/usr/share/tcltk/tcllib1.18/ripemd/ripemd128.tcl is in tcllib 1.18-dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 | # ripemd128.tcl - Copyright (C) 2003 Pat Thoyts <patthoyts@users.sf.net>
#
# This is a Tcl-only implementation of the RIPEMD-128 hash algorithm as
# described in [RIPE].
# Included is an implementation of keyed message authentication using
# the RIPEMD-128 function [HMAC].
#
# See http://www.esat.kuleuven.ac.be/~cosicart/pdf/AB-9601/
#
# [RIPE] Dobbertin, H., Bosselaers A., and Preneel, B.
# "RIPEMD-160: A Strengthened Version of RIPEMD"
# Fast Software Encryption, LNCS 1039, D. Gollmann, Ed.,
# Springer-Verlag, 1996, pp. 71-82
# [HMAC] Krawczyk, H., Bellare, M., and R. Canetti,
# "HMAC: Keyed-Hashing for Message Authentication",
# RFC 2104, February 1997.
#
# RFC 2286, ``Test cases for HMAC-RIPEMD160 and HMAC-RIPEMD128,''
# Internet Request for Comments 2286, J. Kapp,
#
# -------------------------------------------------------------------------
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
# -------------------------------------------------------------------------
package require Tcl 8.2; # tcl minimum version
namespace eval ::ripemd {
namespace eval ripemd128 {
variable accel
array set accel {trf 0}
variable uid
if {![info exists uid]} {
set uid 0
}
namespace export ripemd128 hmac128 Hex \
RIPEMD128Init RIPEMD128Update RIPEMD128Final \
RIPEHMAC128Init RIPEHMAC128Update RIPEHMAC128Final
}
}
# -------------------------------------------------------------------------
# RIPEMD128Init - create and initialize an MD4 state variable. This will be
# cleaned up when we call MD4Final
#
proc ::ripemd::ripemd128::RIPEMD128Init {} {
variable accel
variable uid
set token [namespace current]::[incr uid]
upvar #0 $token state
# Initialize RIPEMD-128 state structure (same as MD4).
array set state \
[list \
A [expr {0x67452301}] \
B [expr {0xefcdab89}] \
C [expr {0x98badcfe}] \
D [expr {0x10325476}] \
n 0 i "" ]
if {$accel(trf)} {
set s {}
switch -exact -- $::tcl_platform(platform) {
windows { set s [open NUL w] }
unix { set s [open /dev/null w] }
}
if {$s != {}} {
fconfigure $s -translation binary -buffering none
::ripemd128 -attach $s -mode write \
-read-type variable \
-read-destination [subst $token](trfread) \
-write-type variable \
-write-destination [subst $token](trfwrite)
array set state [list trfread 0 trfwrite 0 trf $s]
}
}
return $token
}
proc ::ripemd::ripemd128::RIPEMD128Update {token data} {
upvar #0 $token state
if {[info exists state(trf)]} {
puts -nonewline $state(trf) $data
return
}
# Update the state values
incr state(n) [string length $data]
append state(i) $data
# Calculate the hash for any complete blocks
set len [string length $state(i)]
for {set n 0} {($n + 64) <= $len} {} {
RIPEMD128Hash $token [string range $state(i) $n [incr n 64]]
}
# Adjust the state for the blocks completed.
set state(i) [string range $state(i) $n end]
return
}
proc ::ripemd::ripemd128::RIPEMD128Final {token} {
upvar #0 $token state
if {[info exists state(trf)]} {
close $state(trf)
set r $state(trfwrite)
unset state
return $r
}
# RFC1320:3.1 - Padding
#
set len [string length $state(i)]
set pad [expr {56 - ($len % 64)}]
if {$len % 64 > 56} {
incr pad 64
}
if {$pad == 0} {
incr pad 64
}
append state(i) [binary format a$pad \x80]
# RFC1320:3.2 - Append length in bits as little-endian wide int.
append state(i) [binary format ii [expr {8 * $state(n)}] 0]
# Calculate the hash for the remaining block.
set len [string length $state(i)]
for {set n 0} {($n + 64) <= $len} {} {
RIPEMD128Hash $token [string range $state(i) $n [incr n 64]]
}
# RFC1320:3.5 - Output
set r [bytes $state(A)][bytes $state(B)][bytes $state(C)][bytes $state(D)]
unset state
return $r
}
# -------------------------------------------------------------------------
# HMAC Hashed Message Authentication (RFC 2104)
#
# hmac = H(K xor opad, H(K xor ipad, text))
#
proc ::ripemd::ripemd128::RIPEHMAC128Init {K} {
# Key K is adjusted to be 64 bytes long. If K is larger, then use
# the RIPEMD-128 digest of K and pad this instead.
set len [string length $K]
if {$len > 64} {
set tok [RIPEMD128Init]
RIPEMD128Update $tok $K
set K [RIPEMD128Final $tok]
set len [string length $K]
}
set pad [expr {64 - $len}]
append K [string repeat \0 $pad]
# Cacluate the padding buffers.
set Ki {}
set Ko {}
binary scan $K i16 Ks
foreach k $Ks {
append Ki [binary format i [expr {$k ^ 0x36363636}]]
append Ko [binary format i [expr {$k ^ 0x5c5c5c5c}]]
}
set tok [RIPEMD128Init]
RIPEMD128Update $tok $Ki; # initialize with the inner pad
# preserve the Ko value for the final stage.
# FRINK: nocheck
set [subst $tok](Ko) $Ko
return $tok
}
proc ::ripemd::ripemd128::RIPEHMAC128Update {token data} {
RIPEMD128Update $token $data
return
}
proc ::ripemd::ripemd128::RIPEHMAC128Final {token} {
# FRINK: nocheck
variable $token
upvar 0 $token state
set tok [RIPEMD128Init]; # init the outer hashing function
RIPEMD128Update $tok $state(Ko); # prepare with the outer pad.
RIPEMD128Update $tok [RIPEMD128Final $token]; # hash the inner result
return [RIPEMD128Final $tok]
}
# -------------------------------------------------------------------------
set ::ripemd::ripemd128::RIPEMD128Hash_body {
variable $token
upvar 0 $token state
# RFC1320:3.4 - Process Message in 16-Word Blocks
binary scan $msg i* blocks
foreach {X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15} $blocks {
set A $state(A) ; set AA $state(A)
set B $state(B) ; set BB $state(B)
set C $state(C) ; set CC $state(C)
set D $state(D) ; set DD $state(D)
# Round 1 (track 1).
# F(x,y,z) = x ^ y ^ z
# Let [abcd x s] denote the operation
# a = (a + F(b,c,d) + X[x]) <<< s.
# Do the following 16 operations.
# [ABCD 0 11] [DABC 1 14] [CDAB 2 15] [BCDA 3 12]
set A [expr {($A + [F $B $C $D] + $X0) <<< 11}]
set D [expr {($D + [F $A $B $C] + $X1) <<< 14}]
set C [expr {($C + [F $D $A $B] + $X2) <<< 15}]
set B [expr {($B + [F $C $D $A] + $X3) <<< 12}]
# [ABCD 4 5] [DABC 5 8] [CDAB 6 7] [BCDA 7 9]
set A [expr {($A + [F $B $C $D] + $X4) <<< 5}]
set D [expr {($D + [F $A $B $C] + $X5) <<< 8}]
set C [expr {($C + [F $D $A $B] + $X6) <<< 7}]
set B [expr {($B + [F $C $D $A] + $X7) <<< 9}]
# [ABCD 8 11] [DABC 9 13] [CDAB 10 14] [BCDA 11 15]
set A [expr {($A + [F $B $C $D] + $X8) <<< 11}]
set D [expr {($D + [F $A $B $C] + $X9) <<< 13}]
set C [expr {($C + [F $D $A $B] + $X10) <<< 14}]
set B [expr {($B + [F $C $D $A] + $X11) <<< 15}]
# [ABCD 12 6] [DABC 13 7] [CDAB 14 9] [BCDA 15 8]
set A [expr {($A + [F $B $C $D] + $X12) <<< 6}]
set D [expr {($D + [F $A $B $C] + $X13) <<< 7}]
set C [expr {($C + [F $D $A $B] + $X14) <<< 9}]
set B [expr {($B + [F $C $D $A] + $X15) <<< 8}]
# Round 2 (track 1).
# G(x, y, z) = (x & y) | (~x & z)
# Let [abcd k s] denote the operation
# a = (a + G(b,c,d) + X[k] + 5A827999) <<< s
# Do the following 16 operations.
# [ABCD 7 7] [DABC 4 6] [CDAB 13 8] [BCDA 1 13]
set A [expr {($A + [G $B $C $D] + $X7 + 0x5a827999) <<< 7}]
set D [expr {($D + [G $A $B $C] + $X4 + 0x5a827999) <<< 6}]
set C [expr {($C + [G $D $A $B] + $X13 + 0x5a827999) <<< 8}]
set B [expr {($B + [G $C $D $A] + $X1 + 0x5a827999) <<< 13}]
# [ABCD 10 11] [DABC 6 9] [CDAB 15 7] [BCDA 3 15]
set A [expr {($A + [G $B $C $D] + $X10 + 0x5a827999) <<< 11}]
set D [expr {($D + [G $A $B $C] + $X6 + 0x5a827999) <<< 9}]
set C [expr {($C + [G $D $A $B] + $X15 + 0x5a827999) <<< 7}]
set B [expr {($B + [G $C $D $A] + $X3 + 0x5a827999) <<< 15}]
# [ABCD 12 7] [DABC 0 12] [CDAB 9 15] [BCDA 5 9]
set A [expr {($A + [G $B $C $D] + $X12 + 0x5a827999) <<< 7}]
set D [expr {($D + [G $A $B $C] + $X0 + 0x5a827999) <<< 12}]
set C [expr {($C + [G $D $A $B] + $X9 + 0x5a827999) <<< 15}]
set B [expr {($B + [G $C $D $A] + $X5 + 0x5a827999) <<< 9}]
# [ABCD 2 11] [DABC 14 7] [CDAB 11 13] [BCDA 8 12]
set A [expr {($A + [G $B $C $D] + $X2 + 0x5a827999) <<< 11}]
set D [expr {($D + [G $A $B $C] + $X14 + 0x5a827999) <<< 7}]
set C [expr {($C + [G $D $A $B] + $X11 + 0x5a827999) <<< 13}]
set B [expr {($B + [G $C $D $A] + $X8 + 0x5a827999) <<< 12}]
# Round 3 (track 1).
# H(x,y,z) = (x | ~y) ^ z
# Let [abcd k s] denote the operation
# a = (a + H(b,c,d) + X[k] + 6ED9EBA1) <<< s.
# Do the following 16 operations.
# [ABCD 3 11] [DABC 10 13] [CDAB 14 6] [BCDA 4 7]
set A [expr {($A + [H $B $C $D] + $X3 + 0x6ed9eba1) <<< 11}]
set D [expr {($D + [H $A $B $C] + $X10 + 0x6ed9eba1) <<< 13}]
set C [expr {($C + [H $D $A $B] + $X14 + 0x6ed9eba1) <<< 6}]
set B [expr {($B + [H $C $D $A] + $X4 + 0x6ed9eba1) <<< 7}]
# [ABCD 9 14] [DABC 15 9] [CDAB 8 13] [BCDA 1 15]
set A [expr {($A + [H $B $C $D] + $X9 + 0x6ed9eba1) <<< 14}]
set D [expr {($D + [H $A $B $C] + $X15 + 0x6ed9eba1) <<< 9}]
set C [expr {($C + [H $D $A $B] + $X8 + 0x6ed9eba1) <<< 13}]
set B [expr {($B + [H $C $D $A] + $X1 + 0x6ed9eba1) <<< 15}]
# [ABCD 2 14] [DABC 7 8] [CDAB 0 13] [BCDA 6 6]
set A [expr {($A + [H $B $C $D] + $X2 + 0x6ed9eba1) <<< 14}]
set D [expr {($D + [H $A $B $C] + $X7 + 0x6ed9eba1) <<< 8}]
set C [expr {($C + [H $D $A $B] + $X0 + 0x6ed9eba1) <<< 13}]
set B [expr {($B + [H $C $D $A] + $X6 + 0x6ed9eba1) <<< 6}]
# [ABCD 13 5] [DABC 11 12] [CDAB 5 7] [BCDA 12 5]
set A [expr {($A + [H $B $C $D] + $X13 + 0x6ed9eba1) <<< 5}]
set D [expr {($D + [H $A $B $C] + $X11 + 0x6ed9eba1) <<< 12}]
set C [expr {($C + [H $D $A $B] + $X5 + 0x6ed9eba1) <<< 7}]
set B [expr {($B + [H $C $D $A] + $X12 + 0x6ed9eba1) <<< 5}]
# Round 4 (track 1).
# I(x,y,z) = (x & z) | (y & ^ ~z)
# Let [abcd k s] denote the operation
# a = (a + I(b,c,d) + X[k] + 8F1BBCDC) <<< s.
# Do the following 16 operations.
# [ABCD 1 11] [DABC 9 12] [CDAB 11 14] [BCDA 10 15]
set A [expr {($A + [I $B $C $D] + $X1 + 0x8f1bbcdc) <<< 11}]
set D [expr {($D + [I $A $B $C] + $X9 + 0x8f1bbcdc) <<< 12}]
set C [expr {($C + [I $D $A $B] + $X11 + 0x8f1bbcdc) <<< 14}]
set B [expr {($B + [I $C $D $A] + $X10 + 0x8f1bbcdc) <<< 15}]
# [ABCD 0 14] [DABC 8 15] [CDAB 12 9] [BCDA 4 8]
set A [expr {($A + [I $B $C $D] + $X0 + 0x8f1bbcdc) <<< 14}]
set D [expr {($D + [I $A $B $C] + $X8 + 0x8f1bbcdc) <<< 15}]
set C [expr {($C + [I $D $A $B] + $X12 + 0x8f1bbcdc) <<< 9}]
set B [expr {($B + [I $C $D $A] + $X4 + 0x8f1bbcdc) <<< 8}]
# [ABCD 13 9] [DABC 3 14] [CDAB 7 5] [BCDA 15 6]
set A [expr {($A + [I $B $C $D] + $X13 + 0x8f1bbcdc) <<< 9}]
set D [expr {($D + [I $A $B $C] + $X3 + 0x8f1bbcdc) <<< 14}]
set C [expr {($C + [I $D $A $B] + $X7 + 0x8f1bbcdc) <<< 5}]
set B [expr {($B + [I $C $D $A] + $X15 + 0x8f1bbcdc) <<< 6}]
# [ABCD 14 8] [DABC 5 6] [CDAB 6 5] [BCDA 2 12]
set A [expr {($A + [I $B $C $D] + $X14 + 0x8f1bbcdc) <<< 8}]
set D [expr {($D + [I $A $B $C] + $X5 + 0x8f1bbcdc) <<< 6}]
set C [expr {($C + [I $D $A $B] + $X6 + 0x8f1bbcdc) <<< 5}]
set B [expr {($B + [I $C $D $A] + $X2 + 0x8f1bbcdc) <<< 12}]
# Round 1 (track 2).
# I(x,y,z) = (x & z) | (y & ^ ~z)
# Let [abcd k s] denote the operation
# a = (a + I(b,c,d) + X[k] + 50A28BE6) <<< s.
# Do the following 16 operations.
# [ABCD 5 8] [DABC 14 9] [CDAB 7 9] [BCDA 0 11]
set AA [expr {($AA + [I $BB $CC $DD] + $X5 + 0x50a28be6) <<< 8}]
set DD [expr {($DD + [I $AA $BB $CC] + $X14 + 0x50a28be6) <<< 9}]
set CC [expr {($CC + [I $DD $AA $BB] + $X7 + 0x50a28be6) <<< 9}]
set BB [expr {($BB + [I $CC $DD $AA] + $X0 + 0x50a28be6) <<< 11}]
# [ABCD 9 13] [DABC 2 15] [CDAB 11 15] [BCDA 4 5]
set AA [expr {($AA + [I $BB $CC $DD] + $X9 + 0x50a28be6) <<< 13}]
set DD [expr {($DD + [I $AA $BB $CC] + $X2 + 0x50a28be6) <<< 15}]
set CC [expr {($CC + [I $DD $AA $BB] + $X11 + 0x50a28be6) <<< 15}]
set BB [expr {($BB + [I $CC $DD $AA] + $X4 + 0x50a28be6) <<< 5}]
# [ABCD 13 7] [DABC 6 7] [CDAB 15 8] [BCDA 8 11]
set AA [expr {($AA + [I $BB $CC $DD] + $X13 + 0x50a28be6) <<< 7}]
set DD [expr {($DD + [I $AA $BB $CC] + $X6 + 0x50a28be6) <<< 7}]
set CC [expr {($CC + [I $DD $AA $BB] + $X15 + 0x50a28be6) <<< 8}]
set BB [expr {($BB + [I $CC $DD $AA] + $X8 + 0x50a28be6) <<< 11}]
# [ABCD 1 14] [DABC 10 14] [CDAB 3 12] [BCDA 12 6]
set AA [expr {($AA + [I $BB $CC $DD] + $X1 + 0x50a28be6) <<< 14}]
set DD [expr {($DD + [I $AA $BB $CC] + $X10 + 0x50a28be6) <<< 14}]
set CC [expr {($CC + [I $DD $AA $BB] + $X3 + 0x50a28be6) <<< 12}]
set BB [expr {($BB + [I $CC $DD $AA] + $X12 + 0x50a28be6) <<< 6}]
# Round 2 (track 2).
# H(x,y,z) = (x | ~y) ^ z
# Let [abcd k s] denote the operation
# a = (a + H(b,c,d) + X[k] + 5C4DD124) <<< s.
# Do the following 16 operations.
# [ABCD 6 9] [DABC 11 13] [CDAB 3 15] [BCDA 7 7]
set AA [expr {($AA + [H $BB $CC $DD] + $X6 + 0x5c4dd124) <<< 9}]
set DD [expr {($DD + [H $AA $BB $CC] + $X11 + 0x5c4dd124) <<< 13}]
set CC [expr {($CC + [H $DD $AA $BB] + $X3 + 0x5c4dd124) <<< 15}]
set BB [expr {($BB + [H $CC $DD $AA] + $X7 + 0x5c4dd124) <<< 7}]
# [ABCD 0 12] [DABC 13 8] [CDAB 5 9] [BCDA 10 11]
set AA [expr {($AA + [H $BB $CC $DD] + $X0 + 0x5c4dd124) <<< 12}]
set DD [expr {($DD + [H $AA $BB $CC] + $X13 + 0x5c4dd124) <<< 8}]
set CC [expr {($CC + [H $DD $AA $BB] + $X5 + 0x5c4dd124) <<< 9}]
set BB [expr {($BB + [H $CC $DD $AA] + $X10 + 0x5c4dd124) <<< 11}]
# [ABCD 14 7] [DABC 15 7] [CDAB 8 12] [BCDA 12 7]
set AA [expr {($AA + [H $BB $CC $DD] + $X14 + 0x5c4dd124) <<< 7}]
set DD [expr {($DD + [H $AA $BB $CC] + $X15 + 0x5c4dd124) <<< 7}]
set CC [expr {($CC + [H $DD $AA $BB] + $X8 + 0x5c4dd124) <<< 12}]
set BB [expr {($BB + [H $CC $DD $AA] + $X12 + 0x5c4dd124) <<< 7}]
# [ABCD 4 6] [DABC 9 15] [CDAB 1 13] [BCDA 2 11]
set AA [expr {($AA + [H $BB $CC $DD] + $X4 + 0x5c4dd124) <<< 6}]
set DD [expr {($DD + [H $AA $BB $CC] + $X9 + 0x5c4dd124) <<< 15}]
set CC [expr {($CC + [H $DD $AA $BB] + $X1 + 0x5c4dd124) <<< 13}]
set BB [expr {($BB + [H $CC $DD $AA] + $X2 + 0x5c4dd124) <<< 11}]
# Round 3 (track 2).
# G(x, y, z) = (x & y) | (~x & z)
# Let [abcd k s] denote the operation
# a = (a + G(b,c,d) + X[k] + 6D703EF3) <<< s.
# Do the following 16 operations.
# [ABCD 15 9] [DABC 5 7] [CDAB 1 15] [BCDA 3 11]
set AA [expr {($AA + [G $BB $CC $DD] + $X15 + 0x6d703ef3) <<< 9}]
set DD [expr {($DD + [G $AA $BB $CC] + $X5 + 0x6d703ef3) <<< 7}]
set CC [expr {($CC + [G $DD $AA $BB] + $X1 + 0x6d703ef3) <<< 15}]
set BB [expr {($BB + [G $CC $DD $AA] + $X3 + 0x6d703ef3) <<< 11}]
# [ABCD 7 8] [DABC 14 6] [CDAB 6 6] [BCDA 9 14]
set AA [expr {($AA + [G $BB $CC $DD] + $X7 + 0x6d703ef3) <<< 8}]
set DD [expr {($DD + [G $AA $BB $CC] + $X14 + 0x6d703ef3) <<< 6}]
set CC [expr {($CC + [G $DD $AA $BB] + $X6 + 0x6d703ef3) <<< 6}]
set BB [expr {($BB + [G $CC $DD $AA] + $X9 + 0x6d703ef3) <<< 14}]
# [ABCD 11 12] [DABC 8 13] [CDAB 12 5] [BCDA 2 14]
set AA [expr {($AA + [G $BB $CC $DD] + $X11 + 0x6d703ef3) <<< 12}]
set DD [expr {($DD + [G $AA $BB $CC] + $X8 + 0x6d703ef3) <<< 13}]
set CC [expr {($CC + [G $DD $AA $BB] + $X12 + 0x6d703ef3) <<< 5}]
set BB [expr {($BB + [G $CC $DD $AA] + $X2 + 0x6d703ef3) <<< 14}]
# [ABCD 10 13] [DABC 0 13] [CDAB 4 7] [BCDA 13 5]
set AA [expr {($AA + [G $BB $CC $DD] + $X10 + 0x6d703ef3) <<< 13}]
set DD [expr {($DD + [G $AA $BB $CC] + $X0 + 0x6d703ef3) <<< 13}]
set CC [expr {($CC + [G $DD $AA $BB] + $X4 + 0x6d703ef3) <<< 7}]
set BB [expr {($BB + [G $CC $DD $AA] + $X13 + 0x6d703ef3) <<< 5}]
# Round 4 (track 2).
# F(x,y,z) = x ^ y ^ z
# Let [abcd k s] denote the operation
# a = (a + F(b,c,d) + X[k]) <<< s.
# Do the following 16 operations.
# [ABCD 8 15] [DABC 6 5] [CDAB 4 8] [BCDA 1 11]
set AA [expr {($AA + [F $BB $CC $DD] + $X8) <<< 15}]
set DD [expr {($DD + [F $AA $BB $CC] + $X6) <<< 5}]
set CC [expr {($CC + [F $DD $AA $BB] + $X4) <<< 8}]
set BB [expr {($BB + [F $CC $DD $AA] + $X1) <<< 11}]
# [ABCD 3 14] [DABC 11 14] [CDAB 15 6] [BCDA 0 14]
set AA [expr {($AA + [F $BB $CC $DD] + $X3) <<< 14}]
set DD [expr {($DD + [F $AA $BB $CC] + $X11) <<< 14}]
set CC [expr {($CC + [F $DD $AA $BB] + $X15) <<< 6}]
set BB [expr {($BB + [F $CC $DD $AA] + $X0) <<< 14}]
# [ABCD 5 6] [DABC 12 9] [CDAB 2 12] [BCDA 13 9]
set AA [expr {($AA + [F $BB $CC $DD] + $X5) <<< 6}]
set DD [expr {($DD + [F $AA $BB $CC] + $X12) <<< 9}]
set CC [expr {($CC + [F $DD $AA $BB] + $X2) <<< 12}]
set BB [expr {($BB + [F $CC $DD $AA] + $X13) <<< 9}]
# [ABCD 9 12] [DABC 7 5] [CDAB 10 15] [BCDA 14 8]
set AA [expr {($AA + [F $BB $CC $DD] + $X9) <<< 12}]
set DD [expr {($DD + [F $AA $BB $CC] + $X7) <<< 5}]
set CC [expr {($CC + [F $DD $AA $BB] + $X10) <<< 15}]
set BB [expr {($BB + [F $CC $DD $AA] + $X14) <<< 8}]
# Then perform the following additions to combine the results.
set DD [expr {$state(B) + $C + $DD}]
set state(B) [expr {$state(C) + $D + $AA}]
set state(C) [expr {$state(D) + $A + $BB}]
set state(D) [expr {$state(A) + $B + $CC}]
set state(A) $DD
}
return
}
proc ::ripemd::ripemd128::byte {n v} {expr {((0xFF << (8 * $n)) & $v) >> (8 * $n)}}
proc ::ripemd::ripemd128::bytes {v} {
#format %c%c%c%c [byte 0 $v] [byte 1 $v] [byte 2 $v] [byte 3 $v]
format %c%c%c%c \
[expr {0xFF & $v}] \
[expr {(0xFF00 & $v) >> 8}] \
[expr {(0xFF0000 & $v) >> 16}] \
[expr {((0xFF000000 & $v) >> 24) & 0xFF}]
}
# 32bit rotate-left
proc ::ripemd::ripemd128::<<< {v n} {
return [expr {((($v << $n) \
| (($v >> (32 - $n)) \
& (0x7FFFFFFF >> (31 - $n))))) \
& 0xFFFFFFFF}]
}
# Convert our <<< pseudo-operator into a procedure call.
regsub -all -line \
{\[expr {(.*) <<< (\d+)}\]} \
$::ripemd::ripemd128::RIPEMD128Hash_body \
{[<<< [expr {\1}] \2]} \
::ripemd::ripemd128::RIPEMD128Hash_body
# F(x,y,z) = x ^ y ^ z
proc ::ripemd::ripemd128::F {X Y Z} {
return [expr {$X ^ $Y ^ $Z}]
}
# Inline the F function F
regsub -all -line \
{\[F (\$[ABCD]{1,2}) (\$[ABCD]{1,2}) (\$[ABCD]{1,2})\]} \
$::ripemd::ripemd128::RIPEMD128Hash_body \
{(\1 ^ \2 ^ \3)} \
::ripemd::ripemd128::RIPEMD128Hash_body
# G(x,y,z) = (x & y) | (~x & z)
proc ::ripemd::ripemd128::G {X Y Z} {
return [expr {($X & $Y) | (~$X & $Z)}]
}
# Inline the G function
regsub -all -line \
{\[G (\$[ABCD]{1,2}) (\$[ABCD]{1,2}) (\$[ABCD]{1,2})\]} \
$::ripemd::ripemd128::RIPEMD128Hash_body \
{((\1 \& \2) | (~\1 \& \3))} \
::ripemd::ripemd128::RIPEMD128Hash_body
# H(x,y,z) = (x | ~y) ^ z
proc ::ripemd::ripemd128::H {X Y Z} {
return [expr {($X | ~$Y) ^ $Z}]
}
# Inline the H function
regsub -all -line \
{\[H (\$[ABCD]{1,2}) (\$[ABCD]{1,2}) (\$[ABCD]{1,2})\]} \
$::ripemd::ripemd128::RIPEMD128Hash_body \
{( (\1 | ~\2) ^ \3)} \
::ripemd::ripemd128::RIPEMD128Hash_body
# I(x,y,z) = (x & z) | (y & ~z)
proc ::ripemd::ripemd128::I {X Y Z} {
return [expr {($X & $Z) | ($Y & ~$Z)}]
}
# Inline the I function
regsub -all -line \
{\[I (\$[ABCD]{1,2}) (\$[ABCD]{1,2}) (\$[ABCD]{1,2})\]} \
$::ripemd::ripemd128::RIPEMD128Hash_body \
{( (\1 \& \3) | (\2 \& ~\3) )} \
::ripemd::ripemd128::RIPEMD128Hash_body
# Define the MD4 hashing procedure with inline functions.
proc ::ripemd::ripemd128::RIPEMD128Hash {token msg} \
$::ripemd::ripemd128::RIPEMD128Hash_body
unset ::ripemd::ripemd128::RIPEMD128Hash_body
# -------------------------------------------------------------------------
proc ::ripemd::ripemd128::Hex {data} {
binary scan $data H* result
return $result
}
# -------------------------------------------------------------------------
# LoadAccelerator --
#
# This package can make use of a number of compiled extensions to
# accelerate the digest computation. This procedure manages the
# use of these extensions within the package. During normal usage
# this should not be called, but the test package manipulates the
# list of enabled accelerators.
#
proc ::ripemd::ripemd128::LoadAccelerator {name} {
variable accel
set r 0
switch -exact -- $name {
#critcl {
# if {![catch {package require tcllibc}]
# || ![catch {package require sha1c}]} {
# set r [expr {[info commands ::sha1::sha1c] != {}}]
# }
#}
#cryptkit {
# if {![catch {package require cryptkit}]} {
# set r [expr {![catch {cryptkit::cryptInit}]}]
# }
#}
trf {
if {![catch {package require Trf}]} {
set r [expr {![catch {::ripemd128 aa} msg]}]
}
}
default {
return -code error "invalid accelerator package:\
must be one of [join [array names accel] {, }]"
}
}
set accel($name) $r
}
# -------------------------------------------------------------------------
# Description:
# Pop the nth element off a list. Used in options processing.
#
proc ::ripemd::ripemd128::Pop {varname {nth 0}} {
upvar $varname args
set r [lindex $args $nth]
set args [lreplace $args $nth $nth]
return $r
}
# -------------------------------------------------------------------------
# fileevent handler for chunked file hashing.
#
proc ::ripemd::ripemd128::Chunk {token channel {chunksize 4096}} {
# FRINK: nocheck
variable $token
upvar 0 $token state
if {[eof $channel]} {
fileevent $channel readable {}
set state(reading) 0
}
RIPEMD128Update $token [read $channel $chunksize]
}
# -------------------------------------------------------------------------
proc ::ripemd::ripemd128::ripemd128 {args} {
array set opts {-hex 0 -filename {} -channel {} -chunksize 4096}
while {[string match -* [set option [lindex $args 0]]]} {
switch -glob -- $option {
-hex { set opts(-hex) 1 }
-file* { set opts(-filename) [Pop args 1] }
-channel { set opts(-channel) [Pop args 1] }
-chunksize { set opts(-chunksize) [Pop args 1] }
default {
if {[llength $args] == 1} { break }
if {[string compare $option "--"] == 0} { Pop args; break }
set err [join [lsort [array names opts]] ", "]
return -code error "bad option $option:\
must be one of $err"
}
}
Pop args
}
if {$opts(-filename) != {}} {
set opts(-channel) [open $opts(-filename) r]
fconfigure $opts(-channel) -translation binary
}
if {$opts(-channel) == {}} {
if {[llength $args] != 1} {
return -code error "wrong # args:\
should be \"ripemd128 ?-hex? -filename file | string\""
}
set tok [RIPEMD128Init]
RIPEMD128Update $tok [lindex $args 0]
set r [RIPEMD128Final $tok]
} else {
set tok [RIPEMD128Init]
# FRINK: nocheck
set [subst $tok](reading) 1
fileevent $opts(-channel) readable \
[list [namespace origin Chunk] \
$tok $opts(-channel) $opts(-chunksize)]
vwait [subst $tok](reading)
set r [RIPEMD128Final $tok]
# If we opened the channel - we should close it too.
if {$opts(-filename) != {}} {
close $opts(-channel)
}
}
if {$opts(-hex)} {
set r [Hex $r]
}
return $r
}
# -------------------------------------------------------------------------
proc ::ripemd::ripemd128::hmac128 {args} {
array set opts {-hex 0 -filename {} -channel {} -chunksize 4096}
while {[string match -* [set option [lindex $args 0]]]} {
switch -glob -- $option {
-key { set opts(-key) [Pop args 1] }
-hex { set opts(-hex) 1 }
-file* { set opts(-filename) [Pop args 1] }
-channel { set opts(-channel) [Pop args 1] }
-chunksize { set opts(-chunksize) [Pop args 1] }
default {
if {[llength $args] == 1} { break }
if {[string compare $option "--"] == 0} { Pop args; break }
set err [join [lsort [array names opts]] ", "]
return -code error "bad option $option:\
must be one of $err"
}
}
Pop args
}
if {![info exists opts(-key)]} {
return -code error "wrong # args:\
should be \"hmac128 ?-hex? -key key -filename file | string\""
}
if {$opts(-filename) != {}} {
set opts(-channel) [open $opts(-filename) r]
fconfigure $opts(-channel) -translation binary
}
if {$opts(-channel) == {}} {
if {[llength $args] != 1} {
return -code error "wrong # args:\
should be \"hmac128 ?-hex? -key key -filename file | string\""
}
set tok [RIPEHMAC128Init $opts(-key)]
RIPEHMAC128Update $tok [lindex $args 0]
set r [RIPEHMAC128Final $tok]
} else {
set tok [RIPEHMAC128Init $opts(-key)]
# FRINK: nocheck
set [subst $tok](reading) 1
fileevent $opts(-channel) readable \
[list [namespace origin Chunk] \
$tok $opts(-channel) $opts(-chunksize)]
vwait [subst $tok](reading)
set r [RIPEHMAC128Final $tok]
# If we opened the channel - we should close it too.
if {$opts(-filename) != {}} {
close $opts(-channel)
}
}
if {$opts(-hex)} {
set r [Hex $r]
}
return $r
}
# -------------------------------------------------------------------------
namespace eval ::ripemd {
namespace import -force [namespace current]::ripemd128::*
namespace export ripemd128 hmac128 \
RIPEMD128Init RIPEMD128Update RIPEMD128Final \
RIPEHMAC128Init RIPEHMAC128Update RIPEHMAC128Final
}
# -------------------------------------------------------------------------
# Try and load a compiled extension to help.
namespace eval ::ripemd::ripemd128 {
variable e {}
foreach e {trf} {
if {[LoadAccelerator $e]} break
}
unset e
}
package provide ripemd128 1.0.5
# -------------------------------------------------------------------------
# Local Variables:
# mode: tcl
# indent-tabs-mode: nil
# End:
|