/usr/share/tcltk/tcllib1.18/math/special.tcl is in tcllib 1.18-dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | # special.tcl --
# Provide well-known special mathematical functions
#
# This file contains a collection of tests for one or more of the Tcllib
# procedures. Sourcing this file into Tcl runs the tests and
# generates output for errors. No output means no errors were found.
#
# Copyright (c) 2004 by Arjen Markus. All rights reserved.
#
# RCS: @(#) $Id: special.tcl,v 1.13 2008/08/13 07:28:47 arjenmarkus Exp $
#
package require math
package require math::constants
package require math::statistics
# namespace special
# Create a convenient namespace for the "special" mathematical functions
#
namespace eval ::math::special {
#
# Define a number of common mathematical constants
#
::math::constants::constants pi
variable halfpi [expr {$pi/2.0}]
#
# Functions defined in other math submodules
#
if { [info commands Beta] == {} } {
namespace import ::math::Beta
namespace import ::math::ln_Gamma
}
#
# Export the various functions
#
namespace export Beta ln_Gamma Gamma erf erfc fresnel_C fresnel_S sinc invnorm
}
# Gamma --
# The Gamma function - synonym for "factorial"
#
proc ::math::special::Gamma {x} {
if { [catch { expr {exp( [ln_Gamma $x] )} } result] } {
return -code error -errorcode $::errorCode $result
}
return $result
}
# erf --
# The error function
# Arguments:
# x The value for which the function must be evaluated
# Result:
# erf(x)
# Note:
# The algoritm used is due to George Marsaglia
# See: http://www.velocityreviews.com/forums/t317358-erf-function-in-c.html
# I did not want to copy and convert the even more accurate but
# rather lengthy algorithm used by lcc-win32/Sun
#
proc ::math::special::erf {x} {
set x [expr {$x*sqrt(2.0)}]
if { $x > 10.0 } { return 1.0 }
if { $x < -10.0 } { return -1.0 }
set a 1.2533141373155
set b -1.0
set pwr 1.0
set t 0.0
set z 0.0
set s [expr {$a+$b*$x}]
set i 2
while { $s != $t } {
set a [expr {($a+$z*$b)/double($i)}]
set b [expr {($b+$z*$a)/double($i+1)}]
set pwr [expr {$pwr*$x*$x}]
set t $s
set s [expr {$s+$pwr*($a+$x*$b)}]
incr i 2
}
return [expr {1.0-2.0*$s*exp(-0.5*$x*$x-0.9189385332046727418)}]
}
# erfc --
# The complement of the error function
# Arguments:
# x The value for which the function must be evaluated
# Result:
# erfc(x) = 1.0-erf(x)
#
proc ::math::special::erfc {x} {
set x [expr {$x*sqrt(2.0)}]
if { $x > 10.0 } { return 0.0 }
if { $x < -10.0 } { return 0.0 }
set a 1.2533141373155
set b -1.0
set pwr 1.0
set t 0.0
set z 0.0
set s [expr {$a+$b*$x}]
set i 2
while { $s != $t } {
set a [expr {($a+$z*$b)/double($i)}]
set b [expr {($b+$z*$a)/double($i+1)}]
set pwr [expr {$pwr*$x*$x}]
set t $s
set s [expr {$s+$pwr*($a+$x*$b)}]
incr i 2
}
return [expr {2.0*$s*exp(-0.5*$x*$x-0.9189385332046727418)}]
}
# ComputeFG --
# Compute the auxiliary functions f and g
#
# Arguments:
# x Parameter of the integral (x>=0)
# Result:
# Approximate values for f and g
# Note:
# See Abramowitz and Stegun. The accuracy is 2.0e-3.
#
proc ::math::special::ComputeFG {x} {
list [expr {(1.0+0.926*$x)/(2.0+1.792*$x+3.104*$x*$x)}] \
[expr {1.0/(2.0+4.142*$x+3.492*$x*$x+6.670*$x*$x*$x)}]
}
# fresnel_C --
# Compute the Fresnel cosine integral
#
# Arguments:
# x Parameter of the integral (x>=0)
# Result:
# Value of C(x) = integral from 0 to x of cos(0.5*pi*x^2)
# Note:
# This relies on a rational approximation of the two auxiliary functions f and g
#
proc ::math::special::fresnel_C {x} {
variable halfpi
if { $x < 0.0 } {
error "Domain error: x must be non-negative"
}
if { $x == 0.0 } {
return 0.0
}
foreach {f g} [ComputeFG $x] {break}
set xarg [expr {$halfpi*$x*$x}]
return [expr {0.5+$f*sin($xarg)-$g*cos($xarg)}]
}
# fresnel_S --
# Compute the Fresnel sine integral
#
# Arguments:
# x Parameter of the integral (x>=0)
# Result:
# Value of S(x) = integral from 0 to x of sin(0.5*pi*x^2)
# Note:
# This relies on a rational approximation of the two auxiliary functions f and g
#
proc ::math::special::fresnel_S {x} {
variable halfpi
if { $x < 0.0 } {
error "Domain error: x must be non-negative"
}
if { $x == 0.0 } {
return 0.0
}
foreach {f g} [ComputeFG $x] {break}
set xarg [expr {$halfpi*$x*$x}]
return [expr {0.5-$f*cos($xarg)-$g*sin($xarg)}]
}
# sinc --
# Compute the sinc function
# Arguments:
# x Value of the argument
# Result:
# sin(x)/x
#
proc ::math::special::sinc {x} {
if { $x == 0.0 } {
return 1.0
} else {
return [expr {sin($x)/$x}]
}
}
# invnorm --
# Compute the inverse of the cumulative normal distribution
#
# Arguments:
# p Value of erf(x) for x must be found
#
# Returns:
# Value of x
#
# Notes:
# Implementation in Tcl by Christian Gollwitzer
# Uses rational approximation from
# http://home.online.no/~pjacklam/notes/invnorm/#Pseudo_code_for_rational_approximation
# relative precision 1.2*10^-9 in the full range
#
proc ::math::special::invnorm {p} {
# inverse normal distribution
# rational approximation from
# http://home.online.no/~pjacklam/notes/invnorm/#Pseudo_code_for_rational_approximation
# precision 1.2*10^-9
if {$p<=0 || $p>=1} {
return -code error "Domain error (invnorm)"
}
# Coefficients in rational approximations.
set a1 -3.969683028665376e+01
set a2 2.209460984245205e+02
set a3 -2.759285104469687e+02
set a4 1.383577518672690e+02
set a5 -3.066479806614716e+01
set a6 2.506628277459239e+00
set b1 -5.447609879822406e+01
set b2 1.615858368580409e+02
set b3 -1.556989798598866e+02
set b4 6.680131188771972e+01
set b5 -1.328068155288572e+01
set c1 -7.784894002430293e-03
set c2 -3.223964580411365e-01
set c3 -2.400758277161838e+00
set c4 -2.549732539343734e+00
set c5 4.374664141464968e+00
set c6 2.938163982698783e+00
set d1 7.784695709041462e-03
set d2 3.224671290700398e-01
set d3 2.445134137142996e+00
set d4 3.754408661907416e+00
# Define break-points.
set p_low 0.02425
set p_high [expr {1-$p_low}]
# Rational approximation for lower region.
if {$p < $p_low} {
set q [expr {sqrt(-2*log($p))}]
set x [expr {((((($c1*$q+$c2)*$q+$c3)*$q+$c4)*$q+$c5)*$q+$c6) / \
(((($d1*$q+$d2)*$q+$d3)*$q+$d4)*$q+1)}]
return $x
}
# Rational approximation for central region.
if {$p <= $p_high} {
set q [expr {$p - 0.5}]
set r [expr {$q*$q}]
set x [expr {((((($a1*$r+$a2)*$r+$a3)*$r+$a4)*$r+$a5)*$r+$a6)*$q / \
((((($b1*$r+$b2)*$r+$b3)*$r+$b4)*$r+$b5)*$r+1)}]
return $x
}
# Rational approximation for upper region.
set q [expr {sqrt(-2*log(1-$p))}]
set x [expr {-((((($c1*$q+$c2)*$q+$c3)*$q+$c4)*$q+$c5)*$q+$c6) /
(((($d1*$q+$d2)*$q+$d3)*$q+$d4)*$q+1)}]
return $x
}
# Bessel functions and elliptic integrals --
#
source [file join [file dirname [info script]] "bessel.tcl"]
source [file join [file dirname [info script]] "classic_polyns.tcl"]
source [file join [file dirname [info script]] "elliptic.tcl"]
source [file join [file dirname [info script]] "exponential.tcl"]
package provide math::special 0.3.0
|