix to scale
#
# Results:
# Returns the scaled matrix
proc math::exact::mscale {x} {
while {[meven $x]} {
set x [mhalf $x]
}
return $x
}
# math::exact::tscale --
#
# Removes all common factors of 2 from the two components of a
# 2x2x2 tensor
#
# Paramters:
# x - Tensor to scale
#
# Results:
# Returns the scaled tensor
proc math::exact::tscale {x} {
while {[teven $x]} {
set x [thalf $x]
}
return $x
}
# math::exact::vreduce --
#
# Reduces a vector (i.e., a rational number) to lowest terms
#
# Parameters:
# x - Vector to scale
#
# Results:
# Returns the scaled vector
proc math::exact::vreduce {x} {
lassign $x a b
set g [gcd $a $b]
tailcall list [expr {$a / $g}] [expr {$b / $g}]
}
# math::exact::mreduce --
#
# Removes all common factors from the two components of a
# 2x2 matrix
#
# Paramters:
# x - Matrix to scale
#
# Results:
# Returns the scaled matrix
#
# This procedure suffices to reduce the matrix to lowest terms if the matrix
# was constructed by pre- or post-multiplying a series of sign and digit
# matrices.
proc math::exact::mreduce {x} {
lassign $x ab cd
lassign $ab a b
lassign $cd c d
set g [gcd $a $b $c $d]
tailcall list \
[list [expr {$a / $g}] [expr {$b / $g}]] \
[list [expr {$c / $g}] [expr {$d / $g}]]
}
# math::exact::treduce --
#
# Removes all common factors from the components of a
# 2x2x2 tensor
#
# Paramters:
# x - Tensor to scale
#
# Results:
# Returns the scaled tensor
#
# This procedure suffices to reduce a tensor to lowest terms if it was
# constructed by absorbing a digit matrix into a tensor that was already
# in lowest terms.
proc math::exact::treduce {x} {
lassign $x abcd efgh
lassign $abcd ab cd
lassign $ab a b
lassign $cd c d
lassign $efgh ef gh
lassign $ef e f
lassign $gh g h
set G [gcd $a $b $c $d $e $f $g $h]
tailcall list \
[list \
[list [expr {$a / $G}] [expr {$b / $G}]] \
[list [expr {$c / $G}] [expr {$d / $G}]]] \
[list \
[list [expr {$e / $G}] [expr {$f / $G}]] \
[list [expr {$g / $G}] [expr {$h / $G}]]]
}
# math::exact::vadd --
#
# Adds two 2-vectors
#
# Parameters:
# x - First vector
# y - Second vector
#
# Results:
# Returns the vector sum
proc math::exact::vadd {x y} {
lmap p $x q $y {expr {$p + $q}}
}
# math::exact::madd --
#
# Adds two 2x2 matrices
#
# Parameters:
# A - First matrix
# B - Second matrix
#
# Results:
# Returns the matrix sum
proc math::exact::madd {A B} {
lmap x $A y $B {
lmap p $x q $y {expr {$p + $q}}
}
}
# math::exact::tadd --
#
# Adds two 2x2x2 tensors
#
# Parameters:
# U - First tensor
# V - Second tensor
#
# Results:
# Returns the tensor sum
proc math::exact::tadd {U V} {
lmap A $U B $V {
lmap x $A y $B {
lmap p $x q $y {expr {$p + $q}}
}
}
}
# math::exact::mdotv --
#
# 2x2 matrix times 2-vector
#
# Parameters;
# A - Matrix
# x - Vector
#
# Results:
# Returns the product vector
proc math::exact::mdotv {A x} {
lassign $A ab cd
lassign $ab a b
lassign $cd c d
lassign $x e f
tailcall list [expr {$a*$e + $c*$f}] [expr {$b*$e + $d*$f}]
}
# math::exact::mdotm --
#
# Product of two matrices
#
# Parameters:
# A - Left matrix
# B - Right matrix
#
# Results:
# Returns the matrix product
proc math::exact::mdotm {A B} {
lassign $B x y
tailcall list [mdotv $A $x] [mdotv $A $y]
}
# math::exact::mdott --
#
# Product of a matrix and a tensor
#
# Parameters:
# A - Matrix
# T - Tensor
#
# Results:
# Returns the product tensor
proc math::exact::mdott {A T} {
lassign $T B C
tailcall list [mdotm $A $B] [mdotm $A $C]
}
# math::exact::trightv --
#
# Right product of a tensor and a vector
#
# Parameters:
# T - Tensor
# v - Right-hand vector
#
# Results:
# Returns the product matrix
proc math::exact::trightv {T v} {
lassign $T m n
tailcall list [mdotv $m $v] [mdotv $n $v]
}
# math::exact::trightm --
#
# Right product of a tensor and a matrix
#
# Parameters:
# T - Tensor
# A - Right-hand matrix
#
# Results:
# Returns the product tensor
proc math::exact::trightm {T A} {
lassign $T m n
tailcall list [mdotm $m $A] [mdotm $n $A]
}
# math::exact::tleftv --
#
# Left product of a tensor and a vector
#
# Parameters:
# T - Tensor
# v - Left-hand vector
#
# Results:
# Returns the product matrix
proc math::exact::tleftv {T v} {
tailcall trightv [trans $T] $v
}
# math::exact::tleftm --
#
# Left product of a tensor and a matrix
#
# Parameters:
# T - Tensor
# A - Left-hand matrix
#
# Results:
# Returns the product tensor
proc math::exact::tleftm {T A} {
tailcall trans [trightm [trans $T] $A]
}
# math::exact::vsign --
#
# Computes the 'sign function' of a vector.
#
# Parameters:
# v - Vector whose sign function is needed
#
# Results:
# Returns the result of the sign function.
#
# a b sign
# - - -1
# - 0 -1
# - + 0
# 0 - -1
# 0 0 0
# 0 + 1
# + - 0
# + 0 1
# + + 1
#
# If the quotient a/b is negative or indeterminate, the result is zero.
# If the quotient a/b is zero, the result is the sign of b.
# If the quotient a/b is positive, the result is the common sign of the
# operands, which are known to be of like sign
# If the quotient a/b is infinite, the result is the sign of a.
proc math::exact::sign {v} {
lassign $v a b
if {$a < 0} {
if {$b <= 0} {
return -1
} else {
return 0
}
} elseif {$a == 0} {
if {$b < 0} {
return -1
} elseif {$b == 0} {
return 0
} else {
return 1
}
} else {
if {$b < 0} {
return 0
} else {
return 1
}
}
}
# math::exact::vrefines --
#
# Test if a vector refines.
#
# Parameters:
# v - Vector to test
#
# Results:
# 1 if the vector refines, 0 otherwise.
proc math::exact::vrefines {v} {
return [expr {[sign $v] != 0}]
}
# math::exact::mrefines --
#
# Test whether a matrix refines
#
# Parameters:
# A - Matrix to test
#
# Results:
# 1 if the matrix refines, 0 otherwise.
proc math::exact::mrefines {A} {
lassign $A v w
set a [sign $v]
set b [sign $w]
return [expr {$a == $b && $b != 0}]
}
# math::exact::trefines --
#
# Tests whether a tensor refines
#
# Parameters:
# T - Tensor to test.
#
# Results:
# 1 if the tensor refines, 0 otherwise.
proc math::exact::trefines {T} {
lassign $T vw xy
lassign $vw v w
lassign $xy x y
set a [sign $v]
set b [sign $w]
set c [sign $x]
set d [sign $y]
return [expr {$a == $b && $b == $c && $c == $d && $d != 0}]
}
# math::exact::vlessv -
#
# Test whether one rational is less than another
#
# Parameters:
# v, w - Two rational numbers
#
# Returns:
# The result of the comparison.
proc math::exact::vlessv {v w} {
expr {[determinant [list $v $w]] < 0}
}
# math::exact::mlessv -
#
# Tests whether a rational interval is less than a vector
#
# Parameters:
# m - Matrix representing the interval
# x - Rational to compare against
#
# Results:
# Returns 1 if m < x, 0 otherwise
proc math::exact::mlessv {m x} {
lassign $m v w
expr {[vlessv $v $x] && [vlessv $w $x]}
}
# math::exact::mlessm -
#
# Tests whether one rational interval is strictly less than another
#
# Parameters:
# m - First interval
# n - Second interval
#
# Results:
# Returns 1 if m < n, 0 otherwise
proc math::exact::mlessm {m n} {
lassign $n v w
expr {[mlessv $m $v] && [mlessv $m $w]}
}
# math::exact::mdisjointm -
#
# Tests whether two rational intervals are disjoint
#
# Parameters:
# m - First interval
# n - Second interval
#
# Results:
# Returns 1 if the intervals are disjoint, 0 otherwise
proc math::exact::mdisjointm {m n} {
expr {[mlessm $m $n] || [mlessm $n $m]}
}
# math::exact::mAsFloat
#
# Formats a matrix that represents a rational interval as a floating
# point number, stopping as soon as a digit is not determined.
#
# Parameters:
# m - Matrix to format
#
# Results:
# Returns the floating point number in scientific notation, with no
# digits to the left of the decimal point.
proc math::exact::mAsFloat {m} {
# Special case: If a number is exact, the determinant is zero.
set d [determinant $m]
lassign [lindex $m 0] p q
if {$d == 0} {
if {$q < 0} {
set p [expr {-$p}]
set q [expr {-$q}]
}
if {$p == 0} {
if {$q == 0} {
return NaN
} else {
return 0
}
} elseif {$q == 0} {
return Inf
} elseif {$q == 1} {
return $p
} else {
set G [gcd $p $q]
return [expr {$p/$G}]/[expr {$q/$G}]
}
} else {
tailcall eFormat [scientificNotation $m]
}
}
# math::exact::scientificNotation --
#
# Takes a matrix representing a rational interval, and extracts as
# many decimal digits as can be determined unambiguously
#
# Parameters:
# m - Matrix to format
#
# Results:
# Returns a list comprising the decimal exponent, followed by a series of
# digits of the significand. The decimal point is to the left of the
# leftmost digit of the significand.
#
# Returns the empty string if a number is entirely undetermined.
proc math::exact::scientificNotation {m} {
set n 0
while {1} {
if {[vrefines [mdotv [reverse $m] {1 0}]]} {
return {}
} elseif {[mrefines [mdotm $math::exact::iszer $m]]} {
return [linsert [mantissa $m] 0 $n]
} else {
set m [mdotm {{1 0} {0 10}} $m]
incr n
}
}
}
# math::exact::mantissa --
#
# Given a matrix m that represents a rational interval whose
# endpoints are in [0,1), formats as many digits of the represented
# number as possible.
#
# Parameters:
# m - Matrix to format
#
# Results:
# Returns a list of digits
proc math::exact::mantissa {m} {
set retval {}
set done 0
while {!$done} {
set done 1
# Brute force: try each digit in turn. This could no doubt be
# improved on.
for {set j -9} {$j <= 9} {incr j} {
set digitMatrix \
[list [list [expr {$j+1}] 10] [list [expr {$j-1}] 10]]
if {[mrefines [mdotm [reverse $digitMatrix] $m]]} {
lappend retval $j
set nextdigit [list {10 0} [list [expr {-$j}] 1]]
set m [mdotm $nextdigit $m]
set done 0
break
}
}
}
return $retval
}
# math::exact::eFormat --
#
# Formats a decimal exponent and significand in E format
#
# Parameters:
# expAndDigits - List whose first element is the exponent and
# whose remaining elements are the digits of the
# significand.
proc math::exact::eFormat {expAndDigits} {
# An empty sequence of digits is an indeterminate number
if {[llength $expAndDigits] < 2} {
return Undetermined
}
set significand [lassign $expAndDigits exponent]
# Accumulate the digits
set v 0
foreach digit $significand {
set v [expr {10 * $v + $digit}]
}
# Adjust the exponent if the significand has too few digits.
set l [llength $significand]
while {$l > 0 && abs($v) < 10**($l-1)} {
incr l -1
incr exponent -1
}
incr exponent -1
# Put in the sign
if {$v < 0} {
set result -
set v [expr {-$v}]
} else {
set result {}
}
# Put in the significand with the decimal point after the leading digit.
if {$v == 0} {
append result 0
} else {
append result [string index $v 0] . [string range $v 1 end]
}
# Put in the exponent
append result e $exponent
return $result
}
# math::exact::showRat --
#
# Formats an exact rational for printing in E format.
#
# Parameters:
# v - Two-element list of numerator and denominator.
#
# Results:
# Returns the quotient in E format. Nonzero/zero == Infinity,
# 0/0 == NaN.
proc math::exact::showRat {v} {
lassign $v p q
if {$p != 0 || $q != 0} {
return [format %e [expr {double($p)/double($q)}]]
} else {
return NaN
}
}
# math::exact::showInterval --
#
# Formats a rational interval for printing
#
# Parameters:
# m - Matrix representing the interval
#
# Results:
# Returns a string representing the interval in E format.
proc math::exact::showInterval {m} {
lassign $m v w
return "\[[showRat $w] .. [showRat $v]\]"
}
# math::exact::showTensor --
#
# Formats a tensor for printing
#
# Parameters:
# t - Tensor to print
#
# Results:
# Returns a string containing the left and right matrices of the
# tensor, each represented as an interval.
proc math::exact::showTensor {t} {
lassign $t m n
return [list [showInterval $m] [showInterval $n]]
}
# math::exact::counted --
#
# Reference counted object
oo::class create math::exact::counted {
variable refcount_
# Constructor builds an object with a zero refcount.
constructor {} {
if 0 {
puts {}
puts "construct: [self object] refcount now 0"
for {set i [info frame]} {$i > 0} {incr i -1} {
set frame [info frame $i]
if {[dict get $frame type] eq {source}} {
set line [dict get $frame line]
puts "\t[file tail [dict get $frame file]]:$line"
if {$line < 0} {
if {[dict exists $frame proc]} {
puts "\t\t[dict get $frame proc]"
}
puts "\t\t\[[dict get $frame cmd]\]"
}
} else {
puts $frame
}
}
}
incr refcount_
set refcount_ 0
}
# The 'ref' method adds a reference to this object, and returns this object
method ref {} {
if 0 {
puts {}
puts "ref: [self object] refcount now [expr {$refcount_ + 1}]"
if {$refcount_ == 0} {
puts "\t[my dump]"
}
for {set i [info frame]} {$i > 0} {incr i -1} {
set frame [info frame $i]
if {[dict get $frame type] eq {source}} {
set line [dict get $frame line]
puts "\t[file tail [dict get $frame file]]:$line"
if {$line < 0} {
if {[dict exists $frame proc]} {
puts "\t\t[dict get $frame proc]"
}
puts "\t\t\[[dict get $frame cmd]\]"
}
} else {
puts $frame
}
}
}
incr refcount_
return [self]
}
# The 'unref' method removes a reference from this object, and destroys
# this object if the refcount becomes nonpositive.
method unref {} {
if 0 {
puts {}
puts "unref: [self object] refcount now [expr {$refcount_ - 1}]"
for {set i [info frame]} {$i > 0} {incr i -1} {
set frame [info frame $i]
if {[dict get $frame type] eq {source}} {
set line [dict get $frame line]
puts "\t[file tail [dict get $frame file]]:$line"
if {$line < 0} {
if {[dict exists $frame proc]} {
puts "\t\t[dict get $frame proc]"
}
puts "\t\t\[[dict get $frame cmd]\]"
}
}
}
}
# Destroying this object can result in a long chain of object
# destruction and eventually a stack overflow. Instead of destroying
# immediately, list the objects to be destroyed in
# math::exact::deleteStack, and destroy them only from the outermost
# stack level that's running 'unref'.
if {[incr refcount_ -1] <= 0} {
variable ::math::exact::deleteStack
# Is this the outermost level?
set queueActive [expr {[info exists deleteStack]}]
# Schedule this object's destruction
lappend deleteStack [self object]
if {!$queueActive} {
# At outermost level, destroy all scheduled objects.
# Destroying one may schedule another.
while {[llength $deleteStack] != 0} {
set obj [lindex $deleteStack end]
set deleteStack \
[lreplace $deleteStack[set deleteStack {}] end end]
$obj destroy
}
# Once everything quiesces, delete the list.
unset deleteStack
}
}
}
# The 'refcount' method returns the reference count of this object for
# debugging.
method refcount {} {
return $refcount_
}
destructor {
}
}
# An expression is a vector, a matrix applied to an expression,
# or a tensor applied to two expressions. The inner expressions
# may be constructed lazily.
oo::class create math::exact::Expression {
superclass math::exact::counted
# absorbed_, signAndMagnitude_, and leadingDigitAndRest_
# memoize the return values of the 'absorb', 'getSignAndMagnitude',
# and 'getLeadingDigitAndRest' methods.
variable absorbed_ signAndMagnitude_ leadingDigitAndRest_
# Constructor initializes refcount
constructor {} {
next
}
# Destructor releases memoized objects
destructor {
if {[info exists signAndMagnitude_]} {
[lindex $signAndMagnitude_ 1] unref
}
if {[info exists absorbed_]} {
$absorbed_ unref
}
if {[info exists leadingDigitAndRest_]} {
[lindex $leadingDigitAndRest_ 1] unref
}
next
}
# getSignAndMagnitude returns a two-element list:
# the sign matrix, which is one of ispos, isneg, isinf, and iszer,
# the magnitude, which is another exact real.
method getSignAndMagnitude {} {
if {![info exists signAndMagnitude_]} {
if {[my refinesM $::math::exact::ispos]} {
set signAndMagnitude_ \
[list $::math::exact::spos \
[[my applyM $::math::exact::ispos] ref]]
} elseif {[my refinesM $::math::exact::isneg]} {
set signAndMagnitude_ \
[list $::math::exact::sneg \
[[my applyM $::math::exact::isneg] ref]]
} elseif {[my refinesM $::math::exact::isinf]} {
set signAndMagnitude_ \
[list $::math::exact::sinf \
[[my applyM $::math::exact::isinf] ref]]
} elseif {[my refinesM $::math::exact::iszer]} {
set signAndMagnitude_ \
[list $::math::exact::szer \
[[my applyM $::math::exact::iszer] ref]]
} else {
set absorbed_ [my absorb]
set signAndMagnitude_ [$absorbed_ getSignAndMagnitude]
[lindex $signAndMagnitude_ 1] ref
}
}
return $signAndMagnitude_
}
# The 'getLeadingDigitAndRest' method accepts a flag for whether
# a digit must be extracted (1) or a rational number may be returned
# directly (0). It returns a two-element list: a digit matrix, which
# is one of $dpos, $dneg or $dzer, and an exact real representing
# the number by which the given digit matrix must be postmultiplied.
method getLeadingDigitAndRest {needDigit} {
if {![info exists leadingDigitAndRest_]} {
if {[my refinesM $::math::exact::idpos]} {
set leadingDigitAndRest_ \
[list $::math::exact::dpos \
[[my applyM $::math::exact::idpos] ref]]
} elseif {[my refinesM $::math::exact::idneg]} {
set leadingDigitAndRest_ \
[list $::math::exact::dneg \
[[my applyM $::math::exact::idneg] ref]]
} elseif {[my refinesM $::math::exact::idzer]} {
set leadingDigitAndRest_ \
[list $::math::exact::dzer \
[[my applyM $::math::exact::idzer] ref]]
} else {
set absorbed_ [my absorb]
set newval $absorbed_
$newval ref
set leadingDigitAndRest_ \
[$newval getLeadingDigitAndRest $needDigit]
if {[llength $leadingDigitAndRest_] >= 2} {
[lindex $leadingDigitAndRest_ 1] ref
}
$newval unref
}
}
return $leadingDigitAndRest_
}
# getInterval --
# Accumulates 'nDigits' digit matrices, and returns their product,
# which is a matrix representing the interval that the digits represent.
method getInterval {nDigits} {
lassign [my getSignAndMagnitude] interval e
$e ref
lassign [$e getLeadingDigitAndRest 1] ld f
set interval [math::exact::mdotm $interval $ld]
$f ref; $e unref; set e $f
set d $ld
while {[incr nDigits -1] > 0} {
lassign [$e getLeadingDigitAndRest 1] d f
set interval [math::exact::mdotm $interval $d]
$f ref; $e unref; set e $f
}
$e unref
return $interval
}
# asReal --
# Coerces an object from rational to real
#
# Parameters:
# None.
#
# Results:
# Returns this object
method asReal {} {self object}
# asFloat --
# Represents this number in E format, after accumulating 'relDigits'
# digit matrices.
method asFloat {relDigits} {
set v [[my asReal] ref]
set result [math::exact::mAsFloat [$v getInterval $relDigits]]
$v unref
return $result
}
# asPrint --
# Represents this number for printing. Represents rationals exactly,
# others after accumulating 'relDigits' digit matrices.
method asPrint {relDigits} {
tailcall math::exact::mAsFloat [my getInterval $relDigits]
}
# Derived classes are expected to implement the following methods:
# method dump {} {
# # Formats the object for debugging
# # Returns the formatted string
# }
method dump {} {
error "[info object class [self object]] does not implement the 'dump' method."
}
# method refinesM {m} {
# # Returns 1 if premultiplying by the matrix m refines this object
# # Returns 0 otherwise
# }
method refinesM {m} {
error "[info object class [self object]] does not implement the 'refinesM' method."
}
# method applyM {m} {
# # Premultiplies this object by the matrix m
# }
method applyM {m} {
error "[info object class [self object]] does not implement the 'applyM' method."
}
# method applyTLeft {t r} {
# # Computes the left product of the tensor t with this object, and
# # applies the result to the right operand r.
# # Returns a new exact real representing the product
# }
method applyTLeft {t r} {
error "[info object class [self object]] does not implement the 'applyTLeft' method."
}
# method applyTRight {t l} {
# # Computes the right product of the tensor t with this object, and
# # applies the result to the left operand l.
# # Returns a new exact real representing the product
# }
method applyTRight {t l} {
error "[info object class [self object]] does not implement the 'applyTRight' method."
}
# method absorb {} {
# # Absorbs the next subexpression or digit into this expression
# # Returns the result of absorption, which always represents a
# # smaller interval than this expression
# }
method absorb {} {
error "[info object class [self object]] does not implement the 'absorb' method."
}
# U- --
#
# Unary - applied to this object
#
# Results:
# Returns the negation.
method U- {} {
my ref
lassign [my getSignAndMagnitude] sA mA
set m [math::exact::mdotm {{-1 0} {0 1}} $sA]
set result [math::exact::Mstrict new $m $mA]
my unref
return $result
}; export U-
# + --
# Adds this object to another.
#
# Parameters:
# r - Right addend
#
# Results:
# Returns the sum
#
# Either object may be rational (an instance of V) or real (any other
# Expression).
#
# This method is a Consumer with respect to the current object and to r.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method + {r} {
return [$r E+ [self object]]
}; export +
# E+ --
# Adds two exact reals.
#
# Parameters:
# l - Left addend
#
# Results:
# Returns the sum.
#
# Neither object is an instance of V (that is, neither is a rational).
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method E+ {l} {
tailcall math::exact::+real $l [self object]
}; export E+
# V+ --
# Adds a rational and an exact real
#
# Parameters:
# l - Left addend
#
# Results:
# Returns the sum.
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method V+ {l} {
tailcall math::exact::+real $l [self object]
}; export V+
# - --
# Subtracts another object from this object
#
# Parameters:
# r - Subtrahend
#
# Results:
# Returns the difference
#
# Either object may be rational (an instance of V) or real (any other
# Expression).
#
# This method is a Consumer with respect to the current object and to r.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method - {r} {
return [$r E- [self object]]
}; export -
# E- --
# Subtracts this exact real from another
#
# Parameters:
# l - Minuend
#
# Results:
# Returns the difference
#
# Neither object is an instance of V (that is, neither is a rational).
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method E- {l} {
tailcall math::exact::-real $l [self object]
}; export E-
# V- --
# Subtracts this exact real from a rational
#
# Parameters:
# l - Minuend
#
# Results:
# Returns the difference
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method V- {l} {
tailcall math::exact::-real $l [self object]
}; export V-
# * --
# Multiplies this object by another.
#
# Parameters:
# r - Right argument to the multiplication
#
# Results:
# Returns the product
#
# Either object may be rational (an instance of V) or real (any other
# Expression).
#
# This method is a Consumer with respect to the current object and to r.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method * {r} {
return [$r E* [self object]]
}; export *
# E* --
# Multiplies two exact reals.
#
# Parameters:
# l - Left argument to the multiplication
#
# Results:
# Returns the product.
#
# Neither object is an instance of V (that is, neither is a rational).
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method E* {l} {
tailcall math::exact::*real $l [self object]
}; export E*
# V* --
# Multiplies a rational and an exact real
#
# Parameters:
# l - Left argument to the multiplication
#
# Results:
# Returns the product.
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method V* {l} {
tailcall math::exact::*real $l [self object]
}; export V*
# / --
# Divides this object by another.
#
# Parameters:
# r - Divisor
#
# Results:
# Returns the quotient
#
# Either object may be rational (an instance of V) or real (any other
# Expression).
#
# This method is a Consumer with respect to the current object and to r.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method / {r} {
return [$r E/ [self object]]
}; export /
# E/ --
# Divides two exact reals.
#
# Parameters:
# l - Dividend
#
# Results:
# Returns the quotient.
#
# Neither object is an instance of V (that is, neither is a rational).
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method E/ {l} {
tailcall math::exact::/real $l [self object]
}; export E/
# V/ --
# Divides a rational by an exact real
#
# Parameters:
# l - Dividend
#
# Results:
# Returns the product.
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method V/ {l} {
tailcall math::exact::/real $l [self object]
}; export V/
# ** -
# Raises an exact real to a power
#
# Parameters:
# r - Exponent
#
# Results:
# Returns the power.
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method ** {r} {
tailcall $r E** [self object]
}; export **
# E** -
# Raises an exact real to the power of an exact real
#
# Parameters:
# l - Base to exponentiate
#
# Results:
# Returns the power
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method E** {l} {
# This doesn't work as a tailcall, because this object could have
# been destroyed by the time we're trying to invoke the tailcall,
# and that will keep command names from resolving because the
# tailcall mechanism will try to find them in the destroyed namespace.
return [math::exact::function::exp \
[my * [math::exact::function::log $l]]]
}; export E**
# V** -
# Raises a rational to the power of an exact real
#
# Parameters:
# l - Base to exponentiate
#
# Results:
# Returns the power
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method V** {l} {
# This doesn't work as a tailcall, because this object could have
# been destroyed by the time we're trying to invoke the tailcall,
# and that will keep command names from resolving because the
# tailcall mechanism will try to find them in the destroyed namespace.
return [math::exact::function::exp \
[my * [math::exact::function::log $l]]]
}; export V**
# sqrt --
#
# Create an expression representing the square root of an exact
# real argument.
#
# Results:
# Returns the square root.
#
# This procedure is a Consumer with respect the the argument and a
# Constructor with respect to the result, returning a zero-reference
# result.
method sqrt {} {
variable ::math::exact::isneg
variable ::math::exact::idzer
variable ::math::exact::idneg
variable ::math::exact::idpos
# The algorithm is a modified Newton-Raphson from the Potts and
# Menissier-Morain papers. The algorithm for sqrt(x) converges
# rapidly only if x is close to 1, so we rescale to make sure that
# x is between 1/3 and 3. Specifically:
# - if x is known to be negative (that is, if $idneg refines it)
# then error.
# - if x is close to 1, $idzer refines it, and we can calculate the
# square root directly.
# - if x is less than 1, $idneg refines it, and we calculate sqrt(4*x)
# and multiply by 1/2.
# - if x is greater than 1, $idpos refines it, and we calculate
# sqrt(x/4) and multiply by 2.
# - if none of the above hold, we have insufficient information about
# the magnitude of x and perform a digit exchange.
my ref
if {[my refinesM $isneg]} {
# Negative argument is an error
return -code error -errorcode {MATH EXACT SQRTNEGATIVE} \
"sqrt of negative argument"
} elseif {[my refinesM $idzer]} {
# Argument close to 1
set res [::math::exact::SqrtWorker new [self object]]
} elseif {[my refinesM $idneg]} {
# Small argument - multiply by 4 and halve the square root
set y [[my applyM {{4 0} {0 1}}] ref]
set z [[$y sqrt] ref]
set res [$z applyM {{1 0} {0 2}}]
$z unref
$y unref
} elseif {[my refinesM $idpos]} {
# Large argument - divide by 4 and double the square root
set y [[my applyM {{1 0} {0 4}}] ref]
set z [[$y sqrt] ref]
set res [$z applyM {{2 0} {0 1}}]
$z unref
$y unref
} else {
# Unclassified argyment. Perform a digit exchange and try again.
set y [[my absorb] ref]
set res [$y sqrt]
$y unref
}
my unref
return $res
}
}
# math::exact::V --
# Vector object
#
# A vector object represents a rational number. It is always strict; no
# methods need to perform lazy evaluation.
oo::class create math::exact::V {
superclass math::exact::Expression
# v_ is the vector represented.
variable v_
# Constructor accepts the vector as a two-element list {n d}
# where n is by convention the numerator and d the denominator.
# It is expected that either n or d is nonzero, and that gcd(n,d) == 0.
# It is also expected that the fraction will be in lowest terms.
constructor {v} {
next
set v_ $v
}
# Destructor need only update reference counts
destructor {
next
}
# If a rational is acceptable, getLeadingDigitAndRest may simply return
# this object.
method getLeadingDigitAndRest {needDigit} {
if {$needDigit} {
return [next $needDigit]
} else {
# Note that the result MUST NOT be memoized, as that would lead
# to a circular reference, breaking the refcount system.
return [self object]
}
}
# Print this object
method dump {} {
return "V($v_)"
}
# Test if the vector refines when premultiplied by a matrix
method refinesM {m} {
return [math::exact::vrefines [math::exact::mdotv $m $v_]]
}
# Apply a matrix to the vector.
# Precondition: v is in lowest terms
method applyM {m} {
set d [math::exact::determinant $m]
if {$d < 0} { set d [expr {-$d}] }
if {($d & ($d-1)) != 0} {
return [math::exact::V new \
[math::exact::vreduce [math::exact::mdotv $m $v_]]]
} else {
return [math::exact::V new \
[math::exact::vscale [math::exact::mdotv $m $v_]]]
}
}
# Left-multiply a tensor t by the vector, and apply the result to
# an expression 'r'
method applyTLeft {t r} {
set u [math::exact::mscale [math::exact::tleftv $t $v_]]
set det [math::exact::determinant $u]
if {$det < 0} { set det [expr {-$det}] }
if {($det & ($det-1)) == 0} {
# determinant is a power of 2
set res [$r applyM $u]
return $res
} else {
return [math::exact::Mstrict new $u $r]
}
}
# Right-multiply a tensor t by the vector, and apply the result
# to an expression 'l'
method applyTRight {t l} {
set u [math::exact::mscale [math::exact::trightv $t $v_]]
set det [math::exact::determinant $u]
if {$det < 0} { set det [expr {-$det}] }
if {($det & ($det-1)) == 0} {
# determinant is a power of 2
set res [$l applyM $u]
return $res
} else {
return [math::exact::Mstrict new $u $l]
}
}
# Get the vector components
method getV {} {
return $v_
}
# Get the (zero-width) interval that the vector represents.
method getInterval {nDigits} {
return [list $v_ $v_]
}
# Absorb more information
method absorb {} {
# Nothing should ever call this, because a vector's information is
# already complete.
error "cannot absorb anything into a vector"
}
# asReal --
# Coerces an object from rational to real
#
# Parameters:
# None.
#
# Results:
# Returns this object converted to an exact real.
method asReal {} {
my ref
lassign [my getSignAndMagnitude] s m
set result [math::exact::Mstrict new $s $m]
my unref
return $result
}
# U- --
#
# Unary - applied to this object
#
# Results:
# Returns the negation.
method U- {} {
my ref
lassign $v_ p q
set result [math::exact::V new [list [expr {-$p}] $q]]
my unref
return $result
}; export U-
# + --
# Adds a vector to another object
#
# Parameters:
# r - Right addend
#
# Results:
# Returns the sum
#
# The right-hand addend may be rational (an instance of V) or real
# (any other Expression).
#
# This method is a Consumer with respect to the current object and to r.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method + {r} {
return [$r V+ [self object]]
}; export +
# E+ --
# Adds an exact real and a vector
#
# Parameters:
# l - Left addend
#
# Results:
# Returns the sim.
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method E+ {l} {
tailcall math::exact::+real $l [self object]
}; export E+
# V+ --
# Adds two rationals
#
# Parameters:
# l - Rational multiplicand
#
# Results:
# Returns the product.
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method V+ {l} {
my ref
$l ref
lassign [$l getV] a b
lassign $v_ c d
$l unref
my unref
return [math::exact::V new \
[math::exact::vreduce \
[list [expr {$a*$d+$b*$c}] [expr {$b*$d}]]]]
}; export V+
# - --
# Subtracts another object from a vector
#
# Parameters:
# r - Subtrahend
#
# Results:
# Returns the difference
#
# The right-hand operand may be rational (an instance of V) or real
# (any other Expression).
#
# This method is a Consumer with respect to the current object and to r.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method - {r} {
return [$r V- [self object]]
}; export -
# E- --
# Subtracts this exact real from a rational
#
# Parameters:
# l - Left addend
#
# Results:
# Returns the difference.
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method E- {l} {
tailcall math::exact::-real $l [self object]
}; export E-
# V- --
# Subtracts this rational from another
#
# Parameters:
# l - Rational minuend
#
# Results:
# Returns the difference.
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method V- {l} {
my ref
$l ref
lassign [$l getV] a b
lassign $v_ c d
$l unref
my unref
return [math::exact::V new \
[math::exact::vreduce \
[list [expr {$a*$d-$b*$c}] [expr {$b*$d}]]]]
}; export V-
# * --
# Multiplies a rational by another object
#
# Parameters:
# r - Right-hand factor
#
# Results:
# Returns the difference
#
# The right-hand operand may be rational (an instance of V) or real
# (any other Expression).
#
# This method is a Consumer with respect to the current object and to r.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method * {r} {
return [$r V* [self object]]
}; export *
# E* --
# Multiplies an exact real and a rational
#
# Parameters:
# l - Multiplicand
#
# Results:
# Returns the product.
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method E* {l} {
tailcall math::exact::*real $l [self object]
}; export E*
# V* --
# Multiplies two rationals
#
# Parameters:
# l - Rational multiplicand
#
# Results:
# Returns the product.
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method V* {l} {
my ref
$l ref
lassign [$l getV] a b
lassign $v_ c d
$l unref
my unref
return [math::exact::V new \
[math::exact::vreduce \
[list [expr {$a*$c}] [expr {$b*$d}]]]]
}; export V*
# / --
# Divides this object by another.
#
# Parameters:
# r - Divisor
#
# Results:
# Returns the quotient
#
# Either object may be rational (an instance of V) or real (any other
# Expression).
#
# This method is a Consumer with respect to the current object and to r.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method / {r} {
return [$r V/ [self object]]
}; export /
# E/ --
# Divides an exact real and a rational
#
# Parameters:
# l - Dividend
#
# Results:
# Returns the quotient.
#
# The divisor is not a rationa.
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method E/ {l} {
tailcall math::exact::/real $l [self object]
}; export E/
# V/ --
# Divides two rationals
#
# Parameters:
# l - Dividend
#
# Results:
# Returns the quotient.
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method V/ {l} {
my ref
$l ref
lassign [$l getV] a b
lassign $v_ c d
set result [math::exact::V new \
[math::exact::vreduce \
[list [expr {$a*$d}] [expr {$b*$c}]]]]
$l unref
my unref
return $result
}; export V/
# ** -
# Raises a rational to a power
#
# Parameters:
# r - Exponent
#
# Results:
# Returns the power.
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method ** {r} {
tailcall $r V** [self object]
}; export **
# E** -
# Raises an exact real to a rational power
#
# Parameters:
# l - Base to exponentiate
#
# Results:
# Returns the power
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method E** {l} {
# Extract numerator and demominator of the exponent, and consume the
# exponent.
my ref
lassign $v_ c d
my unref
# Normalize the sign of the exponent
if {$d < 0} {
set c [expr {-$c}]
set d [expr {-$d}]
}
# Don't choke if somehow a 0/0 gets here.
if {$c == 0 && $d == 0} {
$l unref
return -code error -errorcode "MATH EXACT ZERODIVZERO" \
"zero divided by zero"
}
# Handle integer powers
if {$d == 1} {
return [math::exact::real**int $l $c]
}
# Other rational powers come here.
# We know that $d > 0, and we're not just doing
# exponentiation by an integer
return [math::exact::real**rat $l $c $d]
}; export E**
# V** -
# Raises a rational base to a rational power
#
# Parameters:
# l - Base to exponentiate
#
# Results:
# Returns the power
#
# This method is a Consumer with respect to the current object and to l.
# It is a Constructor with respect to its result, returning a zero-ref
# object.
method V** {l} {
# Extract the numerator and denominator of the base and consume
# the base.
$l ref
lassign [$l getV] a b
$l unref
# Extract numerator and demominator of the exponent, and consume the
# exponent.
my ref
lassign $v_ c d
my unref
# Normalize the signs of the arguments
if {$b < 0} {
set a [expr {-$a}]
set b [expr {-$b}]
}
if {$d < 0} {
set c [expr {-$c}]
set d [expr {-$d}]
}
# Don't choke if somehow a 0/0 gets here.
if {$a == 0 && $b == 0 || $c == 0 && $d == 0} {
return -code error -errorcode "MATH EXACT ZERODIVZERO" \
"zero divided by zero"
}
# b >= 0 and d >= 0
if {$a == 0} {
if {$c == 0} {
return -code error -errorcode "MATH EXACT ZEROPOWZERO" \
"zero to zero power"
} elseif {$d == 0} {
return -code error -errorcode "MATH EXACT ZEROPOWINF" \
"zero to infinite power"
} else {
return [math::exact::V new {0 1}]
}
}
# a != 0, b >= 0, d >= 0
if {$b == 0} {
if {$c == 0} {
return -code error -errorcode "MATH EXACT INFPOWZERO" \
"infinity to zero power"
} elseif {$c < 0} {
return [math::exact::V new {0 1}]
} else {
return [math::exact::V new {1 0}]
}
}
# a != 0, b > 0, d >= 0
if {$c == 0} {
return [math::exact::V new {1 1}]
}
# handle integer exponents
if {$d == 1} {
return [math::exact::rat**int $a $b $c]
}
# a != 0, b > 0, c != 0, d >= 0
return [math::exact::rat**rat $a $b $c $d]
}; export V**
# sqrt --
#
# Calculates the square root of this object
#
# Results:
# Returns the square root as an exact real.
#
# This method is a Consumer with respect to this object and a Constructor
# with respect to the result, returning a zero-ref object.
method sqrt {} {
my ref
if {([lindex $v_ 0] < 0) ^ ([lindex $v_ 1] < 0)} {
return -code error -errorCode "MATH EXACT SQRTNEGATIVE" \
{square root of negative argument}
}
set result [::math::exact::Sqrtrat new {*}$v_]
my unref
return $result
}
}
# math::exact::M --
# Expression consisting of a matrix times another expression
#
# The matrix {a c} {b d} represents the homography (a*x + b) / (c*x + d).
#
# The inner expression may need to be evaluated lazily. Whether evaluation
# is strict or lazy, the 'e' method will return the expression.
oo::class create math::exact::M {
superclass math::exact::Expression
# m_ is the matrix; e_ the inner expression; absorbed_ a cache of the
# result of the 'absorb' method.
variable m_ e_ absorbed_
# constructor accepts the matrix only. The expression is managed in
# derived classes.
constructor {m} {
next
set m_ $m
}
# destructor deletes the memoized expression if one has been stored.
# The base class destructor handles cleaning up the result of 'absorb'
destructor {
if {[info exists e_]} {
$e_ unref
}
next
}
# Test if the matrix refines when premultiplied by another matrix n
method refinesM {n} {
return [math::exact::mrefines [math::exact::mdotm $n $m_]]
}
# Premultiply the matrix by another matrix n
method applyM {n} {
set d [math::exact::determinant $n]
if {$d < 0} {set d [expr {-$d}]}
if {($d & ($d-1)) != 0} {
return [math::exact::Mstrict new \
[math::exact::mreduce [math::exact::mdotm $n $m_]] \
[my e]]
} else {
return [math::exact::Mstrict new \
[math::exact::mscale [math::exact::mdotm $n $m_]] \
[my e]]
}
}
# Compute the left product of a tensor t with this matrix, and
# apply the resulting tensor to the expression 'r'.
method applyTLeft {t r} {
return [math::exact::Tstrict new \
[math::exact::tscale [math::exact::tleftm $t $m_]] \
1 [my e] $r]
}
# Compute the right product of a tensor t with this matrix, and
# apply the resulting tensor to the expression 'l'.
method applyTRight {t l} {
return [math::exact::Tstrict new \
[math::exact::tscale [math::exact::trightm $t $m_]] \
0 $l [my e]]
}
# Absorb a digit into this matrix.
method absorb {} {
if {![info exists absorbed_]} {
set absorbed_ [[[my e] applyM $m_] ref]
}
return $absorbed_
}
# Derived classes are expected to implement:
# method e {} {
# # Returns the expression to which this matrix is applied.
# # Optionally memoizes the result in $e_.
# }
method e {} {
error "[info object class [self object]] does not implement the 'e' method."
}
}
# math::exact::Mstrict --
#
# Expression representing the product of a matrix and another
# expression.
#
# In this version of the class, the expression is known in advance -
# evaluated strictly.
oo::class create math::exact::Mstrict {
superclass math::exact::M
# m_ is the matrix.
# e_ is the expression
# absorbed_ caches the result of the 'absorb' method.
variable m_ e_ absorbed_
# Constructor accepts the matrix and the expression to which
# it applies.
constructor {m e} {
next $m
set e_ [$e ref]
}
# All the heavy lifting of destruction is performed in the base class.
destructor {
next
}
# The 'e' method returns the expression.
method e {} {
return $e_
}
# The 'dump' method formats this object for debugging.
method dump {} {
return "M($m_,[$e_ dump])"
}
}
# math::exact::T --
# Expression representing a 2x2x2 tensor of the third order,
# applied to two subexpressions.
oo::class create math::exact::T {
superclass math::exact::Expression
# t_ - the tensor
# i_ A flag indicating whether the next 'absorb' should come from the
# left (0) or the right (1).
# l_ - the left subexpression
# r_ - the right subexpression
# absorbed_ - the result of an 'absorb' operation
variable t_ i_ l_ r_ absorbed_
# constructor accepts the tensor and the initial state for absorption
constructor {t i} {
next
set t_ $t
set i_ $i
}
# destructor removes cached items.
destructor {
if {[info exists l_]} {
$l_ unref
}
if {[info exists r_]} {
$r_ unref
}
next; # The base class will clean up absorbed_
}
# refinesM --
#
# Tests if this tensor refines when premultiplied by a matrix
#
# Parameters:
# m - matrix to test
#
# Results:
# Returns a Boolean indicator that is true if the product refines.
method refinesM {m} {
return [math::exact::trefines [math::exact::mdott $m $t_]]
}
# applyM --
#
# Left multiplies this tensor by a matrix
#
# Parameters:
# m - Matrix to multiply
#
# Results:
# Returns the product
#
# This operation has the side effect of making the product strict at
# the uppermost level, by calling [my l] [my r] to instantiate the
# subexpressions.
method applyM {m} {
set d [math::exact::determinant $m]
if {$d < 0} {set d [expr {-$d}]}
if {($d & ($d-1)) != 0} {
return [math::exact::Tstrict new \
[math::exact::treduce [math::exact::mdott $m $t_]] \
0 [my l] [my r]]
} else {
return [math::exact::Tstrict new \
[math::exact::tscale [math::exact::mdott $m $t_]] \
0 [my l] [my r]]
}
}
# absorb --
#
# Absorbs information from the subexpressions.
#
# Results:
# Returns a copy of the current object, with information from
# at least one subexpression absorbed so that more information is
# immediately available.
method absorb {} {
if {![info exists absorbed_]} {
if {[math::exact::trefines $t_]} {
lassign [math::exact::trans $t_] m n
set side [math::exact::mdisjointm $m $n]
} else {
set side $i_
}
if {$side} {
set absorbed_ [[[my r] applyTRight $t_ [my l]] ref]
} else {
set absorbed_ [[[my l] applyTLeft $t_ [my r]] ref]
}
}
return $absorbed_
}
# applyTRight --
#
# Right-multiplies a tensor by this expression
#
# Results:
# Returns 't' left-product l right-product $r_.
method applyTRight {t l} {
# This is the hard case of digit exchange. We have to
# get the leading digit from this tensor, absorbing as
# necessary, right-multiply it into the tensor $t, and
# compose the new object.
#
# Note that unless 'rest' is empty, 'ld' is a digit matrix,
# so we need to check only for powers of 2 when reducing to
# lowest terms
lassign [my getLeadingDigitAndRest 0] ld rest
if {$rest eq {}} {
set u [math::exact::mreduce [math::exact::trightv $t $ld]]
return [math::exact::Mstrict new $u $l]
} else {
set u [math::exact::tscale [math::exact::trightm $t $ld]]
return [math::exact::Tstrict new $u 0 $l $rest]
}
}
# applyTLeft --
#
# Left-multiplies a tensor by this expression
#
# Results:
# Returns 't' left-product $l_ right-product 'r'
method applyTLeft {t r} {
# This is the hard case of digit exchange. We have to
# get the leading digit from this tensor, absorbing as
# necessary, left-multiply it into the tensor $t, and
# compose the new object
#
# Note that unless 'rest' is empty, 'ld' is a digit matrix,
# so we need to check only for powers of 2 when reducing to
# lowest terms
lassign [my getLeadingDigitAndRest 0] ld rest
if {$rest eq {}} {
set u [math::exact::mreduce [math::exact::tleftv $t $ld]]
return [math::exact::Mstrict $u $r]
} else {
set u [math::exact::tscale [math::exact::tleftm $t $ld]]
return [math::exact::Tstrict new $u 1 $rest $r]
}
}
# Derived classes are expected to implement the following:
# l --
#
# Returns the left operand
method l {} {
error "[info object class [self object]] does not implement the 'l' method"
}
# r --
#
# Returns the right operand
method r {} {
error "[info object class [self object]] does not implement the 'r' method"
}
}
# math::exact::Tstrict --
#
# A strict tensor - one where the subexpressions are both known in
# advance.
oo::class create math::exact::Tstrict {
superclass math::exact::T
# t_ - the tensor
# i_ A flag indicating whether the next 'absorb' should come from the
# left (0) or the right (1).
# l_ - the left subexpression
# r_ - the right subexpression
# absorbed_ - the result of an 'absorb' operation
variable t_ i_ l_ r_ absorbed_
# constructor accepts the tensor, the absorption state, and the
# left and right operands.
constructor {t i l r} {
next $t $i
set l_ [$l ref]
set r_ [$r ref]
}
# base class handles all cleanup
destructor {
next
}
# l --
#
# Returns the left operand
method l {} {
return $l_
}
# r --
#
# Returns the right operand
method r {} {
return $r_
}
# dump --
#
# Formats this object for debugging
method dump {} {
return T($t_,$i_\;[$l_ dump],[$r_ dump])
}
}
# math::exact::opreal --
#
# Applies a bihomography (bilinear fractional transformation)
# to two expressions.
#
# Parameters:
# op - Tensor {{{a b} {c d}} {{e f} {g h}}} representing the operation
# x - left operand
# y - right operand
#
# Results:
# Returns an expression that represents the form:
# (axy + cx + ey + g) / (bxy + dx + fy + h)
#
# Notes:
# Note that the four basic arithmetic operations are included here.
# In addition, this procedure may be used to craft other useful
# transformations. For example, (1 - u**2) / (1 + u**2)
# could be constructed as [opreal {{{-1 1} {0 0}} {{0 0} {1 1}}} $u $u]
proc math::exact::opreal {op x y {kludge {}}} {
# split x and y into sign and magnitude
$x ref; $y ref
lassign [$x getSignAndMagnitude] sx mx
lassign [$y getSignAndMagnitude] sy my
$mx ref; $my ref
$x unref; $y unref
set t [tleftm [trightm $op $sy] $sx]
set r [math::exact::Tstrict new $t 0 $mx $my]
$mx unref; $my unref
return $r
}
# math::exact::+real --
# math::exact::-real --
# math::exact::*real --
# math::exact::/real --
#
# Sum, difference, product and quotient of exact reals
#
# Parameters:
# x - First operand
# y - Second operand
#
# Results:
# Returns x+y, x-y, x*y or x/y as requested.
proc math::exact::+real {a b} { variable tadd; return [opreal $tadd $a $b] }
proc math::exact::-real {a b} { variable tsub; return [opreal $tsub $a $b] }
proc math::exact::*real {a b} { variable tmul; return [opreal $tmul $a $b] }
proc math::exact::/real {a b} { variable tdiv; return [opreal $tdiv $a $b] }
# real --
#
# Coerce an argument to exact-real (possibly from rational)
#
# Parameters:
# x - Argument to coerce.
#
# Results:
# Returns the argument coerced to a real.
#
# This operation either does nothing and returns its argument, or is a
# Consumer with respect to its argument and a Constructor with respect to
# its result.
proc math::exact::function::real {x} {
tailcall $x asReal
}
# SqrtWorker --
#
# Class to calculate the square root of a real.
oo::class create math::exact::SqrtWorker {
superclass math::exact::T
variable l_ r_
# e - The expression whose square root should be calculated.
# e should be between close to 1 for good performance. The
# 'sqrtreal' procedure below handles the scaling.
constructor {e} {
next {{{1 0} {2 1}} {{1 2} {0 1}}} 0
set l_ [$e ref]
}
method l {} {
return $l_
}
method r {} {
if {![info exists r_]} {
set r_ [[math::exact::SqrtWorker new $l_] ref]
}
return $r_
}
method dump {} {
return "sqrt([$l_ dump])"
}
}
# sqrt --
#
# Returns the square root of a number
#
# Parameters:
# x - Exact real number whose square root is needed.
#
# Results:
# Returns the square root as an exact real.
#
# The number may be rational or real. There is a special optimization used
# if the number is rational
proc math::exact::function::sqrt {x} {
tailcall $x sqrt
}
# ExpWorker --
#
# Class that evaluates the exponential function for small exact reals
oo::class create math::exact::ExpWorker {
superclass math::exact::T
variable t_ l_ r_ n_
# Constructor --
#
# Parameters:
# e - Argument whose exponential is to be computed. (What is
# actually passed in is S0'(x) = (1+x)/(1-x))
# n - Number of the convergent of the continued fraction
#
# This class is implemented by expanding the continued fraction
# as needed for precision. Each successive step becomes a new right
# subexpression of the tensor product.
constructor {e {n 0}} {
next [list \
[list \
[list [expr {2*$n + 2}] [expr {2*$n + 1}]] \
[list [expr {2*$n + 1}] [expr {2*$n}]]] \
[list \
[list [expr {2*$n}] [expr {2*$n + 1}]] \
[list [expr {2*$n + 1}] [expr {2*$n + 2}]]]] 0
set l_ [$e ref]
set n_ [expr {$n + 1}]
}
# l --
#
# Returns the left subexpression; that is, the argument to the
# exponential
method l {} {
return $l_
}
# r --
# Returns the right subexpresison - the next convergent, creating it
# if necessary
method r {} {
if {![info exists r_]} {
set r_ [[math::exact::ExpWorker new $l_ $n_] ref]
}
return $r_
}
# dump --
#
# Displays this object for debugging
method dump {} {
return ExpWorker([$l_ dump],[expr {$n_-1}])
}
}
# exp --
#
# Evaluates the exponential function of an exact real
#
# Parameters:
# x - Quantity to be exponentiated
#
# Results:
# Returns the exact real function value.
#
# This procedure is a Consumer with respect to its argument and a
# Constructor with respect to its result, returning a zero-ref object.
proc math::exact::function::exp {x} {
variable ::math::exact::iszer
variable ::math::exact::tmul
# The continued fraction converges only for arguments between -1 and 1.
# If $iszer refines the argument, then it is in the correct range and
# we launch ExpWorker to evaluate the continued fraction. If the argument
# is outside the range [-1/2..1/2], then we evaluate exp(x/2) and square
# the result. If neither of the above is true, then we perform a digit
# exchange to get more information about the magnitude of the argument.
$x ref
if {[$x refinesM $iszer]} {
# Argument's absolute value is small - evaluate the exponential
set y [$x applyM $iszer]
set result [ExpWorker new $y]
} elseif {[$x refinesM {{2 2} {-1 1}}]} {
# Argument's absolute value is large - evaluate exp(x/2)**2
set xover2 [$x applyM {{1 0} {0 2}}]
set expxover2 [exp $xover2]
set result [*real $expxover2 $expxover2]
} else {
# Argument's absolute value is uncharacterized - perform a digit
# exchange to get more information.
set result [exp [$x absorb]]
}
$x unref
return $result
}
# LogWorker --
#
# Helper class for evaluating logarithm of an exact real argument.
#
# The algorithm used is a continued fraction representation from Peter Potts's
# paper. This worker evaluates the second and subsequent convergents. The
# first convergent is in the 'log' procedure below, and follows a different
# pattern from the rest of them.
oo::class create math::exact::LogWorker {
superclass math::exact::T
variable t_ l_ r_ n_
# Constructor -
#
# Parameters:
# e - Argument whose log is to be extracted
# n - Number of the convergent.
constructor {e {n 1}} {
next [list \
[list \
[list $n 0] \
[list [expr {2*$n + 1}] [expr {$n+1}]]] \
[list \
[list [expr {$n + 1}] [expr {2*$n + 1}]] \
[list 0 $n]]] 0
set l_ [$e ref]
set n_ [expr {$n + 1}]
}
# l -
# Returns the argument whose log is to be extracted
method l {} {
return $l_
}
# r -
# Returns the next convergent, constructing it if necessary.
method r {} {
if {![info exists r_]} {
set r_ [[math::exact::LogWorker new $l_ $n_] ref]
}
return $r_
}
# dump -
# Dumps this object for debugging
method dump {} {
return LogWorker([$l_ dump],[expr {$n_-1}])
}
}
# log -
#
# Calculates the natural logarithm of an exact real argument.
#
# Parameters:
# x - Quantity whose log is to be extracted.
#
# Results:
# Returns the logarithm
#
# This procedure is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a zero-ref object.
proc math::exact::function::log {x} {
variable ::math::exact::ispos
variable ::math::exact::isneg
variable ::math::exact::idpos
variable ::math::exact::idneg
variable ::math::exact::log2
# If x is between 1/2 and 2, the continued fraction will converge. If
# y = LogWorker(x), then log(x) = (xy + x - y - 1)/(x + y), and the
# latter function is a bihomography that can be evaluated by 'opreal'
# directly.
#
# If x is negative, that's an error.
# If x > 1, idpos will refine it, and we compute log(x/2) + log(2)
# If x < 1, idneg will refine it, and we compute log(2x) - log(2)
# If none of the above can be proven, perform a digit exchange and
# try again.
$x ref
if {[$x refinesM {{2 -1} {-1 2}}]} {
# argument in bounds
set result [math::exact::opreal {{{1 0} {1 1}} {{-1 1} {-1 0}}} \
$x \
[LogWorker new $x]]
} elseif {[$x refinesM $isneg]} {
# domain error
return -code error -errorcode {MATH EXACT LOGNEGATIVE} \
"log of negative argument"
} elseif {[$x refinesM $idpos]} {
# large argument, reduce it and try again
set result [+real [function::log [$x applyM {{1 0} {0 2}}]] $log2]
} elseif {[$x refinesM $idneg]} {
# small argument, increase it and try again
set result [-real [function::log [$x applyM {{2 0} {0 1}}]] $log2]
} else {
# too little information, perform digit exchange.
set result [function::log [$x absorb]]
}
$x unref
return $result
}
# TanWorker --
#
# Auxiliary function for tangent of an exact real argument
#
# This class develops the second and subsequent convergents of the continued
# fraction expansion in Potts's paper
oo::class create math::exact::TanWorker {
superclass math::exact::T
variable t_ l_ r_ n_
# Constructor -
#
# Parameters:
# e - S0'(x) = (1+x)/(1-x), where we wish to evaluate tan(x).
# n - Ordinal position of the convergent
constructor {e {n 1}} {
next [list \
[list \
[list [expr {2*$n + 1}] [expr {2*$n + 3}]] \
[list [expr {2*$n - 1}] [expr {2*$n + 1}]]] \
[list \
[list [expr {2*$n + 1}] [expr {2*$n - 1}]] \
[list [expr {2*$n + 3}] [expr {2*$n + 1}]]]] 0
set l_ [$e ref]
set n_ [expr {$n + 1}]
}
# l -
# Returns the argument S0'(x)
method l {} {
return $l_
}
# r -
# Returns the next convergent, constructing it if necessary
method r {} {
if {![info exists r_]} {
set r_ [[math::exact::TanWorker new $l_ $n_] ref]
}
return $r_
}
# dump -
# Displays this object for debugging
method dump {} {
return TanWorker([$l_ dump],[expr {$n_-1}])
}
}
# tan --
# Tangent of an exact real argument
#
# Parameters:
# x - Quantity whose tangent is to be computed.
#
# Results:
# Returns the tangent
#
# This procedure is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a zero-ref object.
proc math::exact::function::tan {x} {
variable ::math::exact::iszer
# If |x| < 1, then we use Potts's formula for the tangent.
# If |x| > 1/2, then we compute y = tan(x/2) and then use the
# trig identity tan(x) = 2*y/(1-y**2), recognizing that the latter
# expression can be expressed as a bihomography applied to y and itself,
# allowing opreal to do the job.
# If neither can be proven, we perform a digit exchange to get more
# information.
# tan((2*n+1)*pi/2), for n an integer, is a well-behaved pole.
# In particular, 1/tan(pi/2) will correctly return zero.
$x ref
if {[$x refinesM $iszer]} {
set xx [$x applyM $iszer]
set result [math::exact::Tstrict new {{{1 2} {1 0}} {{-1 0} {-1 2}}} 0 \
$xx [TanWorker new $xx]]
} elseif {[$x refinesM {{2 2} {-1 1}}]} {
set xover2 [$x applyM {{1 0} {0 2}}]
set tanxover2 [function::tan $xover2]
set result [opreal {{{0 -1} {1 0}} {{1 0} {0 1}}} $tanxover2 $tanxover2]
} else {
set result [function::tan [$x absorb]]
}
$x unref
return $result
}
# sin --
# Sine of an exact real argument
#
# Parameters:
# x - Quantity whose sine is to be computed.
#
# Results:
# Returns the sine
#
# This procedure is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a zero-ref object.
proc math::exact::function::sin {x} {
$x ref
set tanxover2 [tan [$x applyM {{1 0} {0 2}}]]
$x unref
return [opreal {{{0 1} {1 0}} {{1 0} {0 1}}} $tanxover2 $tanxover2]
}
# cos --
# Cosine of an exact real argument
#
# Parameters:
# x - Quantity whose cosine is to be computed.
#
# Results:
# Returns the cosine
#
# This procedure is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a zero-ref object.
proc math::exact::function::cos {x} {
$x ref
set tanxover2 [tan [$x applyM {{1 0} {0 2}}]]
$x unref
return [opreal {{{-1 1} {0 0}} {{0 0} {1 1}}} $tanxover2 $tanxover2]
}
# AtanWorker --
#
# Auxiliary function for arctangent of an exact real argument
#
# This class develops the second and subsequent convergents of the continued
# fraction expansion in Potts's paper. The argument lies in [-1,1].
oo::class create math::exact::AtanWorker {
superclass math::exact::T
variable t_ l_ r_ n_
# Constructor -
#
# Parameters:
# e - S0(x) = (x-1)/(x+1), where we wish to evaluate atan(x).
# n - Ordinal position of the convergent
constructor {e {n 1}} {
next [list \
[list \
[list [expr {2*$n + 1}] [expr {$n + 1}]] \
[list $n 0]] \
[list \
[list 0 $n] \
[list [expr {$n + 1}] [expr {2*$n + 1}]]]] 0
set l_ [$e ref]
set n_ [expr {$n + 1}]
}
# l -
# Returns the argument S0(x)
method l {} {
return $l_
}
# r -
# Returns the next convergent, constructing it if necessary
method r {} {
if {![info exists r_]} {
set r_ [[math::exact::AtanWorker new $l_ $n_] ref]
}
return $r_
}
# dump -
# Displays this object for debugging
method dump {} {
return AtanWorker([$l_ dump],[expr {$n_-1}])
}
}
# atanS0 -
#
# Evaluates the arctangent of S0(x) = (x-1)/(x+1)
#
# Parameters:
# x - Exact real argumetn
#
# Results:
# Returns atan((x-1)/(x+1))
#
# This function is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a 0-reference object.
proc math::exact::atanS0 {x} {
return [opreal {{{1 2} {1 0}} {{-1 0} {-1 2}}} $x [AtanWorker new $x]]
}
# atan -
#
# Arctangent of an exact real
#
# Parameters:
# x - Exact real argument
#
# Results:
# Returns atan(x)
#
# This function is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a 0-reference object.
#
# atan(1/0) is undefined and may cause an infinite loop.
proc math::exact::function::atan {x} {
# TODO - find p/q close to the real number x - can be done by
# getting a few digits - and do
# arctan(p/q + eps) = arctan(p/q) + arctan(q**2*eps/(p*q*eps+p**q+q**2))
# using [$eps applyM] to compute the argument of the second arctan
variable ::math::exact::szer
variable ::math::exact::spos
variable ::math::exact::sinf
variable ::math::exact::sneg
variable ::math::exact::pi
# Four cases, depending on which octant the arctangent lies in.
$x ref
lassign [$x getSignAndMagnitude] signum mag
$mag ref
$x unref
set aS0x [atanS0 $mag]
$mag unref
if {$signum eq $szer} {
# -1 < x < 1
return $aS0x
} elseif {$signum eq $spos} {
# x > 0
return [opreal {{{0 0} {4 0}} {{1 0} {0 4}}} $aS0x $pi]
} elseif {$signum eq $sinf} {
# x < -1 or x > 1
return [opreal {{{0 0} {2 0}} {{1 0} {0 2}}} $aS0x $pi]
} elseif {$signum eq $sneg} {
# x < 0
return [opreal {{{0 0} {4 0}} {{-1 0} {0 4}}} $aS0x $pi]
} else {
# can't happen
error "wrong sign: $signum"
}
}
# asinreal -
#
# Computes the arcsine of an exact real argument.
#
# The arcsine is computed from the arctangent by trigonometric identities
#
# This function is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a 0-reference object.
#
# The function is defined only over the open interval (-1,1). Outside
# that range INCLUDING AT THE ENDPOINTS, it may fail and give an infinite
# loop or stack overflow.
proc math::exact::asinreal {x} {
variable iszer
variable pi
# Potts's formula doesn't work here - it's singular at zero,
# and undefined over negative numbers. But some messing with the
# algebra gives us:
# asin(S0*x) = 2*atan(sqrt(x)) - pi/2
# = (4*atan(sqrt(x)) - pi) / 2
# which is continuous and computable over (-1..1)
$x ref
set y [$x applyM $iszer]
$x unref
return [opreal {{{0 0} {-1 0}} {{4 0} {0 2}}} \
$pi \
[function::atan [function::sqrt $y]]]
}
interp alias {} math::exact::function::asin {} math::exact::asinreal
# acosreal -
#
# Computes the arccosine of an exact real argument.
#
# The arccosine is computed from the arctangent by trigonometric identities
#
# This function is a Consumer with respect to its argument and a Constructor
# with respect to its result, returning a 0-reference object.
#
# The function is defined only over the open interval (-1,1). Outside
# that range INCLUDING AT THE ENDPOINTS, it may fail and give an infinite
# loop or stack overflow.
proc math::exact::acosreal {x} {
variable iszer
variable pi
# Potts's formula doesn't work here - it's singular at zero,
# and undefined over negative numbers. But some messing with the
# algebra gives us:
# acos(S0*x) = pi - 2*atan(sqrt(x))
$x ref
set y [$x applyM $iszer]
$x unref
return [opreal {{{0 0} {1 0}} {{-2 0} {0 1}}} \
$pi \
[function::atan [function::sqrt $y]]]
}
interp alias {} math::exact::function::acos {} math::exact::acosreal
# sinhreal, coshreal, tanhreal --
#
# Hyperbolic functions of exact real arguments
#
# Parameter:
# x - Argument at which to evaluate the function
#
# Results:
# Return sinh(x), cosh(x), tanh(x), respectively.
#
# These functions are all Consumers with respect to their arguments and
# Constructors with respect to their results, returning zero-ref objects.
#
# The three functions are well defined over all the finite reals, but
# are ill-behaved at infinity.
proc math::exact::sinhreal {x} {
set expx [function::exp $x]
return [opreal {{{1 0} {0 1}} {{0 1} {-1 0}}} $expx $expx]
}
interp alias {} math::exact::function::sinh {} math::exact::sinhreal
proc math::exact::coshreal {x} {
set expx [function::exp $x]
return [opreal {{{1 0} {0 1}} {{0 1} {1 0}}} $expx $expx]
}
interp alias {} math::exact::function::cosh {} math::exact::coshreal
proc math::exact::tanhreal {x} {
set expx [function::exp $x]
return [opreal {{{1 1} {0 0}} {{0 0} {-1 1}}} $expx $expx]
}
interp alias {} math::exact::function::tanh {} math::exact::tanhreal
# asinhreal, acoshreal, atanhreal --
#
# Inverse hyperbolic functions of exact real arguments
#
# Parameter:
# x - Argument at which to evaluate the function
#
# Results:
# Return asinh(x), acosh(x), atanh(x), respectively.
#
# These functions are all Consumers with respect to their arguments and
# Constructors with respect to their results, returning zero-ref objects.
#
# asinh is defined over the entire real number line, with the exception
# of the point at infinity. acosh is defined over x > 1 (NOT x=1, which
# is singular). atanh is defined over (-1..1) (NOT the endpoints of the
# interval.)
proc math::exact::asinhreal {x} {
# domain (-Inf .. Inf)
# asinh(x) = log(x + sqrt(x**2 + 1))
$x ref
set retval [function::log \
[+real $x \
[function::sqrt \
[opreal {{{1 0} {0 0}} {{0 0} {1 1}}} $x $x]]]]
$x unref
return $retval
}
interp alias {} math::exact::function::asinh {} math::exact::asinhreal
proc math::exact::acoshreal {x} {
# domain (1 .. Inf)
# asinh(x) = log(x + sqrt(x**2 - 1))
$x ref
set retval [function::log \
[+real $x \
[function::sqrt \
[opreal {{{1 0} {0 0}} {{0 0} {-1 1}}} $x $x]]]]
$x unref
return $retval
}
interp alias {} math::exact::function::acosh {} math::exact::acoshreal
proc math::exact::atanhreal {x} {
# domain (-1 .. 1)
variable sinf
#atanh(x) = log(Sinf[x])/2
$x ref
set y [$x applyM $sinf]
$y ref
$x unref
set z [function::log $y]
$z ref
$y unref
set retval [$z applyM {{1 0} {0 2}}]
$z unref
return $retval
}
interp alias {} math::exact::function::atanh {} math::exact::atanhreal
# EWorker --
#
# Evaluates the constant 'e' (the base of the natural logarithms
#
# This class is intended to be singleton. It returns 2.71828.... (the
# base of the natural logarithms) as an exact real.
oo::class create math::exact::EWorker {
superclass math::exact::M
variable m_ e_ n_
# Constructor accepts the number of the continuant.
constructor {{n 0}} {
set n_ [expr {$n + 1}]
next [list [list [expr {2*$n + 2}] [expr {2*$n + 1}]] \
[list [expr {2*$n + 1}] [expr {2*$n}]]]
}
destructor {
next
}
# e -- Returns the next continuant after this one.
method e {} {
if {![info exists e_]} {
set e_ [[math::exact::EWorker new $n_] ref]
}
return $e_
}
# Formats this object for debugging
method dump {} {
return M($m_,EWorker($n_))
}
}
# PiWorker --
#
# Auxiliary object used in evaluating pi.
#
# This class evaluates the second and subsequent continuants in
# Ramanaujan's formula for sqrt(10005)/pi. The Potts paper presents
# the algorithm, almost without commentary.
oo::class create math::exact::PiWorker {
superclass math::exact::M
variable m_ e_ n_
# Constructor accepts the number of the continuant
constructor {{n 1}} {
set n_ [expr {$n + 1}]
set nsq [expr {$n * $n}]
set n4 [expr {$nsq * $nsq}]
set b [expr {(2*$n - 1) * (6*$n - 5) * (6*$n - 1)}]
set c [expr {$b * (545140134 * $n + 13591409)}]
set d [expr {$b * ($n + 1)}]
set e [expr {10939058860032000 * $n4}]
set p [list [expr {$e - $d - $c}] [expr {$e + $d + $c}]]
set q [list [expr {$e + $d - $c}] [expr {$e - $d + $c}]]
next [list $p $q]
}
destructor {
next
}
# e --
#
# Returns the next continuant after this one
method e {} {
if {![info exists e_]} {
set e_ [[math::exact::PiWorker new $n_] ref]
}
return $e_
}
# dump --
#
# Formats this object for debugging
method dump {} {
return M($m_,PiWorker($n_))
}
}
# Log2Worker --
#
# Auxiliary class for evaluating log(2).
#
# This object represents the constant (1-2*log(2))/(log(2)-1), the
# product of the second, third, ... nth LFT's of the representation of log(2).
oo::class create math::exact::Log2Worker {
superclass math::exact::M
variable m_ e_ n_
# Constructor accepts the number of the continuant
constructor {{n 1}} {
set n_ [expr {$n + 1}]
set a [expr {3*$n + 1}]
set b [expr {2*$n + 1}]
set c [expr {4*$n + 2}]
set d [expr {3*$n + 2}]
next [list [list $a $b] [list $c $d]]
}
destructor {
next
}
# e --
#
# Returns the next continuant after this one.
method e {} {
if {![info exists e_]} {
set e_ [[math::exact::Log2Worker new $n_] ref]
}
return $e_
}
# dump --
#
# Displays this object for debugging
method dump {} {
return M($m_,Log2Worker($n_))
}
}
# Sqrtrat --
#
# Class that evaluates the square root of a rational
oo::class create math::exact::Sqrtrat {
superclass math::exact::M
variable m_ e_ a_ b_ c_
# Constructor accepts the numerator and denominator. The third argument
# is an intermediate result for the second and later continuants.
constructor {a b {c {}}} {
if {$c eq {}} {
set c [expr {$a - $b}]
}
set d [expr {2*($b-$a) + $c}]
if {$d >= 0} {
next $math::exact::dneg
set a_ [expr {4 * $a}]
set b_ $d
set c_ $c
} else {
next $math::exact::dpos
set a_ [expr {-$d}]
set b_ [expr {4 * $b}]
set c_ $c
}
}
destructor {
next
}
# e --
#
# Returns the next continuant after this one.
method e {} {
if {![info exists e_]} {
set e_ [[math::exact::Sqrtrat new $a_ $b_ $c_] ref]
}
return $e_
}
# dump --
# Formats this object for debugging.
method dump {} {
return "M($m_,Sqrtrat($a_,$b_,$c_))"
}
}
# math::exact::rat**int --
#
# Service procedure to raise a rational number to an integer power
#
# Parameters:
# a - Numerator of the rational
# b - Denominator of the rational
# n - Power
#
# Preconditions:
# n is not zero, a is not zero, b is positive.
#
# Results:
# Returns the power
#
# This procedure is a Consumer with respect to its arguments and a
# Constructor with respect to its result, returning a zero-ref object.
proc math::exact::rat**int {a b n} {
if {$n < 0} {
return [V new [list [expr {$b**(-$n)}] [expr {$a**(-$n)}]]]
} elseif {$n > 0} {
return [V new [list [expr {$a**($n)}] [expr {$b**($n)}]]]
} else { ;# zero power shouldn't get here
return [V new {1 1}]
}
}
# math::exact::rat**rat --
#
# Service procedure to raise a rational number to a rational power
#
# Parameters:
# a - Numerator of the base
# b - Denominator of the base
# m - Numerator of the exponent
# n - Denominator of the exponent
#
# Results:
# Returns the power as an exact real
#
# Preconditions:
# a != 0, b > 0, m != 0, n > 0
#
# This procedure is a Constructor with respect to its result
proc math::exact::rat**rat {a b m n} {
# It would be attractive to special case this, but the real mechanism
# works as well for the moment.
tailcall real**rat [V new [list $a $b]] $m $n
}
# PowWorker --
#
# Auxiliary class to compute
# ((p/q)**n + b)**(m/n),
# where 0<m<n are integers, p, q are integers, b is an exact real
oo::class create math::exact::PowWorker {
superclass math::exact::T
variable t_ l_ r_ delta_
# Self-method: start
#
# Sets up to find z**(m/n) (1 <= m < n), with
# z = (p/q)**n + y for integers p and q.
#
# Parameters:
# p - numerator of the estimated nth root
# q - denominator of the estimated nth root
# y - residual of the quantity whose root is being extracted
# m - numerator of the exponent
# n - denominator of the exponent (1 <= m < n)
#
# Results:
# Returns the power, as an exact real.
self method start {p q y m n} {
set pm [expr {$p ** $m}]
set pnmm [expr {$p ** ($n-$m)}]
set pn [expr {$pm * $pnmm}]
set qm [expr {$q ** $m}]
set qnmm [expr {$q ** ($n-$m)}]
set qn [expr {$qm * $qnmm}]
set t0 \
[list \
[list \
[list [expr {$m * $qn}] [expr {$n*$pnmm*$qm}]] \
[list 0 [expr {($n-$m) * $qn}]]] \
[list \
[list [expr {2 * $n * $pn}] 0] \
[list [expr {2 * ($n-$m) * $pm * $qnmm}] 0]]]
set t1 \
[list \
[list \
[list [expr {$n * $qn}] [expr {2*$n * $pnmm*$qm}]] \
[list 0 [expr {$n * $qn}]]] \
[list \
[list [expr {4 * $n * $pn}] 0] \
[list [expr {2 * $n * $pm * $qnmm}] 0]]]
set tinit \
[list \
[list \
[list [expr {$m * $qn}] 0] \
[list 0 0]] \
[list \
[list [expr {$n * $pn}] [expr {$n * $pnmm * $qm}]] \
[list \
[expr {($n-$m) * $pm * $qnmm}] \
[expr {($n-$m) * $qn}]]]]
$y ref
set result [$y applyTLeft $tinit [my new $t0 $t1 $y]]
$y unref
return $result
}
# Constructor --
#
# Parameters:
# t0 - Tensor from the previous iteration
# delta - Increment to use
# y - Residual
#
# The constructor should not be called directly. Instead, the 'start'
# method should be called to initialize the iteration
constructor {t0 delta y} {
set t [math::exact::tadd $t0 $delta]
next $t 0
set l_ [$y ref]
set delta_ $delta
}
# l --
#
# Returns the left subexpression: that is, the 'y' parameter
method l {} {
return $l_
}
# r --
#
# Returns the right subexpression: that is, the next continuant,
# creating it if necessary
method r {} {
if {![info exists r_]} {
set r_ [[math::exact::PowWorker new $t_ $delta_ $l_] ref]
}
return $r_
}
method dump {} {
set res "PowWorker($t_,$delta_,[$l_ dump],"
if {[info exists r_]} {
append res [$r_ dump]
} else {
append res ...
}
append res ")"
return $res
}
}
# math::exact::real**int --
#
# Service procedure to raise a real number to an integer power.
#
# Parameters:
# b - Number to exponentiate
# e - Power to raise b to.
#
# Results:
# Returns the power.
#
# This procedure is a Consumer with respect to its arguments and a
# Constructor with respect to its result, returning a zero-ref object.
proc math::exact::real**int {b e} {
# Handle a negative power by raising the reciprocal of the base to
# a positive power
if {$e < 0} {
set e [expr {-$e}]
set b [K [[$b ref] applyM {{0 1} {1 0}}] [$b unref]]
}
# Reduce using square-and-add
$b ref
set result [V new {1 1}]
while {$e != 0} {
if {$e & 1} {
set result [$b * $result]
set e [expr {$e & ~1}]
}
if {$e == 0} break
set b [K [[$b * $b] ref] [$b unref]]
set e [expr {$e>>1}]
}
$b unref
return $result
}
# math::exact::real**rat --
#
# Service procedure to raise a real number to a rational power.
#
# Parameters -
#
# b - The base to be exponentiated
# m - The numerator of the power
# n - The denominator of the power
#
# Preconditions:
# n > 0
#
# Results:
# Returns the power.
#
# This procedure is a Consumer with respect to its arguments and a
# Constructor with respect to its result, returning a zero-ref object.
proc math::exact::real**rat {b m n} {
variable isneg
variable ispos
# At this point we need to know the sign of b. Try to determine it.
# (This can be an infinite loop if b is zero or infinite)
while {1} {
if {[$b refinesM $ispos]} {
break
} elseif {[$b refinesM $isneg]} {
# negative number to rational power. The denominator must be
# odd.
if {$n % 2 == 0} {
return -code error -errorCode {MATH EXACT NEGATIVEPOWREAL} \
"negative number to real power"
} else {
set b [K [[$b ref] U-] [$b unref]]
tailcall [math::exact::real**rat $b $m $n] U-
}
} else {
# can't determine positive or negative yet
$b ref
set nextb [$b absorb]
set result [math::exact::real**rat $nextb $m $n]
$b unref
return $result
}
}
# Handle b(-m/n) by taking (1/b)(m/n)
if {$m < 0} {
set m [expr {-$m}]
set b [K [[$b ref] applyM {{0 1} {1 0}}] [$b unref]]
}
# Break m/n apart into integer and fractional parts
set i [expr {$m / $n}]
set m [expr {$m % $n}]
# Do the integer part
$b ref
set result [real**int $b $i]
if {$m == 0} {
# We really shouldn't get here if m/n is an integer, but don't choke
$b unref
return $result
}
# Come up with a rational approximation for b**(1/n)
# real: exp(log(b)/n)
set approx [[math::exact::function::exp \
[[math::exact::function::log $b] \
* [math::exact::V new [list 1 $n]]]] ref]
lassign [$approx getSignAndMagnitude] partial rest
$rest ref
$approx unref
while {1} {
lassign [$rest getLeadingDigitAndRest 0] digit y
$y ref
$rest unref
set partial [math::exact::mscale [math::exact::mdotm $partial $digit]]
set rest $y
lassign $partial pq rs
lassign $pq p q
lassign $rs r s
set qrn [expr {($q*$r)**$n}]
set t1 [expr {$qrn}]
set t2 [expr {2 * ($p*$s)**$n}]
set t3 [expr {4 * $qrn}]
if {$t1 < $t2 && $t2 < $t3} break
}
$y unref
# Get the residual
lassign [math::exact::vscale [list $r $s]] p q
set xn [math::exact::V new [list [expr {$p**$n}] [expr {$q**$n}]]]
set y [$b - $xn]; $b unref
# Launch a worker process to perform quasi-Newton iteration to refine
# the result
set retval [$result * [math::exact::PowWorker start $p $q $y $m $n]]
return $retval
}
# pi --
#
# Returns pi as an exact real
proc math::exact::function::pi {} {
variable ::math::exact::pi
return $pi
}
# e --
#
# Returns e as an exact real
proc math::exact::function::e {} {
variable ::math::exact::e
return $e
}
# math::exact::signum1 --
#
# Tests an argument's sign.
#
# Parameters:
# x - Exact real number to test.
#
# Results:
# Returns -1 if x < -1. Returns 1 if x > 1. May return -1, 0 or 1 if
# -1 <= x <= 1.
#
# Equality of exact reals is not decidable, so a weaker version of comparison
# testing is needed. This function provides the guts of such a thing. It
# returns an approximation to the signum function that is exact for
# |x| > 1, and arbitrary for |x| < 1.
#
# A typical use would be to replace a test p < q with a test that
# looks like signum1((p-q) / epsilon) == -1. This test is decidable,
# and becomes a test that is true if p < q - epsilon, false if p > q+epsilon,
# and indeterminate if p lies within epsilon of q. This test is enough for
# most checks for convergence or for selecting a branch of a function.
#
# This function is not decidable if it is not decidable whether x is finite.
proc math::exact::signum1 {x} {
variable ispos
variable isneg
variable iszer
while {1} {
if {[$x refinesM $ispos]} {
return 1
} elseif {[$x refinesM $isneg]} {
return -1
} elseif {[$x refinesM $iszer]} {
return 0
} else {
set x [$x absorb]
}
}
}
# math::exact::abs1 -
#
# Test whether an exact real is 'small' in absolute value.
#
# Parameters:
# x - Exact real number to test
#
# Results:
# Returns 0 if |x| is 'close to zero', 1 if |x| is 'far from zero'
# and either 0, or 1 if |x| is close to 1.
#
# This function is another useful comparator for convergence testing.
# It returns a three-way indication:
# |x| < 1/2 : 0
# |x| > 1 : 1
# 1/2 <= |x| <= 2 : May return -1, 0, 1
#
# This function is useful for convergence testing, where it is desired
# to know whether a given value has an absolute value less than a given
# tolerance.
proc math::exact::abs1 {x} {
variable iszer
while 1 {
if {[$x refinesM $iszer]} {
return 0
} elseif {[$x refinesM {{2 1} {-2 1}}]} {
return 1
} else {
set x [$x absorb]
}
}
}
namespace eval math::exact {
# Constant vectors, matrices and tensors
; # the identity matrix
variable identity {{ 1 0} { 0 1}}
; # sign matrices for exact floating point
variable spos $identity
variable sinf {{ 1 -1} { 1 1}}
variable sneg {{ 0 1} {-1 0}}
variable szer {{ 1 1} {-1 1}}
; # inverses of the sign matrices
variable ispos [reverse $spos]
variable isinf [reverse $sinf]
variable isneg [reverse $sneg]
variable iszer [reverse $szer]
; # digit matrices for exact floating point
variable dneg {{ 1 1} { 0 2}}
variable dzer {{ 3 1} { 1 3}}
variable dpos {{ 2 0} { 1 1}}
; # inverses of the digit matrices
variable idneg [reverse $dneg]
variable idzer [reverse $dzer]
variable idpos [reverse $dpos]
; # aritmetic operators as tensors
variable tadd {{{ 0 0} { 1 0}} {{ 1 0} { 0 1}}}
variable tsub {{{ 0 0} { 1 0}} {{-1 0} { 0 1}}}
variable tmul {{{ 1 0} { 0 0}} {{ 0 0} { 0 1}}}
variable tdiv {{{ 0 0} { 1 0}} {{ 0 1} { 0 0}}}
proc init {} {
# Variables for fundamental constants e, pi, log2
variable e [[EWorker new] ref]
set worker \
[[math::exact::Mstrict new {{6795705 213440} {6795704 213440}} \
[math::exact::PiWorker new]] ref]
variable pi [[/real [function::sqrt [V new {10005 1}]] $worker] ref]
$worker unref
set worker [[Log2Worker new] ref]
variable log2 [[$worker applyM {{1 1} {1 2}}] ref]
$worker unref
}
init
rename init {}
namespace export exactexpr abs1 signum1
}
package provide math::exact 1.0
#-----------------------------------------------------------------------
|