This file is indexed.

/usr/include/casacore/casa/BasicMath/Random.h is in casacore-dev 2.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
//# Random.h: Random number classes
//# Copyright (C) 1992,1993,1994,1995,1999,2000,2001
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: aips2-request@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#
//# $Id$

#ifndef CASA_RANDOM_H
#define CASA_RANDOM_H

#include <casacore/casa/aips.h>
#include <casacore/casa/BasicMath/Math.h>
namespace casacore { //# NAMESPACE CASACORE - BEGIN

class String;
template<class T> class Vector;

// <summary>Base class for random number generators</summary>
//
// <use visibility=export>
// <reviewed reviewer="UNKNOWN" date="before2004/08/25" tests="" demos="">
// </reviewed>
//
// <prerequisite>
//   <li> A knowledge of C++, in particular inheritance
//   <li> College level mathematics
// </prerequisite>
//
// <etymology>
// RNG stands for "Random Number Generator"
// </etymology>
//
// <synopsis>
// <h4>General Structure of the Classes</h4>
// 

// The two base classes <linkto class=RNG>RNG</linkto> and 
// <linkto class=Random>Random</linkto> are used together to generate a variety
// of random number distributions.  A distinction must be made between
// <em>random number generators</em>, implemented by class derived from
// <src>RNG</src>, and <em>random number distributions</em>.  A random number
// generator produces a series of randomly ordered bits.  These bits can be
// used directly, or cast to another representation, such as a floating point
// value.  A random number generator should produce a <em>uniform</em>
// distribution.  A random number distribution, on the other hand, uses the
// randomly generated bits of a generator to produce numbers from a
// distribution with specific properties.  Each instance of <src>Random</src>
// uses an instance of class <src>RNG</src> to provide the raw, uniform
// distribution used to produce the specific distribution.  Several instances
// of <src>Random</src> classes can share the same instance of <src>RNG</src>,
// or each instance can use its own copy.

// <h4> RNG </h4>
// 

// Random distributions are constructed from classes derived from
// <src>RNG</src>, the actual random number generators.  The <src>RNG</src>
// class contains no data; it only serves to define the interface to random
// number generators.  The <src>RNG::asuInt</src> member returns a 32-bit
// unsigned integer of random bits.  Applications that require a number of
// random bits can use this directly.  More often, these random bits are
// transformed to a uniformly distributed floating point number using either
// <src>asFloat</src> or <src>asDouble</src>.  These functions return differing
// precisions and the <src>asDouble</src> function will use two different
// random 32-bit integers to get a legal <src>double</src>, while
// <src>asFloat</src> will use a single integer.  These members are used by
// classes derived fro the <src>Random</src> base class to implement a variety
// of random number distributions.
//
// Currently, the following subclasses are provided:
// <ul>
// <li> <linkto class=MLCG>MLCG</linkto>: 
//      Multiplicative Linear Congruential Generator.
//      A reasonable generator for most purposes.
// <li> <linkto class=ACG>ACG</linkto>: Additive Number Generator. 
//      A high quality generator that uses more memory and computation time.
// </ul>
// 
// <note role=warning> This class assumes that IEEE floating point
// representation is used for the floating point numbers and that the integer
// and unsigned integer type is exactly 32 bits long.
// </note>
// </synopsis>
//
// <example>
// </example>
//
// <motivation>
// Random numbers are used everywhere, particularly in simulations.
// </motivation>
//
// <thrown>
// <li> AipsError: If a programming error or unexpected numeric size is
// detected. Should not occur in normal usage.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class RNG {
public:
  // A virtual destructor is needed to ensure that the destructor of derived
  // classes gets used.
  virtual ~RNG();

  // Resets the random number generator. After calling this function the random
  // numbers generated will be the same as if the object had just been
  // constructed.
  virtual void reset() = 0;

  // Return the 32-random bits as an unsigned integer
  virtual uInt asuInt() = 0;

  // Return random bits converted to either a Float or a Double. The returned
  // value x is in the range 1.0 > x >= 0.0 
  // <group>
  Float asFloat();
  Double asDouble();
  // </group>
};

// <summary>Additive number generator</summary>
//
// <use visibility=export>
// <reviewed reviewer="UNKNOWN" date="before2004/08/25" tests="" demos="">
// </reviewed>
//
// <prerequisite>
//   <li> A knowledge of C++, in particular inheritance
//   <li> College level mathematics
// </prerequisite>
//
// <etymology>
// ACG stands for "Additive Congruential Generator"
// </etymology>
//
// <synopsis>
// This class implements the additive number generator as presented in Volume
// II of The Art of Computer Programming by Knuth. I have coded the algorithm
// and have added the extensions by Andres Nowatzyk of CMU to randomize the
// result of algorithm M a bit by using an LCG & a spatial permutation table.
//
// The version presented uses the same constants for the LCG that Andres uses
// (chosen by trial & error). The spatial permutation table is the same size
// (it is based on word size). This is for 32-bit words.
//
// The <src>auxillary table</src> used by the LCG table varies in size, and is
// chosen to be the the smallest power of two which is larger than twice the
// size of the state table.
//
// Class <src>ACG</src> is a variant of a Linear Congruential Generator
// (Algorithm M) described in Knuth, "Art of Computer Programming, Vol III".
// This result is permuted with a Fibonacci Additive Congruential Generator to
// get good independence between samples.  This is a very high quality random
// number generator, although it requires a fair amount of memory for each
// instance of the generator.
// 
// The constructor takes two parameters: the seed and the size.  The seed can
// be any number. The performance of the generator depends on having a
// distribution of bits through the seed.  If you choose a number in the range
// of 0 to 31, a seed with more bits is chosen. Other values are
// deterministically modified to give a better distribution of bits.  This
// provides a good random number generator while still allowing a sequence to
// be repeated given the same initial seed.
// 
// The <src>size</src> parameter determines the size of two tables used in the
// generator. The first table is used in the Additive Generator; see the
// algorithm in Knuth for more information. In general, this table contains
// <src>size</src> integers. The default value, used in the algorithm in Knuth,
// gives a table of 55 integers (220 bytes). The table size affects the period
// of the generators; smaller values give shorter periods and larger tables
// give longer periods. The smallest table size is 7 integers, and the longest
// is 98. The <src>size</src> parameter also determines the size of the table
// used for the Linear Congruential Generator. This value is chosen implicitly
// based on the size of the Additive Congruential Generator table. It is two
// powers of two larger than the power of two that is larger than
// <src>size</src>.  For example, if <src>size</src> is 7, the ACG table
// contains 7 integers and the LCG table contains 128 integers. Thus, the
// default size (55) requires 55 + 256 integers, or 1244 bytes. The largest
// table requires 2440 bytes and the smallest table requires 100 bytes.
// Applications that require a large number of generators or applications that
// are not so fussy about the quality of the generator may elect to use the
// <src>MLCG</src> generator.
//
// <note role=warning> This class assumes that the integer and unsigned integer
// type is exactly 32 bits long.
// </note> 
// </synopsis>
//
// <example>
// </example>
//
// <thrown>
// <li> AipsError: If a programming error or unexpected numeric size is
// detected. Should not occur in normal usage.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class ACG : public RNG {

public:
  // The constructor allows you to specify seeds. The seed should be a big
  // random number and size must be between 7 and 98. See the synopsis for more
  // details.
  explicit ACG(uInt seed = 0, Int size = 55);

  // The destructor cleans up memory allocated by this class
  virtual ~ACG();

  // Resets the random number generator. After calling this function the random
  // numbers generated will be the same as if the object had just been
  // constructed.
  virtual void reset();

  // Return the 32-random bits as an unsigned integer
  virtual uInt asuInt();

private:
  uInt itsInitSeed;     //# used to reset the generator
  Int itsInitTblEntry;
  
  uInt* itsStatePtr;
  uInt* itsAuxStatePtr;
  Short itsStateSize;
  Short itsAuxSize;
  uInt lcgRecurr;
  Short itsJ;
  Short itsK;
};

// <summary> Multiplicative linear congruential generator </summary>

// <use visibility=export>
// <reviewed reviewer="UNKNOWN" date="before2004/08/25" tests="" demos="">
// </reviewed>
//
// <prerequisite>
//   <li> A knowledge of C++, in particular inheritance
//   <li> College level mathematics
// </prerequisite>
//
// <etymology>
// MLCG stands for "Multiplicative Linear Congruential Generator"
// </etymology>
//

// <synopsis>
// The <src>MLCG</src> class implements a <em>Multiplicative Linear
// Congruential Generator</em>. In particular, it is an implementation of the
// double MLCG described in <em>Efficient and Portable Combined Random Number
// Generators</em> by Pierre L'Ecuyer, appearing in <em>Communications of the
// ACM, Vol. 31. No. 6</em>. This generator has a fairly long period, and has
// been statistically analyzed to show that it gives good inter-sample
// independence.
// 

// The constructor has two parameters, both of which are seeds for the
// generator. As in the <src>ACG</src> generator, both seeds are modified to
// give a "better" distribution of seed digits. Thus, you can safely use values
// such as <src>0</src> or <src>1</src> for the seeds.  The <src>MLCG</src>
// generator used much less state than the <src>ACG</src> generator; only two
// integers (8 bytes) are needed for each generator.

// <note role=warning> This class assumes that the integer and unsigned integer
// type is exactly 32 bits long.
// </note> 
// </synopsis>

// <example>
// </example>
//
// <thrown>
// <li> AipsError: If a programming error or unexpected numeric size is
// detected. Should not occur in normal usage.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class MLCG : public RNG {
public:
  // The constructor allows you to specify seeds.
  explicit MLCG(Int seed1 = 0, Int seed2 = 1);
  
  // The destructor is trivial 
  virtual ~MLCG();

  // Return the 32-random bits as an unsigned integer
  virtual uInt asuInt();
  
  // Resets the random number generator. After calling this function the random
  // numbers generated will be the same as if the object had just been
  // constructed.
  virtual void reset();

  // Functions that allow the user to retrieve or change the seed integers. The
  // seeds returned are not the user supplied values but the values obtained
  // after some deterministic modification to produce a more uniform bit
  // distribution.
  // <group>
  Int seed1() const;
  void seed1(Int s);
  Int seed2() const;
  void seed2(Int s);
  void reseed(Int s1, Int s2);
  // </group>
  
private:
  Int itsInitSeedOne;
  Int itsInitSeedTwo;
  Int itsSeedOne;
  Int itsSeedTwo;
};

inline Int MLCG::seed1() const
{
  return itsSeedOne;
}

inline void MLCG::seed1(Int s)
{
  itsInitSeedOne = s;
  reset();
}

inline Int MLCG::seed2() const
{
  return itsSeedTwo;
}

inline void MLCG::seed2(Int s)
{
  itsInitSeedTwo = s;
  reset();
}

inline void MLCG::reseed(Int s1, Int s2)
{
  itsInitSeedOne = s1;
  itsInitSeedTwo = s2;
  reset();
}

// <summary>Base class for random number distributions</summary>

// <use visibility=export>
// <reviewed reviewer="UNKNOWN" date="before2004/08/25" tests="" demos="">
// </reviewed>
//
// <prerequisite>
//   <li> A knowledge of C++, in particular inheritance
//   <li> College level mathematics
// </prerequisite>
//
// <synopsis>
// A random number generator may be declared by first constructing a
// <src>RNG</src> object and then a <src>Random</src>. For example,
// <srcblock>
//   ACG gen(10, 20); 
//   NegativeExpntl rnd (1.0, &gen);
// </srcblock>
// declares an additive congruential generator with seed 10 and table size 20,
// that is used to generate exponentially distributed values with mean of 1.0.
// 
// The virtual member <src>Random::operator()</src> is the common way of
// extracting a random number from a particular distribution.  The base class,
// <src>Random</src> does not implement <src>operator()</src>.  This is
// performed by each of the derived classes. Thus, given the above declaration
// of <src>rnd</src>, new random values may be obtained via, for example,
// <src>Double nextExpRand = rnd();</src>
//
// Currently, the following subclasses are provided:
//
// <ul>
//    <li> <linkto class=Binomial>Binomial</linkto>
//    <li> <linkto class=Erlang>Erlang</linkto>
//    <li> <linkto class=Geometric>Geometric</linkto>
//    <li> <linkto class=HyperGeometric>HyperGeometric</linkto>
//    <li> <linkto class=NegativeExpntl>NegativeExpntl</linkto>
//    <li> <linkto class=Normal>Normal</linkto>
//    <li> <linkto class=LogNormal>LogNormal</linkto>
//    <li> <linkto class=Poisson>Poisson</linkto>
//    <li> <linkto class=DiscreteUniform>DiscreteUniform</linkto>
//    <li> <linkto class=Uniform>Uniform</linkto>
//    <li> <linkto class=Weibull>Weibull</linkto>
// </ul>
// </synopsis>
//
// <example>
// </example>
//
// <thrown>
//   <li> No exceptions are thrown directly from this class.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class Random {
public:
  
  // This enumerator lists all the predefined random number distributions.
  enum Types {
    // 2 parameters. The binomial distribution models successfully drawing
    // items from a pool.  Specify n and p. n is the number of items in the
    // pool, and p, is the probability of each item being successfully drawn.
    // It is required that n > 0 and 0 <= p <= 1
   BINOMIAL,

   // 2 parameters. Model a uniform random variable over the closed
   // interval. Specify the values low and high. The low parameter is the
   // lowest possible return value and the high parameter is the highest.  It
   // is required that low < high.
   DISCRETEUNIFORM,

   // 2 parameters, mean and variance.  It is required that the mean is
   // non-zero and the variance is positive.
   ERLANG, 

   // 1 parameters, the mean.  It is required that 0 <= probability < 1
   GEOMETRIC, 

   // 2 parameters, mean and variance.  It is required that the variance is
   // positive and that the mean is non-zero and not bigger than the
   // square-root of the variance.
   HYPERGEOMETRIC,

   // 2 parameters, the mean and variance.  It is required that the variance is
   // positive.
   NORMAL, 

   // 2 parameters, mean and variance.  It is required that the supplied
   // variance is positive and that the mean is non-zero
   LOGNORMAL,

   // 1 parameter, the mean.
   NEGATIVEEXPONENTIAL,

   // 1 parameter, the mean. It is required that the mean is non-negative
   POISSON, 

   // 2 parameters, low and high.  Model a uniform random variable over the
   // closed interval. The low parameter is the lowest possible return value
   // and the high parameter can never be returned.  It is required that low <
   // high.
   UNIFORM,

   // 2 parameters, alpha and beta.  It is required that the alpha parameter is
   // not zero.
   WEIBULL,

   // An non-predefined random number distribution
   UNKNOWN,
   
   // Number of distributions
   NUMBER_TYPES};

  // A virtual destructor is needed to ensure that the destructor of derived
  // classes gets used. Not that this destructor does NOT delete the pointer to
  // the RNG object
  virtual ~Random();

  // This function returns a random number from the appropriate distribution.
  virtual Double operator()() = 0;
  
  // Functions that allow you to access and change the class that generates the
  // random bits.
  // <group>
  RNG* generator();
  void generator(RNG* p);
  // </group>

  // Convert the enumerator to a lower-case string. 
  static String asString(Random::Types type);
  
  // Convert the string to enumerator. The parsing of the string is case
  // insensitive. Returns the Random::UNKNOWN value if the string does not
  // cotrtrespond to any of the enumerators.
  static Random::Types asType(const String& str);

  // Convert the Random::Type enumerator to a specific object (derived from
  // Random but upcast to a Random object). Returns a null pointer if the
  // object could not be constructed. This will occur is the enumerator is
  // UNKNOWN or NUMBER_TYPES or there is insufficient memory. The caller of
  // this function is responsible for deleting the pointer.
  static Random* construct(Random::Types type, RNG* gen);

  // These function allow you to manipulate the parameters (mean variance etc.)
  // of random number distribution. The parameters() function returns the
  // current value, the setParameters function allows you to change the
  // parameters and the checkParameters function will return False if the
  // supplied parameters are not appropriate for the distribution.
  // <group>
  virtual void setParameters(const Vector<Double>& parms) = 0;
  virtual Vector<Double> parameters() const = 0;
  virtual Bool checkParameters(const Vector<Double>& parms) const = 0;
  // </group>
  
  // returns the default parameters for the specified distribution. Returns an
  // empty Vector if a non-predifined distribution is used.
  static Vector<Double> defaultParameters (Random::Types type);
  
protected:
  //# This class contains pure virtual functions hence the constructor can only
  //# sensibly be used by derived classes.
  Random(RNG* generator);

  //# The RNG class provides the random bits.
  RNG* itsRNG;
};

inline Random::Random(RNG* gen)
{
  itsRNG = gen;
}

inline RNG* Random::generator()
{
  return itsRNG;
}

inline void Random::generator(RNG* p)
{
  itsRNG = p;
}


// <summary> Binomial distribution </summary>

// <synopsis>
// The binomial distribution models successfully drawing items from a pool.
// <src>n</src> is the number of items in the pool, and <src>p</src>, is the
// probability of each item being successfully drawn.  The
// <src>operator()</src> functions returns an integral value indicating the
// number of items actually drawn from the pool. It is possible to get this
// same value as an integer using the asInt function.

// It is assumed that <src>n > 0</src> and <src>0 <= p <= 1</src> an AipsError
// exception thrown if it is not true.  The remaining members allow you to read
// and set the parameters.
// </synopsis>

// <example>
// </example>
//
// <thrown>
// <li> AipsError: if bad values for the arguments are given, as specified
//      above.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class Binomial: public Random {
public:
  // Construct a random number generator for a binomial distribution. The first
  // argument is a class that produces random bits. This pointer is NOT taken
  // over by this class and the user is responsible for deleting it. The second
  // and third arguments are the parameters are the Binomial distribution as
  // described in the synopsis.
  Binomial(RNG* gen, uInt n=1, Double p=0.5);

  // The destructor is trivial
  virtual ~Binomial();

  // Returns a value from the Binomial distribution. The returned value is a
  // non-negative integer and using the asInt function bypasses the conversion
  // to a floating point number.  
  // <group>
  virtual Double operator()();
  uInt asInt();
  // </group>
  
  // Functions that allow you to query and change the parameters of the
  // binomial distribution.
  // <group>
  uInt n() const;
  void n(uInt newN);
  void n(Double newN);
  Double p() const;
  void p(Double newP);
  // </group>
  
  // These function allow you to manipulate the parameters (n & p) described
  // above through the base class. The Vectors must always be of length two.
  // <group>
  virtual void setParameters(const Vector<Double>& parms);
  virtual Vector<Double> parameters() const;
  virtual Bool checkParameters(const Vector<Double>& parms) const;
  // </group>

private:
  uInt itsN;
  Double itsP;
};

inline uInt Binomial::n() const {
  return itsN;
}

inline Double Binomial::p() const {
  return itsP;
}

// <summary>Discrete uniform distribution</summary>

// <synopsis>

// The <src>DiscreteUniform</src> class implements a quantized uniform random
// variable over the closed interval ranging from <src>[low..high]</src>.  The
// <src>low</src> parameter is the lowest possible return value and the
// <src>high</src> parameter is the highest.  The <src>operator()</src>
// functions returns a value from this distribution. It is possible to get this
// same value as an integer using the asInt function.

// It is assumed that low limit is less than the high limit and an AipsError
// exception thrown if this is not true.  The remaining members allow you to
// read and set the parameters.

// </synopsis>

// <example>
// </example>
//
// <thrown>
// <li> AipsError: if bad values for the arguments are given, as specified
//      above.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class DiscreteUniform: public Random {
public:
  // Construct a random number generator for a discrete uniform
  // distribution. The first argument is a class that produces random
  // bits. This pointer is NOT taken over by this class and the user is
  // responsible for deleting it. The second and third arguments define the
  // range of possible return values for this distribution as described in the
  // synopsis.
  DiscreteUniform(RNG* gen, Int low=-1, Int high=1);
  
  // The destructor is trivial
  virtual ~DiscreteUniform();

  // Returns a value from the discrete uniform distribution.  The returned
  // value is a integer and using the asInt function bypasses the conversion to
  // a floating point number.  
  // <group>
  virtual Double operator()();
  Int asInt();
  // </group>
  
  // Functions that allow you to query and change the parameters of the
  // discrete uniform distribution.  
  // <group>
  Int low() const;
  void low(Int x);
  Int high() const;
  void high(Int x);
  void range(Int low, Int high);
  // </group>
  
  // These function allow you to manipulate the parameters (low & high)
  // described above through the base class. The Vectors must always be of
  // length two.
  // <group>
  virtual void setParameters(const Vector<Double>& parms);
  virtual Vector<Double> parameters() const;
  virtual Bool checkParameters(const Vector<Double>& parms) const;
  // </group>

private:
  static Double calcDelta(Int low, Int high);
  Int itsLow;
  Int itsHigh;
  Double itsDelta;
};

inline Int DiscreteUniform::low() const {
  return itsLow; 
}

inline Int DiscreteUniform::high() const {
  return itsHigh;
}

// <summary>Erlang distribution</summary>

// <synopsis>
// The <src>Erlang</src> class implements an Erlang distribution with mean
// <src>mean</src> and variance <src>variance</src>.

// It is assumed that the mean is non-zero and the variance is positive an
// AipsError exception thrown if this is not true.  The remaining members allow
// you to read and set the parameters.
// </synopsis>

// <example>
// </example>
//
// <thrown>
// <li> AipsError: if bad values for the arguments are given, as specified
//      above.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class Erlang: public Random {
public:
  // Construct a random number generator for an Erlang distribution. The first
  // argument is a class that produces random bits. This pointer is NOT taken
  // over by this class and the user is responsible for deleting it. The second
  // and third arguments define the parameters for this distribution as
  // described in the synopsis.
  Erlang(RNG* gen, Double mean=1.0, Double variance=1.0);
  
  // The destructor is trivial
  virtual ~Erlang();

  // Returns a value from the Erlang distribution.
  virtual Double operator()();
  
  // Functions that allow you to query and change the parameters of the
  // discrete uniform distribution.
  // <group>
  Double mean() const;
  void mean(Double x);
  Double variance() const;
  void variance(Double x);
  // </group>

  // These function allow you to manipulate the parameters (mean & variance)
  // described above through the base class. The Vectors must always be of
  // length two.
  // <group>
  virtual void setParameters(const Vector<Double>& parms);
  virtual Vector<Double> parameters() const;
  virtual Bool checkParameters(const Vector<Double>& parms) const;
  // </group>

private:
  void setState();
  Double itsMean;
  Double itsVariance;
  Int itsK;
  Double itsA;
};

inline Erlang::Erlang(RNG* gen, Double mean, Double variance) 
  :Random(gen),
   itsMean(mean),
   itsVariance(variance)
{
  setState();
}

inline Double Erlang::mean() const {
  return itsMean;
}

inline void Erlang::mean(Double x) {
  itsMean = x;
  setState(); 
}

inline Double Erlang::variance() const {
  return itsVariance;
}

inline void Erlang::variance(Double x) {
  itsVariance = x;
  setState();
}

// <summary> Discrete geometric distribution </summary>

// <synopsis>
// The <src>Geometric</src> class implements a discrete geometric distribution.
// The <src>probability</src> is the only parameter.  The <src>operator()</src>
// functions returns an non-negative integral value indicating the number of
// uniform random samples actually drawn before one is obtained that is larger
// than the given probability. To get this same value as an integer use the
// asInt function.
//
// It is assumed that the probability is between zero and one 
// <src>(0 <= probability < 1)</src> and and AipsError exception thrown if this
// is not true.  The remaining function allow you to read and set the
// parameters.
// </synopsis>

// <example>
// </example>
//
// <thrown>
// <li> AipsError: if bad values for the arguments are given, as specified
//      above.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class Geometric: public Random {
public:
  // Construct a random number generator for a geometric uniform
  // distribution. The first argument is a class that produces random
  // bits. This pointer is NOT taken over by this class and the user is
  // responsible for deleting it. The second argument defines the range of
  // possible return values for this distribution as described in the synopsis.
  Geometric(RNG* gen, Double probability=0.5);
  
  // The destructor is trivial
  virtual ~Geometric();

  // Returns a value from the geometric uniform distribution.  The returned
  // value is a non-negative integer and using the asInt function bypasses the
  // conversion to a floating point number.  
  // <group>
  virtual Double operator()();
  uInt asInt();
  // </group>
  
  // Functions that allow you to query and change the parameters of the
  // geometric uniform distribution.  
  // <group>
  Double probability() const;
  void probability(Double x);
  // </group>
  
  // These function allow you to manipulate the parameter (probability)
  // described above through the base class. The Vectors must always be of
  // length one.
  // <group>
  virtual void setParameters(const Vector<Double>& parms);
  virtual Vector<Double> parameters() const;
  virtual Bool checkParameters(const Vector<Double>& parms) const;
  // </group>

private:
  Double itsProbability;
};

inline Double Geometric::probability() const {
  return itsProbability;
}

// <summary> Hypergeometric distribution </summary>

// <synopsis>
// The <src>HyperGeometric</src> class implements the hypergeometric
// distribution.  The <src>mean</src> and <src>variance</src> are the
// parameters of the distribution.  The <src>operator()</src> functions returns
// a value from this distribution

// It is assumed the variance is positive and that the mean is non-zero and not
// bigger than the square-root of the variance. An AipsError exception is
// thrown if this is not true.  The remaining members allow you to read and set
// the parameters.
// </synopsis>

// <example>
// </example>
//
// <thrown>
// <li> AipsError: if bad values for the arguments are given, as specified
//      above.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class HyperGeometric: public Random {
public:
  // Construct a random number generator for an hypergeometric
  // distribution. The first argument is a class that produces random
  // bits. This pointer is NOT taken over by this class and the user is
  // responsible for deleting it. The second and third arguments define the
  // parameters for this distribution as described in the synopsis.
  HyperGeometric(RNG* gen, Double mean=0.5, Double variance=1.0);
  
  // The destructor is trivial
  virtual ~HyperGeometric();

  // Returns a value from the hypergeometric distribution.
  virtual Double operator()();
  
  // Functions that allow you to query and change the parameters of the
  // hypergeometric distribution.
  // <group>
  Double mean() const;
  void mean(Double x);
  Double variance() const;
  void variance(Double x);
  // </group>
  
  // These function allow you to manipulate the parameters (mean & variance)
  // described above through the base class. The Vectors must always be of
  // length two.
  // <group>
  virtual void setParameters(const Vector<Double>& parms);
  virtual Vector<Double> parameters() const;
  virtual Bool checkParameters(const Vector<Double>& parms) const;
  // </group>

private:
  void setState();
  Double itsMean;
  Double itsVariance;
  Double itsP;
};


inline HyperGeometric::HyperGeometric(RNG* gen, Double mean, Double variance)
  :Random(gen),
   itsMean(mean),
   itsVariance(variance)
{
  setState();
}

inline Double HyperGeometric::mean() const {
  return itsMean; 
}

inline void HyperGeometric::mean(Double x) {
  itsMean = x;
  setState();
}

inline Double HyperGeometric::variance() const {
  return itsVariance; 
}

inline void HyperGeometric::variance(Double x) {
  itsVariance = x;
  setState(); 
}

// <summary>Normal or Gaussian distribution </summary>

// <synopsis>
// The <src>Normal</src> class implements the normal or Gaussian distribution.
// The <src>mean</src> and <src>variance</src> are the parameters of the
// distribution.  The <src>operator()</src> functions returns a value from this
// distribution

// It is assumed that the supplied variance is positive and an AipsError
// exception is thrown if this is not true.  The remaining members allow you to
// read and set the parameters. The <src>LogNormal</src> class is derived from
// this one.
// </synopsis>

// <example>
// </example>
//
// <thrown>
// <li> AipsError: if bad values for the arguments are given, as specified
//      above.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class Normal: public Random {
public:
  // Construct a random number generator for a normal distribution. The first
  // argument is a class that produces random bits. This pointer is NOT taken
  // over by this class and the user is responsible for deleting it. The second
  // and third arguments define the parameters for this distribution as
  // described in the synopsis.
  Normal(RNG* gen, Double mean=0.0, Double variance=1.0);

  // The destructor is trivial
  virtual ~Normal();

  // Returns a value from the normal distribution.
  virtual Double operator()();
  
  // Functions that allow you to query and change the parameters of the
  // normal distribution.
  // <group>
  virtual Double mean() const;
  virtual void mean(Double x);
  virtual Double variance() const;
  virtual void variance(Double x);
  // </group>
  
  // These function allow you to manipulate the parameters (mean & variance)
  // described above through the base class. The Vectors must always be of
  // length two.
  // <group>
  virtual void setParameters(const Vector<Double>& parms);
  virtual Vector<Double> parameters() const;
  virtual Bool checkParameters(const Vector<Double>& parms) const;
  // </group>

private:
  Double itsMean;
  Double itsVariance;
  Double itsStdDev;
  Bool itsCached;
  Double itsCachedValue;
};

inline Double Normal::mean() const {
  return itsMean;
}

inline Double Normal::variance() const {
  return itsVariance;
}

// <summary> Logarithmic normal distribution </summary>

// <synopsis>
// The <src>LogNormal</src> class implements the logaraithmic normal
// distribution.  The <src>mean</src> and <src>variance</src> are the
// parameters of the distribution. The <src>operator()</src> functions returns
// a value from this distribution

// It is assumed that the supplied variance is positive and an AipsError
// exception is thrown if this is not true.  The remaining members allow you to
// read and set the parameters.
// </synopsis>

// <example>
// </example>
//
// <thrown>
// <li> AipsError: if bad values for the arguments are given, as specified
//      above.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class LogNormal: public Normal {
public:
  // Construct a random number generator for a log-normal distribution. The
  // first argument is a class that produces random bits. This pointer is NOT
  // taken over by this class and the user is responsible for deleting it. The
  // second and third arguments define the parameters for this distribution as
  // described in the synopsis.
  LogNormal(RNG* gen, Double mean=1.0, Double variance=1.0);

  // The destructor is trivial
  virtual ~LogNormal();

  // Returns a value from the log-normal distribution.
  virtual Double operator()();

  // Functions that allow you to query and change the parameters of the
  // log-normal distribution.
  // <group>
  virtual Double mean() const;
  virtual void mean(Double x);
  virtual Double variance() const;
  virtual void variance(Double x);
  // </group>

  // These function allow you to manipulate the parameters (mean & variance)
  // described above through the base class. The Vectors must always be of
  // length two.
  // <group>
  virtual void setParameters(const Vector<Double>& parms);
  virtual Vector<Double> parameters() const;
  virtual Bool checkParameters(const Vector<Double>& parms) const;
  // </group>

private:
  void setState();
  Double itsLogMean;
  Double itsLogVar;
};

inline Double LogNormal::mean() const {
  return itsLogMean;
}

inline Double LogNormal::variance() const {
  return itsLogVar;
}

// <summary>Negative exponential distribution</summary>

// <synopsis>
// The <src>NegativeExpntl</src> class implements a negative exponential
// distribution.  The <src>mean</src> parameter, is the only parameter of this
// distribution.  The <src>operator()</src> functions returns a value from this
// distribution. The remaining members allow you to inspect and change the
// mean.
// </synopsis>

// <example>
// </example>
//
// <thrown>
// <li> No exceptions are thrown by this class.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class NegativeExpntl: public Random {
public:
  // Construct a random number generator for a negative exponential
  // distribution. The first argument is a class that produces random
  // bits. This pointer is NOT taken over by this class and the user is
  // responsible for deleting it. The second argument defines the parameters
  // for this distribution as described in the synopsis.
  NegativeExpntl(RNG* gen, Double mean=1.0);

  // The destructor is trivial
  virtual ~NegativeExpntl();

  // Returns a value from the negative exponential distribution.
  virtual Double operator()();

  // Functions that allow you to query and change the parameters of the
  // negative exponential distribution.
  // <group>
  Double mean() const;
  void mean(Double x);
  // </group>
  
  // These function allow you to manipulate the parameters (mean)
  // described above through the base class. The Vectors must always be of
  // length one.
  // <group>
  virtual void setParameters(const Vector<Double>& parms);
  virtual Vector<Double> parameters() const;
  virtual Bool checkParameters(const Vector<Double>& parms) const;
  // </group>

private:
  Double itsMean;
};

inline Double NegativeExpntl::mean() const {
  return itsMean; 
}

// <summary> Poisson distribution </summary>
// <synopsis>
// The <src>Poisson</src> class implements a Poisson distribution.  The
// <src>mean</src> parameter, is the only parameter of this distribution.  The
// <src>operator()</src> functions returns a value from this distribution. The
// remaining members allow you to inspect and change the mean.

// It is assumed that the supplied mean is non-negative and an AipsError
// exception is thrown if this is not true.  The remaining members allow you to
// read and set the parameters.
// </synopsis>

// <example>
// </example>
//
// <thrown>
// <li> No exceptions are thrown by this class.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class Poisson: public Random {
public:
  // Construct a random number generator for a Poisson distribution. The first
  // argument is a class that produces random bits. This pointer is NOT taken
  // over by this class and the user is responsible for deleting it. The second
  // argument defines the parameters for this distribution as described in the
  // synopsis.
  Poisson(RNG* gen, Double mean=0.0);
  
  // The destructor is trivial
  virtual ~Poisson();

  // Returns a value from the Poisson distribution. The returned value is a
  // non-negative integer and using the asInt function bypasses the conversion
  // to a floating point number.
  // <group>
  virtual Double operator()();
  uInt asInt();
  // </group>
  
  // Functions that allow you to query and change the parameters of the
  // Poisson distribution.
  // <group>
  Double mean() const;
  void mean(Double x);
  // </group>
  
  // These function allow you to manipulate the parameters (mean)
  // described above through the base class. The Vectors must always be of
  // length one.
  // <group>
  virtual void setParameters(const Vector<Double>& parms);
  virtual Vector<Double> parameters() const;
  virtual Bool checkParameters(const Vector<Double>& parms) const;
  // </group>

private:
  Double itsMean;
};

inline Double Poisson::mean() const { 
  return itsMean;
}

// <summary>Uniform distribution</summary>

// <synopsis>
// The <src>Uniform</src> class implements a uniform random variable over the
// copen interval ranging from <src>[low..high)</src>.  The <src>low</src>
// parameter is the lowest possible return value and the <src>high</src>
// parameter can never be returned.  The <src>operator()</src> functions
// returns a value from this distribution.

// It is assumed that low limit is less than the high limit and an AipsError
// exception is thrown if this is not true.  The remaining members allow you to
// read and set the parameters.

// </synopsis>

// <example>
// </example>
//
// <thrown>
// <li> AipsError: if bad values for the arguments are given, as specified
//      above.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class Uniform: public Random {
public:
  // Construct a random number generator for a uniform distribution. The first
  // argument is a class that produces random bits. This pointer is NOT taken
  // over by this class and the user is responsible for deleting it. The
  // remaining arguments define the parameters for this distribution as
  // described in the synopsis.
  Uniform(RNG* gen, Double low=-1.0, Double high=1.0);

  // The destructor is trivial
  virtual ~Uniform();

  // Returns a value from the uniform distribution. 
  virtual Double operator()();
  
  // Functions that allow you to query and change the parameters of the
  // uniform distribution.  
  // <group>
  Double low() const;
  void low(Double x);
  Double high() const;
  void high(Double x);
  void range(Double low, Double high);
  // </group>

  // These function allow you to manipulate the parameters (low & high)
  // described above through the base class. The Vectors must always be of
  // length two.
  // <group>
  virtual void setParameters(const Vector<Double>& parms);
  virtual Vector<Double> parameters() const;
  virtual Bool checkParameters(const Vector<Double>& parms) const;
  // </group>

private:
  static Double calcDelta(Double low, Double high);
  Double itsLow;
  Double itsHigh;
  Double itsDelta;
};

inline Double Uniform::low() const {
  return itsLow;
}

inline Double Uniform::high() const {
  return itsHigh;
}

// <summary>Weibull distribution</summary>

// <synopsis> 

// The <src>Weibull</src> class implements a weibull distribution with
// parameters <src>alpha</src> and <src>beta</src>.  The first parameter to the
// class constructor is <src>alpha</src>, and the second parameter is
// <src>beta</src>.  It is assumed that the alpha parameter is not zero and an
// AipsError exception is thrown if this is not true.  The remaining members
// allow you to read and set the parameters.
// </synopsis>

// <example>
// </example>
//
// <thrown>
// <li> AipsError: if bad values for the arguments are given, as specified
//      above.
// </thrown>
//
// <todo asof="2000/05/09">
//   <li> Nothing I hope!
// </todo>

class Weibull: public Random {
public:
  // Construct a random number generator for a uniform distribution. The first
  // argument is a class that produces random bits. This pointer is NOT taken
  // over by this class and the user is responsible for deleting it. The
  // remaining arguments define the parameters for this distribution as
  // described in the synopsis.
  Weibull(RNG* gen, Double alpha=1.0, Double beta=1.0);
  
  // The destructor is trivial
  virtual ~Weibull();

  // Returns a value from the Weiball distribution. 
  virtual Double operator()();
  
  // Functions that allow you to query and change the parameters of the
  // Weiball distribution.  
  // <group>
  Double alpha() const;
  void alpha(Double x);
  Double beta() const;
  void beta(Double x);
  // </group>

  // These function allow you to manipulate the parameters (alpha & beta)
  // described above through the base class. The Vectors must always be of
  // length two.
  // <group>
  virtual void setParameters(const Vector<Double>& parms);
  virtual Vector<Double> parameters() const;
  virtual Bool checkParameters(const Vector<Double>& parms) const;
  // </group>

private:
  void setState();
  Double itsAlpha;
  Double itsBeta;
  Double itsInvAlpha;
};

inline Double Weibull::alpha() const {
  return itsAlpha;
}

inline Double Weibull::beta() const {
  return itsBeta; 
}


} //# NAMESPACE CASACORE - END

#endif