This file is indexed.

/usr/include/casacore/casa/Arrays/Array.h is in casacore-dev 2.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
//# Array.h: A templated N-D Array class with zero origin
//# Copyright (C) 1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2015
//# Associated Universities, Inc. Washington DC, USA,
//# National Astronomical Observatory of Japan
//# 2-21-1, Osawa, Mitaka, Tokyo, 181-8588, Japan.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: aips2-request@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#
//# $Id: Array.h 21545 2015-01-22 19:36:35Z gervandiepen $

#ifndef CASA_ARRAY_H
#define CASA_ARRAY_H

//# Includes
#include <casacore/casa/aips.h>
#include <casacore/casa/Arrays/ArrayBase.h>
#include <casacore/casa/Containers/Block.h>
#include <casacore/casa/Utilities/CountedPtr.h>
#include <casacore/casa/Arrays/MaskLogiArrFwd.h>
#include <casacore/casa/Arrays/IPosition.h>
#include <casacore/casa/ostream.h>
#include <iterator>
#if defined(WHATEVER_VECTOR_FORWARD_DEC)
WHATEVER_VECTOR_FORWARD_DEC;
#else
#include <casacore/casa/stdvector.h>
#endif

namespace casacore { //#Begin casa namespace
//# Forward Declarations
class AipsIO;
class Slice;
class Slicer;
template<class T> class Matrix;
template<class T> class ArrayIterator;
template<class T> class MaskedArray;
template<class Domain, class Range> class Functional;
//template <class T, class U> class vector; 


// <summary> A templated N-D Array class with zero origin </summary>

// Array<T> is a templated, N-dimensional, Array class. The origin is zero,
// but by default indices are zero-based. This Array class is the
// base class for specialized Vector<T>, Matrix<T>, and Cube<T> classes.
//
// Indexing into the array, and positions in general, are given with IPosition
// (essentially a vector of integers) objects. That is, an N-dimensional 
// array requires a length-N IPosition to define a position within the array.
// Unlike C, indexing is done with (), not []. Also, the storage order
// is the same as in FORTRAN, i.e. memory varies most rapidly with the first
// index.
// <srcblock>
//                                     // axisLengths = [1,2,3,4,5]
// IPosition axisLengths(5, 1, 2, 3, 4, 5); 
// Array<Int> ai(axisLengths);         // ai is a 5 dimensional array of
//                                     // integers; indices are 0-based
//                                     // => ai.nelements() == 120
// Array<Int> ai2(axisLengths);        // The first element is at index 0
// IPosition zero(5); zero = 0;        // [0,0,0,0,0]
// //...
// </srcblock>
// Indexing into an N-dimensional array is relatively expensive. Normally
// you will index into a Vector, Matrix, or Cube. These may be obtained from
// an N-dimensional array by creating a reference, or by using an 
// ArrayIterator. The "shape" of the array is an IPosition which gives the
// length of each axis.
//
// An Array may be standalone, or it may refer to another array, or to
// part of another array (by refer we mean that if you change a pixel in 
// the current array, a pixel in the referred to array also changes, i.e.
// they share underlying storage).
// <note role=warning>
//        One way one array can reference another is through the copy 
//        constructor. While this might be what you want, you should
//        probably use the reference() member function to make it explicit.
//        The copy constructor is used when arguments are passed by value;
//        normally functions should not pass Arrays by value, rather they
//        should pass a reference or a const reference. On the positive
//        side, returning an array from a function is efficient since no
//        copying need be done.
// </note>
//
// Aside from the explicit reference() member function, a user will
// most commonly encounter an array which references another array
// when he takes an array slice (or section). A slice is a sub-region of
// an array (which might also have a stride: every nth row, every mth column,
// ...).
// <srcblock>
// IPosition lengths(3,10,20,30);
// Array<Int> ai(lengths);         // A 10x20x30 cube
// Cube<Int> ci;
// //...
// ci.reference(ai1);              // ci and ai now reference the same
//                                 // storage
// ci(0,0,0) = 123;                // Can use Cube indexing
// ci.xyPlane(2) = 0;              //     and other member functions
// IPosition zero(3,0,0,0);
// assert(ai(zero) == 123);        // True because ai, ci are references
// //...
// Array<Int> subArray;
// IPosition blc(3,0,0,0), trc(3,5,5,5);
// subArray.reference(ai(blc, trc));
// subArray = 10;                  // All of subArray, which is the
//                                 // subcube from 0,0,0 to 5,5,5 in
//                                 // ai, has the value 10.
// </srcblock>
// While the last example has an array slice referenced explicitly by another
// array variable, normally the user will often only use the slice as
// a temporary in an expresion, for example:
// <srcblock>
//   Array<Complex> array;
//   IPosition blc, trc, offset;
//   //...
//   // Copy from one region of the array into another
//   array(blc, trc) = array(blc+offset, trc+offset);
// </srcblock>
//
// The Array classes are intended to operate on relatively large
// amounts of data. While they haven't been extensively tuned yet,
// they are relatively efficient in terms of speed. Presently they
// are not space efficient -- the overhead is about 15 words. While
// this will be improved (probably to about 1/2 that), these array
// classes are not appropriate for very large numbers of very small
// arrays. The Block<T> class may be what you want in this circumstance.
//
// Element by element mathematical and logical operations are available
// for arrays (defined in aips/ArrayMath.h and aips/ArrayLogical.h).
// Because arithmetic and logical functions are split out, it is possible
// to create an Array<T> (and hence Vector<T> etc) for any type T that has
// a default constructor, assignment operator, and copy constructor. In
// particular, Array<String> works.
//
// If compiled with the preprocessor symbol AIPS_DEBUG symbol, array
// consistency ("invariants") will be checked in most member
// functions, and indexing will be range-checked. This should not be
// defined for production runs.
//
// <note role=tip>
// Most of the data members and functions which are "protected" should
// likely become "private".
// </note>
//
// <todo asof="1999/12/30">
//   <li> Integrate into the Lattice hierarchy
//   <li> Factor out the common functions (shape etc) into a type-independent
//        base class.
// </todo>

template<class T> class Array : public ArrayBase
{
public:

    // Result has dimensionality of zero, and  nelements is zero.
    // Storage will be allocated by <src>DefaultAllocator<T></src>.
    Array();

    // Create an array of the given shape, i.e. after construction
    // array.ndim() == shape.nelements() and array.shape() == shape.
    // The origin of the Array is zero.
    // Storage is allocated by <src>DefaultAllocator<T></src>.
    // Without initPolicy parameter, the initialization of elements depends on type <src>T</src>.
    // When <src>T</src> is a fundamental type like <src>int</src>, elements are NOT initialized.
    // When <src>T</src> is a class type like <src>casacore::Complex</src> or <src>std::string</src>, elements are initialized.
    // This inconsistent behavior confuses programmers and make it hard to write efficient and generic code using template.
    // Especially when <src>T</src> is of type <src>Complex</src> or <src>DComplex</src> and it is unnecessary to initialize,
    // provide initPolicy with value <src>NO_INIT</src> to skip the initialization.
    // Therefore, it is strongly recommended to explicitly provide initPolicy parameter,
    explicit Array(const IPosition &shape);

    // Create an array of the given shape, i.e. after construction
    // array.ndim() == shape.nelements() and array.shape() == shape.
    // The origin of the Array is zero.
    // Storage is allocated by <src>DefaultAllocator<T></src>.
    // When initPolicy parameter is <src>INIT</src>, elements are initialized with the default value of <src>T()</src>.
    // When initPolicy parameter is <src>NO_INIT</src>, elements are NOT initialized and programmers are responsible to
    // initialize elements before they are referred, especially when <src>T</src> is such type like <src>std::string</src>.
    // <srcblock>
    //   IPosition shape(1, 10);
    //   Array<Int> ai(shape, ArrayInitPolicy::NO_INIT);
    //   size_t nread = fread(ai.data(), sizeof(Int), ai.nelements(), fp);
    // </srcblock>
    Array(const IPosition &shape, ArrayInitPolicy initPolicy);

    // Create an array of the given shape and initialize it with the
    // initial value.
    // Storage is allocated by <src>DefaultAllocator<T></src>.
    Array(const IPosition &shape, const T &initialValue);

    // After construction, this and other reference the same storage.
    Array(const Array<T> &other);

    // Create an Array of a given shape from a pointer.
    // If <src>policy</src> is <src>COPY</src>, storage of a new copy is allocated by <src>DefaultAllocator<T></src>.
    // If <src>policy</src> is <src>TAKE_OVER</src>, <src>storage</src> will be destructed and released by <src>NewDelAllocator<T></src>.
    // It is strongly recommended to supply an appropriate <src>allocator</src> argument explicitly
    // whenever <src>policy</src> == <src>TAKE_OVER</src>
    // to let <src>Array</src> to know how to release the <src>storage</src>.
    Array(const IPosition &shape, T *storage, StorageInitPolicy policy = COPY);

    // Create an Array of a given shape from a pointer.
    // If <src>policy</src> is <src>COPY</src>, storage of a new copy is allocated by the specified allocator.
    // If <src>policy</src> is <src>TAKE_OVER</src>, <src>storage</src> will be destructed and released by the specified allocator.
    // Otherwise, <src>allocator</src> is ignored.
    // It is strongly recommended to allocate and initialize <src>storage</src> with <src>DefaultAllocator<T></src>
    // rather than new[] or <src>NewDelAllocator<T></src> because new[] can't decouple allocation and initialization.
    // <src>DefaultAllocator<T>::type</src> is a subclass of std::allocator. You can allocate <src>storage</src> via
    // the allocator as below.
    // <srcblock>
    //   FILE *fp = ...;
    //   typedef DefaultAllocator<Int> Alloc;
    //   Alloc::type alloc;
    //   IPosition shape(1, 10);
    //   Int *ptr = alloc.allocate(shape.product());
    //   size_t nread = fread(ptr, sizeof(Int), shape.product(), fp);
    //   Array<Int> ai(shape, ptr, TAKE_OVER, Alloc::value);
    // </srcblock>
    Array(const IPosition &shape, T *storage, StorageInitPolicy policy, AbstractAllocator<T> const &allocator);

    // Create an Array of a given shape from a pointer. Because the pointer
    // is const, a copy is always made.
    // The copy is allocated by <src>DefaultAllocator<T></src>.
    Array(const IPosition &shape, const T *storage);

    // Frees up storage only if this array was the last reference to it.
    virtual ~Array();

    // Make an empty array of the same template type.
    virtual CountedPtr<ArrayBase> makeArray() const;

    // Assign the other array to this array.
    // If the shapes mismatch, this array is resized.
    // <group>
    virtual void assign (const Array<T>& other);
    virtual void assignBase (const ArrayBase& other, Bool checkType=True);
    // </group>

    // Set every element of the array to "value." Also could use the
    // assignment operator which assigns an array from a scalar.
    void set(const T &value);

    // Apply the function to every element of the array. This modifies
    // the array in place.
    // <group>
    // This version takes a function which takes a T and returns a T.
    void apply(T (*function)(T));
    // This version takes a function which takes a const T reference and
    // returns a T.
    void apply(T (*function)(const T &));
    // This version applies a functional.
    void apply(const Functional<T,T> &function);
    // </group>

    // After invocation, this array and other reference the same storage. That
    // is, modifying an element through one will show up in the other. The
    // arrays appear to be identical; they have the same shape.
    // <br>Please note that this function makes it possible to reference a
    // const Array, thus effectively it makes a const Array non-const.
    // Although this may seem undesirable at first sight, it is necessary to
    // be able to make references to temporary Array objects, in particular to 
    // Array slices. Otherwise one first needs to use the copy constructor.
    //# The const has been introduced on 2005-Mar-31 because of the hassle
    //# involved in calling the copy ctor before reference.
    virtual void reference(const Array<T> &other);

    // Copy the values in other to this. If the array on the left hand
    // side has no elements, then it is resized to be the same size as
    // as the array on the right hand side. Otherwise, the arrays must
    // conform (same shapes).
    // <srcblock>
    // IPosition shape(2,10,10);     // some shape
    // Array<Double> ad(shape);
    // //...
    // Array<Double> ad2;            // N.B. ad2.nelements() == 0
    // ad2 = ad;                     // ad2 resizes, then elements
    //                               //     are copied.
    // shape = 20;
    // Array<Double> ad3(shape);
    // ad3 = ad;                     // Error: arrays do not conform
    // </srcblock>
    // Note that the assign function can be used to assign a
    // non-conforming array.
    virtual Array<T> &operator=(const Array<T> &other);

    // Set every element of this array to "value". In other words, a scalar
    // behaves as if it were a constant conformant array.
    Array<T> &operator=(const T &value);

    // Copy to this those values in marray whose corresponding elements
    // in marray's mask are True.
    //
    // <thrown>
    //    <li> ArrayConformanceError
    // </thrown>
    //
    Array<T> &operator= (const MaskedArray<T> &marray);

    // This makes a copy of the array and returns it. This can be
    // useful for, e.g. making working copies of function arguments
    // that you can write into.
    // <srcblock>
    // void someFunction(const Array<Int> &arg)
    // {
    //     Array<Int> tmp(arg.copy());
    //     // ...
    // }
    // </srcblock>
    // Note that since the copy constructor makes a reference, if we just
    // created used to copy constructor, modifying "tmp" would also
    // modify "arg". Clearly another alternative would simply be:
    // <srcblock>
    // void someFunction(const Array<Int> &arg)
    // {
    //     Array<Int> tmp;
    //     tmp = arg;
    //     // ...
    // }
    // </srcblock>
    // which likely would be simpler to understand. (Should copy() 
    // be deprecated and removed?)
    //
    Array<T> copy(ArrayInitPolicy policy = ArrayInitPolicy::NO_INIT) const;                         // Make a copy of this

    // This function copies the matching part of from array to this array.
    // The matching part is the part with the minimum size for each axis.
    // E.g. if this array has shape [4,5,6] and from array has shape [7,3],
    // the matching part has shape [4,3].
    // <br>Note it is used by the resize function if
    // <src>copyValues==True</src>.
    void copyMatchingPart (const Array<T> &from);

    // This ensures that this array does not reference any other storage.
    // <note role=tip>
    //        When a section is taken of an array with non-unity strides,
    //        storage can be wasted if the array, which originally contained
    //        all the data, goes away. unique() also reclaims storage. This
    //        is an optimization users don't normally need to understand.
    //
    //        <srcblock>
    //        IPosition shape(...), blc(...), trc(...), inc(...);
    //        Array<Float> af(shape);
    //        inc = 2; // or anything > 1
    //        Array<Float> aSection.reference(af(blc, trc, inc));
    //        af.reference(anotherArray);
    //        // aSection now references storage that has a stride
    //        // in it, but nothing else is. Storage is wasted.
    //        aSection.unique();
    //        </srcblock>
    // </note>
    void unique();

    // Create an STL vector from an Array. The created vector is a linear
    // representation of the Array memory. See
    // <linkto class=Vector>Vector</linkto>  for
    // details of the operation and its reverse (i.e. creating a 
    // <src>Vector</src> from a <src>vector</src>), and for details of
    // definition and instantiation.
    // <group>
    template <class U>
    void tovector(vector<T, U> &out) const;

    vector<T> tovector() const;
    // </group>

    // It is occasionally useful to have an array which access the same
    // storage appear to have a different shape. For example,
    // turning an N-dimensional array into a Vector.
    // <br>When the array data are contiguous, the array can be reshaped
    // to any form as long as the number of elements stays the same.
    // When not contiguous, it is only possible to remove or add axes
    // with length 1.
    // <srcblock>
    // IPosition squareShape(2,5,5);
    // Array<Float> square(squareShape);
    // IPosition lineShape(1,25);
    // Vector<Float> line(square.reform(lineShape));
    // // "square"'s storage may now be accessed through Vector "line"
    // </srcblock>
    Array<T> reform(const IPosition &shape) const;

    // Having an array that can be reused without requiring reallocation can
    // be useful for large arrays.  The method reformOrResize permits this
    // usage.
    //
    // The reformOrResize method first attempts to reform the matrix so that
    // it reuses the existing storage for an array with a new shape.  If the
    // existing storage will not hold the new shape, then the method will
    // resize the array when resizeIfNeeded is true; if a resize is needed and
    // resizeIfNeeded is false, then an ArrayConformanceError is thrown.  The
    // copyDataIfNeeded parameter is passed to resize if resizing is performed.
    // resizePercentage is the percent of additional storage to be addeed when
    // a resize is performed; this allows the allocations to be amortized when
    // the caller expects to be calling this method again in the future.  The
    // parameter is used to define an allocation shape which is larger than
    // the newShape by increasing the last dimension by resizePercentage percent
    // (i.e., lastDim = (lastDim * (100 + resizePercentage)) / 100).  If
    // resizePercentage <= 0 then resizing uses newShape as-is.  Returns true
    // if resizing (allocation) was performed.
    //
    // To truncate the array so that it no longer holds additional storage,
    // use the resize method.
    //
    // Array may not be shared with another Array object during this call.
    // Exception thrown if it is shared.

    bool reformOrResize (const IPosition & newShape,
                         uInt resizePercentage = 0,
                         Bool resizeIfNeeded = True);

    // Use this method to extend or reduce the last dimension of an array.  If
    // sufficient excess capacity exists then the bookkeeping is adjusted to 
    // support the new shape.  If insufficient storage exists then a new array
    // is allocated (unless resizeIfNeeded is false; then an exception is thrown).
    // If resizing is not required then the data remains untouched; if resizing
    // is required then the data is copied into the new storage.  The resizePercentage
    // works the same as for reformOrResize (see above).  This method never releases
    // extra storage; use "resize" to do this.  Array may not be sharing storage
    // with another array at call time; an exception will be thrown if the array is shared.
    // Returns true if the array was extension required a Array<T>::resize operation.

    bool adjustLastAxis (const IPosition & newShape,
		         uInt resizePercentage = 0, 
                         bool resizeIfNeeded = True);

    // Returns the number of elements allocated.  This value is >= to the value returned
    // by size().

    size_t capacity () const; 

    // These member functions remove degenerate (ie. length==1) axes from
    // Arrays.  Only axes greater than startingAxis are considered (normally
    // one wants to remove trailing axes). The first two of these functions
    // return an Array reference with axes removed. The latter two functions
    // let this Array object reference the 'other' array with degenerated axes
    // removed.
    // <br>
    // Unless throwIfError is False, an exception will be thrown if
    // startingAxis exceeds the array's dimensionality.
    // <br>
    // The functions with argument <src>ignoreAxes</src> do
    // not consider the axes given in that argument. In this way it can be
    // achieved that degenerate axes are kept.
    // <note role=caution> When the two functions returning <src>void</src>
    // are invoked on a derived object (e.g. Matrix), an exception is
    // thrown if removing the degenerate axes from other does not result
    // in a correct number of axes.
    // </note>
    // <group>
    Array<T> nonDegenerate(uInt startingAxis=0, Bool throwIfError=True) const;
    Array<T> nonDegenerate(const IPosition& ignoreAxes) const;
    void nonDegenerate(const Array<T> &other, uInt startingAxis=0,
		       Bool throwIfError=True);
    void nonDegenerate(const Array<T> &other, const IPosition &ignoreAxes)
        { doNonDegenerate (other, ignoreAxes); }
    // </group> 

    // Remove degenerate axes from this Array object.
    // Note it does not make sense to use these functions on a derived object
    // like Matrix, because it is not possible to remove axes from them.
    // <group>
    void removeDegenerate(uInt startingAxis=0,
                          Bool throwIfError=True);
    void removeDegenerate(const IPosition &ignoreAxes);
    // </group>

    // This member function returns an Array reference with the specified
    // number of extra axes, all of length one, appended to the end of the
    // Array. Note that the <src>reform</src> function can also be
    // used to add extra axes.
    // <group>
    const Array<T> addDegenerate(uInt numAxes) const;
    Array<T> addDegenerate(uInt numAxes);
    // </group>

    // Make this array a different shape. If <src>copyValues==True</src>
    // the old values are copied over to the new array.
    // Copying is done on a per axis basis, thus a subsection with the
    // minimum of the old and new shape is copied.
    // <br>Resize without argument is equal to resize(IPosition()).
    // <br>It is important to note that if multiple Array objects
    // reference the same data storage, this Array object still references
    // the same data storage as the other Array objects if the shape does
    // not change. Otherwise this Array object references newly allocated
    // storage, while the other Array objects still reference the existing
    // data storage.
    // <br>If you want to be sure that the data storage of this Array object
    // is not referenced by other Array objects, the function unique should
    // be called first.
    // <group>
    virtual void resize();
    virtual void resize(const IPosition &newShape, Bool copyValues=False);
    virtual void resize(const IPosition &newShape, Bool copyValues, ArrayInitPolicy policy);
    // </group>

    // Access a single element of the array. This is relatively
    // expensive. Extensive indexing should be done through one
    // of the Array specializations (Vector, Matrix, Cube). If
    // AIPS_DEBUG is defined, index checking will be performed.
    // <group>
    T &operator()(const IPosition &);
    const T &operator()(const IPosition &) const;
    // </group>

    // Get a reference to an array section extending
    // from start to end (inclusive).
    // <group>
    Array<T> operator()(const IPosition &start,
                        const IPosition &end);
    const Array<T> operator()(const IPosition &start,
                              const IPosition &end) const;
    // Along the ith axis, every inc[i]'th element is chosen.
    Array<T> operator()(const IPosition &start,
                        const IPosition &end,
			const IPosition &inc);
    const Array<T> operator()(const IPosition &start,
                              const IPosition &end,
                              const IPosition &inc) const;
    // </group>

    // Get a reference to an array section using a Slicer.
    // <group>
    Array<T> operator()(const Slicer&);
    const Array<T> operator()(const Slicer&) const;
    // </group>

    // Get a reference to a section of an array.
    // This is the same as operator(), but can be used in a type-agnostic way.
    virtual CountedPtr<ArrayBase> getSection (const Slicer&) const;

    // Get the subset given by the i-th value of the last axis. So for a cube
    // it returns the i-th xy plane. For a Matrix it returns the i-th row.
    // The returned array references the original array data; its dimensionality
    // is one less. For a 1-dim array it still returns a 1-dim array.
    // <note>This function should not be used in tight loops as it is (much)
    // slower than iterating using begin() and end(), ArrayIter, or
    // ArrayAccessor.</note>
    Array<T> operator[] (size_t i) const;

    // Get the diagonal of each matrix part in the full array.
    // The matrices are taken using axes firstAxes and firstAxis+1.
    // diag==0 is main diagonal; diag>0 above the main diagonal; diag<0 below.
    Array<T> diagonals (uInt firstAxis=0, Int64 diag=0) const;

    // The array is masked by the input LogicalArray.
    // This mask must conform to the array.
    // <group>
    const MaskedArray<T> operator() (const LogicalArray &mask) const;
    MaskedArray<T> operator() (const LogicalArray &mask);
    // </group>

    // The array is masked by the input MaskedLogicalArray.
    // The mask is effectively the AND of the internal LogicalArray
    // and the internal mask of the MaskedLogicalArray.
    // The MaskedLogicalArray must conform to the array.
    // <group>
    const MaskedArray<T> operator() (const MaskedLogicalArray &mask) const;
    MaskedArray<T> operator() (const MaskedLogicalArray &mask);
    // </group>

    // The number of references the underlying storage has assigned to it.
    // It is 1 unless there are outstanding references to the storage (e.g.,
    // through a slice). Normally you have no need to do this since the
    // arrays handle all of the references for you.
    uInt nrefs() const;

    // Check to see if the Array is consistent. This is about the same thing
    // as checking for invariants. If AIPS_DEBUG is defined, this is invoked
    // after construction and on entry to most member functions.
    virtual Bool ok() const;

    // Are the shapes identical?
    // <group>
    Bool conform (const Array<T> &other) const
      { return conform2(other); }
    Bool conform (const MaskedArray<T> &other) const;
    // </group>

    // Get a pointer to the beginning of the array.
    // Note that the array may not be contiguous.
    // <group>
    T* data()
      { return begin_p; }
    const T* data() const
      { return begin_p; }
    // </group>

    // Generally use of this should be shunned, except to use a FORTRAN routine
    // or something similar. Because you can't know the state of the underlying
    // data layout (in particular, if there are increments) sometimes the
    // pointer returned will be to a copy, but often this won't be necessary.
    // A boolean is returned which tells you if this is a copy (and hence the
    // storage must be deleted). Note that if you don't do anything unusual,
    // getStorage followed by freeStorage or putStorage will do the deletion
    // for you (if required). e.g.:
    // <srcblock>
    // Array<Int> a(shape); ...
    // Bool deleteIt; Int *storage = a.getStorage(deleteIt);
    // foo(storage, a.nelements()); a.puStorage(storage, deleteIt);
    // // or a.freeStorage(storage, deleteIt) if a is const.
    // </srcblock>
    // NB: However, if you only use getStorage, you will have to delete the
    // pointer yourself using freeStorage().
    //
    // It would probably be useful to have corresponding "copyin" "copyout"
    // functions that used a user supplied buffer.
    // Note that deleteIt is set in this function.
    // <group>
    T *getStorage(Bool &deleteIt);
    const T *getStorage(Bool &deleteIt) const
    {
      // The cast is OK because the return pointer will be cast to const
      return const_cast<Array<T>*>(this)->getStorage(deleteIt);
    }
    virtual void *getVStorage(Bool &deleteIt);
    virtual const void *getVStorage(Bool &deleteIt) const;
    // </group>

    // putStorage() is normally called after a call to getStorage() (cf).
    // The "storage" pointer is set to zero.
    void putStorage(T *&storage, Bool deleteAndCopy);
    virtual void putVStorage(void *&storage, Bool deleteAndCopy);

    // If deleteIt is set, delete "storage". Normally freeStorage calls
    // will follow calls to getStorage. The reason the pointer is "const"
    // is because only const pointers are released from const arrays.
    // The "storage" pointer is set to zero.
    void freeStorage(const T *&storage, Bool deleteIt) const;
    void freeVStorage(const void *&storage, Bool deleteIt) const;

    // Replace the data values with those in the pointer <src>storage</src>.
    // The results are undefined if storage does not point at nelements() or
    // more data elements. After takeStorage() is called, <src>nrefs()</src>
    // is 1.
    // <group>
    // If <src>policy</src> is <src>COPY</src>, storage of a new copy is allocated by <src>DefaultAllocator<T></src>.
    // If <src>policy</src> is <src>TAKE_OVER</src>, <src>storage</src> will be destructed and released by <src>NewDelAllocator<T></src>.
    // It is strongly recommended to supply an appropriate <src>allocator</src> argument explicitly
    // whenever <src>policy</src> == <src>TAKE_OVER</src>
    // to let <src>Array</src> to know how to release the <src>storage</src>.
    virtual void takeStorage(const IPosition &shape, T *storage,
		     StorageInitPolicy policy = COPY);

    // If <src>policy</src> is <src>COPY</src>, storage of a new copy is allocated by <src>allocator</src>.
    // If <src>policy</src> is <src>TAKE_OVER</src>, <src>storage</src> will be destructed and released by <src>allocator</src>.
    // Otherwise, <src>storage</src> is ignored.
    virtual void takeStorage(const IPosition &shape, T *storage,
        StorageInitPolicy policy, AbstractAllocator<T> const &allocator);

    // Since the pointer is const, a copy is always taken.
    // Storage of a new copy is allocated by <src>DefaultAllocator<T></src>.
    virtual void takeStorage(const IPosition &shape, const T *storage);

    // Since the pointer is const, a copy is always taken.
    // Storage of a new copy is allocated by the specified allocator.
    virtual void takeStorage(const IPosition &shape, const T *storage,
        AbstractAllocator<T> const &allocator);
    // </group>


    // Used to iterate through Arrays. Derived classes VectorIterator and
    // MatrixIterator are probably more useful.
    friend class ArrayIterator<T>;

    // Create an ArrayIterator object of the correct type.
    virtual CountedPtr<ArrayPositionIterator> makeIterator (uInt byDim) const;

    // Needed to be a friend for Matrix<T>::reference()
    friend class Matrix<T>;


    // <group name=STL-iterator>
    // See the function begin() and end() for a detailed description
    // of the STL iterator capability.
    class BaseIteratorSTL
    {
    public:
      // Create the begin const_iterator object for an Array.
      explicit BaseIteratorSTL (const Array<T>&);
      // Create the end const_iterator object for an Array.
      // It also acts as the default constructor.
      explicit BaseIteratorSTL (const T* end = 0)
	: itsPos(end), itsLineEnd(0), itsLineIncr(0), itsLineAxis(0),
	  itsArray(0), itsContig(False) {}

      void nextElem()
      {
	itsPos++;
	if (!itsContig) {
	  itsPos += itsLineIncr;
	  if (itsPos > itsLineEnd) increment();
	}
      }
      void nextLine()
      {
	itsPos = itsLineEnd;
	increment();
      }

      bool operator== (const BaseIteratorSTL& other) const
        { return itsPos == other.itsPos; }

      bool operator!= (const BaseIteratorSTL& other) const
        { return itsPos != other.itsPos; }

      T* getPos()
        { return const_cast<T*>(itsPos); }

      friend ostream& operator<< (ostream& os, const BaseIteratorSTL& iter)
        { os << iter.itsPos; return os; }

    protected:
      // Increment iterator for a non-contiguous array.
      void increment();

      const T*  itsPos;
      const T*  itsLineEnd;
      size_t    itsLineIncr;
      uInt      itsLineAxis;
      IPosition itsCurPos;
      IPosition itsLastPos;
      const Array<T>* itsArray; 
      Bool      itsContig;
    };

    class IteratorSTL: public BaseIteratorSTL
    {
    public:
      // <group name=STL-iterator-typedefs>
      typedef T                 value_type;
      typedef value_type*       pointer;
      typedef value_type&       reference;
      typedef std::size_t       size_type;
      typedef ptrdiff_t         difference_type;
      typedef std::forward_iterator_tag iterator_category;
      // </group>

      // Create the begin iterator object for an Array.
      explicit IteratorSTL (Array<T>& arr)
	: BaseIteratorSTL (arr) {}
      // Create the end iterator object for an Array.
      // It also acts as the default constructor.
      explicit IteratorSTL (const T* end = 0)
	: BaseIteratorSTL (end) {}

      const IteratorSTL& operator++()
      {
	this->nextElem();
	return *this;
      }
      IteratorSTL operator++(int)
      {
	IteratorSTL old(*this);
	this->nextElem();
	return old;
      }

      T& operator*()
        { return *this->getPos(); }
      T* operator->()
        { return this->getPos(); }
    };

  class ConstIteratorSTL: public BaseIteratorSTL
    {
    public:
      // <group name=STL-iterator-typedefs>
      typedef T                 value_type;
      typedef const value_type* pointer;
      typedef const value_type& reference;
      typedef std::size_t       size_type;
      typedef ptrdiff_t         difference_type;
      typedef std::forward_iterator_tag iterator_category;
      // </group>

      // Create the begin const_iterator object for an Array.
      explicit ConstIteratorSTL (const Array<T>& arr)
	: BaseIteratorSTL (arr) {}
      // Create the end const_iterator object for an Array.
      // It also acts as the default constructor.
      explicit ConstIteratorSTL (const T* end = 0)
	: BaseIteratorSTL (end) {}
      // Create from a non-const iterator.
      ConstIteratorSTL (const IteratorSTL& iter)
	: BaseIteratorSTL (iter) {}

      const ConstIteratorSTL& operator++()
      {
	this->nextElem();
	return *this;
      }
      ConstIteratorSTL operator++(int)
      {
	ConstIteratorSTL old(*this);
	this->nextElem();
	return old;
      }

      const T& operator*() const
        { return *this->itsPos; }
      const T* operator->()
        { return this->itsPos; }

      const T* pos() const
        { return this->itsPos; }
    };
    // </group>

    // Define the STL-style iterator functions (only forward iterator).
    // It makes it possible to iterate through all data elements of an array
    // and to use it common STL functions.
    // The end() function is relatively expensive, so it should not be
    // used inside a for statement. It is much better to call it beforehand
    // as shown in the example below. Furthermore it is very important to
    // use <src>++iter</src>, because <src>iter++</src> is 4 times slower.
    // <srcblock>
    //  Array<Int> arr(shape);
    //  Array<Int>::iterator iterend(arr.end());
    //  for (Array<Int>::iterator iter=arr.begin(); iter!=iterend; ++iter) {
    //    *iter += 1;
    //  }
    // </srcblock>
    // The Array class supports random access, so in principle a random
    // iterator could be implemented, but its performance would not be great,
    // especially for non-contiguous arrays.
    // <br>Some other STL like functions exist for performance reasons.
    // If the array is contiguous, it is possible to use the
    // <src>cbegin</src> and <src>cend</src> functions which are
    // about 10% faster.
    // <group name=STL-iterator>
    // STL-style typedefs.
    // <group>
    typedef T                value_type;
    typedef IteratorSTL      iterator;
    typedef ConstIteratorSTL const_iterator;
    typedef T*               contiter;
    typedef const T*         const_contiter;
    // </group>
    // Get the begin iterator object for any array.
    // <group>
    iterator begin()
        { return iterator (*this); }
    const_iterator begin() const
        { return const_iterator (*this); }
    iterator end()
        { return iterator(end_p); }
    const_iterator end() const
        { return const_iterator(end_p); }
    // </group>

    // Get the begin iterator object for a contiguous array.
    // <group>
    contiter cbegin()
        { return begin_p; }
    const_contiter cbegin() const
        { return begin_p; }
    contiter cend()
        { return end_p; }
    const_contiter cend() const
        { return end_p; }
    // </group>

    // </group>


private:
    Array(Allocator_private::AllocSpec<T> allocator);
    Array(const IPosition &shape, ArrayInitPolicy initPolicy, Allocator_private::BulkAllocator<T> *allocator);
    // Makes a copy using the allocator.
    Array<T> copy(ArrayInitPolicy policy, Allocator_private::BulkAllocator<T> *allocator) const;
    // If the current allocator is NewDelAllocator<T>, BulkAllocator for DefaultAllocator<T> is returned,
    // otherwise BulkAllocator for the current allocator is returned.
    Allocator_private::BulkAllocator<T> *nonNewDelAllocator() const;
protected:
    static ArrayInitPolicy defaultArrayInitPolicy() {
        return Block<T>::init_anyway() ? ArrayInitPolicy::INIT : ArrayInitPolicy::NO_INIT;
    }
    // pre/post processing hook of takeStorage() for subclasses.
    virtual void preTakeStorage(const IPosition &) {}
    virtual void postTakeStorage() {}
    static void copyToContiguousStorage(T *dst, Array<T> const & src, ArrayInitPolicy policy);

    // Remove the degenerate axes from the Array object.
    // This is the implementation of the nonDegenerate functions.
    // It has a different name to be able to make it virtual without having
    // the "hide virtual function" message when compiling derived classes.
    virtual void doNonDegenerate(const Array<T> &other,
                                 const IPosition &ignoreAxes);


    // Reference counted block that contains the storage.
    CountedPtr<Block<T> > data_p;

    // This pointer is adjusted to point to the first element of the array.
    // It is not necessarily the same thing as data->storage() since
    // this array might be a section, e.g. have a blc which shifts us forward
    // into the block.
    T *begin_p;

    // The end for an STL-style iteration.
    T* end_p;


    // Fill the steps and the end for a derived class.
    void makeSteps()
      { baseMakeSteps(); this->setEndIter(); }

    // Set the end iterator.
    void setEndIter()
      { end_p = (nels_p==0 ? 0 : (contiguous_p  ?  begin_p + nels_p :
                   begin_p + size_t(length_p(ndim()-1)) * steps_p(ndim()-1))); }
};


//# Declare extern templates for often used types.
#ifdef AIPS_CXX11
  extern template class Array<Bool>;
  extern template class Array<Char>;
  extern template class Array<uChar>;
  extern template class Array<Short>;
  extern template class Array<uShort>;
  extern template class Array<Int>;
  extern template class Array<uInt>;
  extern template class Array<Int64>;
  extern template class Array<Float>;
  extern template class Array<Double>;
  extern template class Array<Complex>;
  extern template class Array<DComplex>;
  extern template class Array<String>;
#endif

}//#End casa namespace


#ifndef CASACORE_NO_AUTO_TEMPLATES
#include <casacore/casa/Arrays/Array.tcc>
#endif //# CASACORE_NO_AUTO_TEMPLATES
#endif