This file is indexed.

/usr/include/casacore/casa/Arrays/ArrayAccessor.h is in casacore-dev 2.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
//# ArrayAccessor.h: Fast 1D accessor/iterator for nD array classes
//# Copyright (C) 2002,2004
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: aips2-request@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#
//#
//# $Id$

#ifndef CASA_ARRAYACCESSOR_H
#define CASA_ARRAYACCESSOR_H

//# Includes
#include <casacore/casa/aips.h>
#include <casacore/casa/Arrays/Array.h>

namespace casacore { //#Begin casa namespace

//# Forward Declarations
template <class T> class ArrayBaseAccessor;
//# Next one suffices as declaration: only (part) specialisations allowed
template <class T, class U> class ArrayAccessor;

//# Hide simple Axis classes names from outside module

namespace {
  // <summary> Class to enumerate compile-time axis numeration </summary>
  template <uInt AX> struct Axis {
    enum {
      // Specify the constant axis
      N=AX
    };
  };
  // <summary>Class to specify run-time axis values</summary>
  struct AxisN {
    // Construct the run-time axis number
    explicit AxisN(const uInt n) : N(n) {}
    // Axis number
    uInt N;
  };
}

// <summary> Axis independent base for the ArrayAccessor classes </summary>
// <use visibility=local>
// <synopsis>
// The ArrayBaseAccessor class implements the axis independent parts of the
// ArrayAccessor class. It can only be used from the ArrayAccessor class.
// </synopsis>

template <class T> class ArrayBaseAccessor {
 protected:
  //# Constructors
  // <group>
  // Default constructor (for use in e.g. containers)
  ArrayBaseAccessor() : arrayPtr_p(0), axis_p(0), ptr_p(0),
    step_p(0), begin_p(0), end_p(0) {;}
  // Construct from an Array
  // <group>
  explicit ArrayBaseAccessor(const Array<T> &arr) :
    arrayPtr_p(&arr), axis_p(0), ptr_p(const_cast<T*>(arrayPtr_p->data())),
    step_p(0), begin_p(0), end_p(0) {;}
  ArrayBaseAccessor(const Array<T> &arr, const uInt ax) :
    arrayPtr_p(&arr), axis_p(ax), ptr_p(const_cast<T*>(arrayPtr_p->data())),
    step_p(0), begin_p(0), end_p(0) {;}
  // </group>
  // Copy constructor (copy semantics)
  // <group>
  ArrayBaseAccessor(const ArrayBaseAccessor<T> &other) :
    arrayPtr_p(other.arrayPtr_p), axis_p(other.axis_p), ptr_p(other.ptr_p),
    step_p(other.step_p), begin_p(other.begin_p), end_p(other.end_p) {;}
  ArrayBaseAccessor(const ArrayBaseAccessor<T> &other, const uInt ax) :
    arrayPtr_p(other.arrayPtr_p), axis_p(ax), ptr_p(other.ptr_p),
    step_p(other.step_p), begin_p(other.begin_p), end_p(other.end_p) {;}
  // </group>
  
  //# Destructor
  // Destructor
  ~ArrayBaseAccessor() {;}
  // </group>
  
  // Assignment (copy semantics)
  ArrayBaseAccessor &operator=(const ArrayBaseAccessor<T> &other) {
    if (&other != this) {
      arrayPtr_p = other.arrayPtr_p; ptr_p = other.ptr_p;
    }; return *this; }
  // (Re-)initialize from Array
  // <group>
  void init(const Array<T> &arr) { arrayPtr_p = &arr;
  ptr_p = const_cast<T*>(arrayPtr_p->data()); }
  void init(const Array<T> &arr, const uInt ax) { arrayPtr_p = &arr;
  axis_p = ax; ptr_p = const_cast<T*>(arrayPtr_p->data()); }
  void init(const uInt ax) { arrayPtr_p = 0; axis_p = ax; ptr_p = 0; }
  // </group>

 public:
  //# Operators
  // Iterator-like operations.
  // <group>
  void operator+=(const uInt ix) { ptr_p += ix*step_p; }
  void operator-=(const uInt ix) { ptr_p -= ix*step_p; }
  void operator++() { ptr_p += step_p; }
  void operator++(int) { ptr_p += step_p; }
  void operator--() { ptr_p -= step_p; }
  void operator--(int) { ptr_p -= step_p; }
  // </group>
  
  // Dereferencing.
  // <group>
  const T &operator*() const { return *ptr_p; }
  T &operator*() { return *ptr_p; }
  T *data() { return ptr_p; }
  const Array<T> &baseArray() { return *arrayPtr_p; }
  uInt step() { return step_p; }
  // </group>
  
  // Index along current axis
  // <group>
  const T &operator[](const Int ix) const { return *(ptr_p + ix*step_p); };
  T &operator[](const Int ix) { return *(ptr_p + ix*step_p); }
  // </group>
  
  // End of index on line
  // <group>
  const T *end() { return end_p; }
  const T *end(const Int n) { return end_p + n*step_p; }
  // </group>

  // Start of index on line
  // <group>
  const T *begin() { return begin_p; }
  const T *begin(const Int n) { return begin_p + n*step_p; }
  // </group>

  // End when reverse indexing
  // <group>
  const T *rend() { return begin_p-step_p; }
  const T *rend(const Int n) { return begin_p + (n-1)*step_p; }
  // </group>

  // Begin when reverse indexing
  // <group>
  const T *rbegin() { return end_p-step_p; }
  const T *rbegin(const Int n) { return end_p + (n-1)*step_p; }
  // </group>

 protected:
  //# Data
  // The pointer to belonging array
  const Array<T> *arrayPtr_p;
  // Current run-time axis
  uInt axis_p;
  // Current access pointer
  T *ptr_p;
  // The increment to go from one point along an axis, to the next.
  Int step_p;
  // The start element of array
  const T *begin_p;
  // The one element beyond last on line
  const T *end_p;
  
};

// <summary> Fast 1D accessor/iterator for nD array classes </summary>
// <use visibility=export>
// <reviewed reviewer="Ger van Diepen" date="2002/12/01" tests="tArrayAccessor" demos="dArrayAccessor">
// </reviewed>
// <prerequisite>
//   <li> Array indexing and access methods
//	 (<linkto class=Array>Array</linkto>)
// </prerequisite>
//
// <etymology>
// Array and access, rather than Iterator, which would suggest more
// standard-like interfaces
// </etymology>
//
// <synopsis>
// Accessing a large multi-dimensional array by varying the indices of the
// array can be a slow process. Timing indications are that for a cube
// indexing with 3 indices was about seven times slower than using a
// standard 1D C-like index into an array of basic Int types.
// Improvements have made this less, partly due to some pre-calculation
// necessary for this class, but can still be a factor of more than 3
// slower. There are a variety of ways to access elements
// <src>cube(i,j,k)</src>:
// <ul>
//   <li> Complete random access in all dimensions will need the
//	use of the indexing: <src>cube(i,j,k);</src> or
//	<src>cube(IPosition(3))</src> as described in the 
//	<linkto class=Array>Array</linkto> and
//	<linkto class=Cube>Cube</linkto> classes
//   <li> Ordered access of all (or most) elements in an Array
//	(in memory order) can be best achieved by the use of Array's
//	<linkto class="Array#STL-iterator">STLIterator</linkto> classes.
//	This is the fastest way for non-contiguous arrays, and only slightly
// 	slower than the use of <src>getStorage</src> for contiguous arrays.
//   <li> Ordered access along memory order can also be achieved by the use
// 	of the
//	<linkto class="Array:getStorage(Bool&)">
//		<src>getStorage()</src></linkto> method.
//	For contiguous arrays this could be slightly faster than the use of 
//	the <src>STLIterator</src> (about 10% faster), but slower for 
//	non-contiguous arrays. In addition it needs additional memory
//	resources, which will lead to extra overhead. The general use of
//	getStorage is discouraged with the introduction of the STLIterator.
//	It should only be used when an interface to routines in
//	other languages is needed (like Fortran), or when a large Array is
//	known to be contiguous, and the data have to be referenced many times.
//   <li> Access along one or more axes of a (large) multi-dimensional array
//	is best achieved using the ArrayAccessor class. Its total
//	access time is about 2 times faster than indexing (for cubes,
//	more for more indices),
//   <li> Special iteration (like in chunks) are catered for by the
//	<linkto class=ArrayIterator>ArrayIterator</linkto>,
//	<linkto class=MatrixIterator>MatrixIterator</linkto>,
//	<linkto class=VectorIterator>VectorIterator</linkto> classes.
// </ul>
// The ArrayAccessor class is an iterator like pointer to the data
// in the array. It is a 1-dimensional accessor. It is created with either
// a constant (at compile time) axis indicator, or with a run-time
// axis selector. ArrayAccessor constructor accepts a <src>const Array<></src>.
// However, the underlying Array class can be modified at this moment. In
// future a ConstArrayAccessor class is foreseen. 
// <srcblock>
// 	Matrix<Double> mat(1000,500); // A 1000*500 matrix
// 	// Fill Matrix ...
// 	// Loop over index 1, than index 0:
//	for (ArrayAccessor<Double, Axis<1> > i(mat); i != i.end(); ++i) {
//	  for (ArrayAccessor<Double, Axis<0> > j(i); j |= j.end(); ++j) {
//	    // Actions on *j (which points to mat(j,i)) or j[n]
//	    // (which points to mat(j+n,i))
//	}}
// </srcblock>
// For run-time indices it would look like:
// <srcblock>
// 	Matrix<Double> mat(1000,500); // A 1000*500 matrix
// 	// Fill Matrix ...
// 	// Loop over index 1, than index 0:
//	for (ArrayAccessor<Double, AxisN> i(mat, AxisN(1));
//           i != i.end(); ++i) {
//	  for (ArrayAccessor<Double, AxisN> j(i,AxisN(0)); j |= j.end(); ++j) {
//	    // Actions on *j (which points to mat(j,i)) or j[n]
//	    // (which points to mat(j+n,i))
//	}}
// </srcblock>
// Compile-time and run-time axes can be mixed in constructors and assignments.
//
// <note role=tip> Like in all comparable situations, memory allocation
// within a loop can slow down processes. For that reason the example above
// can be better written (about 25% faster) as:
// <srcblock>
// 	Matrix<Double> mat(1000,500); // A 1000*500 matrix
//	ArrayAccessor<Double, Axis<0> > j; // accessor pre-allocated
// 	// Fill Matrix ...
// 	// Loop over index 1, than index 0:
//	for (ArrayAccessor<Double, Axis<1> > i(mat); i != i.end(); ++i) {
//	  for (j=i; j |= j.end(); ++j) {
//	    // Actions on *j (which points to mat(j,i)) or j[n]
//	    // (which points to mat(j+n,i))
//	}}
// </srcblock>
// </note>
// <note role=tip> The underlying Array classes are structured with the
// first index varying fastest. This means that in general (due to caching and 
// swapping) operations are fastest when <src>Axis<0> ></src> is in the
// innermost loop (if possible of course).
// </note>
// The demonstrator and test programs have more examples.
//
// The accessors can be dereferenced by the dereference operator (<src>*</src>)
// and by the index operator (<src>[Int]</src>), which can handle negative
// values.
// Points around the accessor in any axis direction can be addressed
// along any axis by the templated methods <src>next()</src>,
// <src>prev()</src> and <src>index(Int)</src>. Either run-time or
// compile-time axes can be used (see example).
//
// An accessor can be re-initialized with the init() function. It can also
// be reset() to any pointer value. Mthods <src>end()</src>,
// <src>begin()</src>, <src>rbegin()</src> and <src>rend()</src> are available 
// for loop control (like in the STL iterators). In addition each of these
// can have an optional integer argument, specifying an offset (in points
// along the current axis).
//
// Operations <src>++ -- += -=</src> are available.
//
// This class is available for <src>Axis<n></src> and <src>AxisN</src>
// specializations only.
// </synopsis>
//
// <example>
// <srcblock>
//	// get a cube and fill it
//	Cube<Double> cub(5,2,4);
//	indgen(cub);
//	// Loop over axes 2-0 and use index() over axis 1
//	for (ArrayAccessor<Double, Axis<2> > i(cub); i != i.end() ; ++i) {
//	  for (ArrayAccessor<Double, Axis<0> > j(i);
//	    j != j.end(); ++j) {
//	    // show result
//	    cout << *j << ", " << j.index<Axis<1> >(1) << endl;
//        };
//	};
// </srcblock>
// See the demonstrator program in
// <src>aips/implement/Arrays/test/dArrayAccessor.cc</src> and the
// test program <src>tArrayAccessor</src> for more examples.
// </example>
//
// <motivation>
// To speed up especially interpolation code
// </motivation>
//
// <templating arg=T>
//    <li> Any valid Array templating argument
// </templating>
// <templating arg=U>
//    <li> A class <src>Axis<n></src>
//    <li> Class AxisN
// </templating>
//
// <thrown>
//    <li> Exceptions created in the Array class
//    <li> Addressing errors
// </thrown>
//
// <todo asof="2002/11/06">
//   <li> add a ConstArrayAccessor class
// </todo>
//
template <class T, uInt U> class ArrayAccessor<T, Axis<U> > :
public ArrayBaseAccessor<T> {
 public:
  // Constructors
  // <group>
  // Default ctor. Note only available to accommodate containers of
  // ArrayAccessors. Use <src>init()</src> to initialize.
  ArrayAccessor() : ArrayBaseAccessor<T>() {;}
  // Construct an accessor from specified Array along the selected axis.
  // The accessor will point to the first element along the axis (i.e.
  // at (0,0,...)).
  explicit ArrayAccessor(const Array<T> &arr) :
    ArrayBaseAccessor<T>(arr) { initStep(); }
  // Construct from an ArrayAccessor along same axis. The accessor will point
  // at the same element as the originator.
  ArrayAccessor(const ArrayAccessor<T, Axis<U> > &other) :
    ArrayBaseAccessor<T>(other) {;}
  // Construct from accessor along another (or run-time) axis.
  // The accessor will point to the same element (but will be oriented
  // along another axis).
  // <group>
  template <uInt X>
    explicit ArrayAccessor(const ArrayAccessor<T, Axis<X> > &other) :
    ArrayBaseAccessor<T>(other) { initStep(); }
  explicit ArrayAccessor(const ArrayAccessor<T, AxisN > &other) :
    ArrayBaseAccessor<T>(other) { initStep(); }
  // </group>
  
  // Destructor
  ~ArrayAccessor() {;}
  // </group>
  
  // Assignment (copy semantics)
  // <group>
  // Assign from other compile-time accessor along same axis
  ArrayAccessor &operator=(const ArrayAccessor<T, Axis<U> > &other) {
    if (&other != this) {
      ArrayBaseAccessor<T>::operator=(other); this->step_p = other.step_p;
      this->begin_p = other.begin_p; this->end_p = other.end_p;
    }; return *this; }
  // Assign from other compile-time accessor along another axis
  template <uInt X>
    ArrayAccessor &operator=(const ArrayAccessor<T, Axis<X> > &other) {
    ArrayBaseAccessor<T>::operator=(other); initStep();
    return *this; }
  // Assign from run-time accessor along any axis
  ArrayAccessor &operator=(const ArrayAccessor<T, AxisN> &other) {
    ArrayBaseAccessor<T>::operator=(other); initStep(); return *this; }
  // </group>
  
  // (Re-)initialization to start of array (i.e. element (0,0,0,...))
  void init(const Array<T> &arr) { ArrayBaseAccessor<T>::init(arr);
  initStep(); }

  // Reset to start of dimension or to specified pointer
  // <group>
  void reset() { this->ptr_p = const_cast<T *>(this->begin_p); }
  void reset(const T * p) { this->ptr_p = const_cast<T *>(p); initStep(); }
  // </group>

  // Indexing  operations along another axis than the one of the current
  // object. See for the indexing and iterator operations along the
  // object's axis <linkto class=ArrayBaseAccessor>ArrayBaseAccessor</linkto> 
  // <group>
  // Get the value 'next' along the specified axis (e.g. with 
  // <src>a.next<Axis<2> >()</src>)
  // <group>
  template <class X>
    const T &next() const
    { return *(this->ptr_p + this->arrayPtr_p->steps()[X::N]); }
  template <class X>
    T &next() { return *(this->ptr_p + this->arrayPtr_p->steps()[X::N]); }
  // </group>
  // Get the value 'previous' along the specified axis (e.g. with 
  // <src>a.prev<Axis<2> >()</src>)
  // <group>
  template <class X>
    const T &prev() const
    { return *(this->ptr_p - this->arrayPtr_p->steps()[X::N]); }
  template <class X>
    T &prev() { return *(this->ptr_p - this->arrayPtr_p->steps()[X::N]); }
  // </group>
  // Get the next or previous along the specified run-time axis. E.g.
  // <src>a.prev(AxisN(2))</src>.
  // <group>
  const T &next(const AxisN ax) const
    { return *(this->ptr_p + this->arrayPtr_p->steps()[ax.N]); }
  T &next(const AxisN ax)
    { return *(this->ptr_p + this->arrayPtr_p->steps()[ax.N]); }
  const T &prev(const AxisN ax) const
    { return *(this->ptr_p - this->arrayPtr_p->steps()[ax.N]); }
  T &prev(const AxisN ax)
    { return *(this->ptr_p - this->arrayPtr_p->steps()[ax.N]); }
  // </group>
  // Give the value indexed with respect to the current accessor value
  // along the axis specified as either a compile-time or a run-time
  // axis. E.g. <src>a.index<Axis<3> >(5)</src> or 
  // <src>a.index(5, AxisN(3))</src>.
  // <group>
  template <class X>
    const T &index(const Int ix) const 
    { return *(this->ptr_p + ix*this->arrayPtr_p->steps()[X::N]); }
  template <class X>
    T &index(const Int ix)
    { return *(this->ptr_p + ix*this->arrayPtr_p->steps()[X::N]); }
  const T &index(const Int ix, const AxisN ax) const 
    { return *(this->ptr_p + ix*this->arrayPtr_p->steps()[ax.N]); }
  T &index(const Int ix, const AxisN ax)
    { return *(this->ptr_p + ix*this->arrayPtr_p->steps()[ax.N]); }
  // </group>
  // </group>
  
  // Comparison. The comparisons are done for the accessor pointer
  // value. They can be used to control loops.
  // <group>
  Bool operator==(const ArrayAccessor<T, Axis<U> > &other) const {
    return this->ptr_p == other.ptr_p; }
  Bool operator!=(const ArrayAccessor<T, Axis<U> > &other) const {
    return this->ptr_p != other.ptr_p; }
  Bool operator==(const T *other) const { return this->ptr_p == other; }
  Bool operator!=(const T *other) const { return this->ptr_p != other; }
  // </group>
  
 private:
  // Get proper offset
  Int initOff(Int x, uInt ax) {
    uInt st = this->arrayPtr_p->steps()[ax];
    return ((st) ? (ax == Axis<U>::N ? x/st : initOff(x%st, ax-1)) : 0); }
  // Initialize some internal values
  void initStep() {
    this->step_p = this->arrayPtr_p->steps()[Axis<U>::N];
    this->begin_p = this->end_p = this->ptr_p
                    - initOff(this->ptr_p - this->arrayPtr_p->data(),
			      this->arrayPtr_p->ndim()-1)*this->step_p;
    this->end_p += this->arrayPtr_p->shape()[Axis<U>::N]*this->step_p; }
  
};

#define ArrayAccessor_RT ArrayAccessor

// <summary> Specialization for run-time axes </summary>
// <use visibility=export>
// <synopsis>
// This class is a specialization for run-time axis selection within the
// array accessor. The axis is specified in the constructors and in the
// special indexing operators (<src>prev, next, index</src>) with
// a parameter <src>AxisN(n)</src> in stead of a template parameter
// <src><Axis<n> ></src>.
//
// Note that the name of the class is <src>ArrayAccessor</src>. The special
// name is only to bypass cxx2html problems with duplicate class names. 
// </synopsis>
//
template <class T> class ArrayAccessor_RT<T, AxisN> :
public ArrayBaseAccessor<T> {
 public:
  // Constructors
  // <group>
  explicit ArrayAccessor_RT(const AxisN ax=AxisN(0)) :
    ArrayBaseAccessor<T>() { this->axis_p = ax.N; }
  explicit ArrayAccessor_RT(Array<T> &arr, const AxisN ax=AxisN(0)) :
    ArrayBaseAccessor<T>(arr, ax.N) { initStep(); }
  ArrayAccessor_RT(ArrayAccessor_RT<T, AxisN> &other) :
    ArrayBaseAccessor<T>(other) {;}
  explicit ArrayAccessor_RT(ArrayAccessor_RT<T, AxisN> &other,
			    const AxisN ax) :
    ArrayBaseAccessor<T>(other, ax.N) { initStep(); }
  template <uInt X>
    explicit ArrayAccessor_RT(ArrayAccessor_RT<T, Axis<X> > &other,
			      const AxisN ax=AxisN(0)) :
    ArrayBaseAccessor<T>(other, ax.N) { initStep(); }
  ArrayAccessor_RT &operator=(const ArrayAccessor_RT<T, AxisN> &other) {
    if (&other != this) {
      ArrayBaseAccessor<T>::operator=(other);
      initStep();
    }; return *this; }
  template <uInt X>
    ArrayAccessor_RT &operator=(const ArrayAccessor_RT<T, Axis<X> > &other) {
    ArrayBaseAccessor<T>::operator=(other);
    initStep(); return *this; }
  // </group>

  // Destructor
  ~ArrayAccessor_RT() {;}

  // (Re-)initialization to start of array (i.e. element (0,0,0,...)) or
  // re-initialize to an axis.
  // <group>
  void init(const Array<T> &arr, const AxisN ax)
    { ArrayBaseAccessor<T>::init(arr, ax.N); initStep(); }
  void init(const AxisN ax) 
    { ArrayBaseAccessor<T>::init(ax.N); }
  // </group>

  // Reset to start of dimension or to specified pointer
  // <group>
  void reset() { this->ptr_p = const_cast<T *>(this->begin_p); }
  void reset(const T *p) { this->ptr_p = const_cast<T *>(p); initStep(); }
  // </group>

  // Indexing  operations along another axis than the one of the current
  // object. See for the indexing and iterator operations along the
  // object's axis <linkto class=ArrayBaseAccessor>ArrayBaseAccessor</linkto> 
  // <group>
  template <class X>
    const T &next() const
    { return *(this->ptr_p + this->arrayPtr_p->steps()[X::N]); }
  template <class X>
    T &next() { return *(this->ptr_p + this->arrayPtr_p->steps()[X::N]); }
  template <class X>
    const T &prev() const
    { return *(this->ptr_p - this->arrayPtr_p->steps()[X::N]); }
  template <class X>
    T &prev() { return *(this->ptr_p - this->arrayPtr_p->steps()[X::N]); }
  const T &next(const AxisN ax) const
    { return *(this->ptr_p + this->arrayPtr_p->steps()[ax.N]); }
  T &next(const AxisN ax)
    { return *(this->ptr_p + this->arrayPtr_p->steps()[ax.N]); }
  const T &prev(const AxisN ax) const
    { return *(this->ptr_p - this->arrayPtr_p->steps()[ax.N]); }
  T &prev(const AxisN ax)
    { return *(this->ptr_p - this->arrayPtr_p->steps()[ax.N]); }
  template <class X>
    const T &index(const Int ix) const 
    { return *(this->ptr_p + ix*this->arrayPtr_p->steps()[X::N]); }
  template <class X>
    T &index(const Int ix)
    { return *(this->ptr_p + ix*this->arrayPtr_p->steps()[X::N]); }
  const T &index(const Int ix, const AxisN(ax)) const 
    { return *(this->ptr_p + ix*this->arrayPtr_p->steps()[ax.N]); }
  T &index(const Int ix, const AxisN(ax))
    { return *(this->ptr_p + ix*this->arrayPtr_p->steps()[ax.N]); }
  // </group>

  // Comparisons
  // <group>
  Bool operator==(const ArrayAccessor_RT<T, AxisN> &other) const {
    return this->ptr_p == other.ptr_p; }
  Bool operator!=(const ArrayAccessor_RT<T, AxisN> &other) const {
    return this->ptr_p != other.ptr_p; }
  Bool operator==(const T *other) const { return this->ptr_p == other; }
  Bool operator!=(const T *other) const { return this->ptr_p != other; }
  // </group>

 private: 
  // Get proper offset
  Int initOff(Int x, uInt ax) {
    uInt st = this->arrayPtr_p->steps()[ax];
    return ((st) ? (ax == this->axis_p ? x/st : initOff(x%st, ax-1)) : 0); }
  // Initialize some internal values
  void initStep() {
    this->step_p = this->arrayPtr_p->steps()[this->axis_p];
    this->begin_p = this->end_p = this->ptr_p
                    - initOff(this->ptr_p - this->arrayPtr_p->data(),
			      this->arrayPtr_p->ndim()-1)*this->step_p;
    this->end_p += this->arrayPtr_p->shape()[this->axis_p]*this->step_p; }
  
};

#undef ArrayAccessor_RT

} //#End casa namespace
#endif