This file is indexed.

/usr/include/casacore/casa/Quanta.h is in casacore-dev 2.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
//# Quanta.h:  a module for units and quantities
//# Copyright (C) 1998,1999,2000,2004
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: aips2-request@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#
//# $Id$

#ifndef CASA_QUANTA_H
#define CASA_QUANTA_H

//# Includes
#include <casacore/casa/aips.h>

#include <casacore/casa/Quanta/Unit.h>
//# Next one at this place
#include <casacore/casa/Quanta/QC.h>
#include <casacore/casa/Quanta/UnitMap.h>
#include <casacore/casa/Quanta/Quantum.h>
#include <casacore/casa/Quanta/QMath.h>
#include <casacore/casa/Quanta/QLogical.h>

namespace casacore { //# NAMESPACE CASACORE - BEGIN

// <module>
// 

// <summary> a module for units and quantities </summary>

// <use visibility=export>

// <reviewed reviewer="UNKNOWN" date="before2004/08/25" tests="tUnit tQuantum"
//	 demos="dMUString">
// </reviewed>

// <prerequisite>
// </prerequisite>

// <etymology>
// The name Quanta derives from a physical quantity, i.e. a value with
// units attached.
// </etymology>
//
// <synopsis> 
// The Quanta model deals with units and physical quantities
// (i.e. values with a unit).
// Units are handled in the <a href="#Unit">Unit</a> section
// (see <linkto class="Unit">Unit.h</linkto>). 
// Quantities are handled in the <a href="#Quantum">Quantum</a> section
// (see <linkto class="Quantum">Quantum.h</linkto>).
// In addition the module contains some more general support classes
// (<linkto class=Euler>Euler</linkto> angles,
// <linkto class=RotMatrix>rotation matrix</linkto>,
// <linkto class=MUString>pointed string</linkto>), formatting for
// <linkto class=MVTime>time</linkto> and <linkto class=MVAngle>angle</linkto>
// classes and classes containing information for
// Measures (<linkto class=MeasValue>MeasValue</linkto> and the derived MV
// classes like <linkto class=MVEpoch>MVEpoch</linkto>). See the
// <a href="#MeasValue">MeasValue</a> section.
//
// <h3> Includes</h3>
// Including the <src>casa/Quanta.h</src> will take care of all
// includes necessary for the handling of pure Units and Quantities.
//
//  <anchor name="Unit"><h3> Physical units </h3></anchor>
// Physical units are basically used in quantities
// (see <linkto class="Quantum">Quantum</linkto>), i.e.
// a value and a dimension. The Unit class, or one of its subsidiaries,  will
// in general not be called separately. The only reason to make use of these
// classes is to generate additional 'tagged' units, i.e. units with a
// special name, e.g. 'beam' for a telescope  beam, or 'JY', a non-SI name
// for Jy.
//  <h3> Units </h3>
// A Unit is in principle specified as a String (or directly as "string"),
// and can be defined as either a Unit or a String.
// If defined as a Unit, the format of the string will be checked for a
// legal definition and relevant information (e.g. scale, dimension type) is
// cached in the Unit object, leading to (much) faster use; if defined as a
// String, the checking will be postponed
// until any use is made of the information in the string.
//
// A unit is a string of one or more fields separated 
// by 'space' or '.' (to indicate multiply) or '/' (to indicate divide).
// Multiple separators are acted upon (i.e. <src>m//s == m.s</src>).
// Separators are acted upon left-to-right (i.e. <src>m/s/A == (m/s)/A</src>;
// use () to indicate otherwise (e.g. <src>m/(s/A)</src> )).
//
// A field is a name, or a unit enclosed in (), optionally followed by an,
// optionally signed, decimal constant. E.g. <src>m.(m/s)-2 == m-1.s2</src> )
//
// Note that a 'space' or '.' before an opening '(' can be omitted.
//
// A name can consist of case-sensitive letters, '_', ''', ':', '"' and '0'
// ('0' not as first character). Digits 1-9 are allowed if preceded with
// an '_'. Possible legal names are e.g. Jy, R0, R_1, "_2.
// <note role=tip>
// <ul>
//   <li> ' is used for arcmin
//   <li> '' or " for arcsec 
//   <li> : :: and ::: are used for h, min, s respectively.
// </ul>
// </note>
// <note role=tip> The standard naming conventions for SI units are that they
// are all in lowercase, unless derived from a person's name, when they start
// with a capital letter. Notable exceptions are some of the astronomical
// SI related units (e.g. AU).
// </note> 
// A name can be preceded by a (standard) decimal prefix.
//
// A name must be defined in a Unit map before it can be used.
//
// All SI units and some customary units are part of the classes. User
// defined names can be added by the UnitMap::putUser() function (see
// <linkto class="UnitMap">UnitMap</linkto>). A special set of FITS related 
// units can be added by the <src>UnitMap::addFITS()</src> function. For 
// details, see <linkto class="UnitMap">UnitMap</linkto>.
//
// Example:
// <srcblock>
//	km/s/(Mpc.s)2  is identical to km.s-1.Mpc-2.s-2
// </srcblock>
// There are 5 name lists in the UnitMap, which are searched in reverse order:
// <ol>
//   <li> Defining units: 	m, kg, s, A, K, cd, mol, rad, sr, _
//   <li> SI units:		including a.o. g, Jy, AU
//   <li> Customary units:	e.g. lb, hp, ly
//   <li> User defined units:	defined by user (e.g. beam, KPH, KM)
//   <li> Cached units:	for speed in operations
// </ol>
// All known names can be viewed by running the tUnit test program, or
// using the MapUnit::list() routine.
//
// The definitions that were current on 990915 are given at end of this file
// 
// <note role=caution>
// There is a difference between units without a dimension (non-dimensioned
// I will call them), and undimensioned units. Non-dimensioned examples are
// "", "%"; undimensioned examples: "beam", "pixel".
// </note>
//
//  <h3> Working with units </h3>
// In general units are not used explicitly, but are embedded in quantities
// and coordinates.
//
// Explicit use of units is only necessary if:
// <ol>
//   <li> a unit string has to be tested for legality (e.g. exist JY?)
//   <li> a unit string has to be named (e.g. H0 for km/s/Mpc)
//   <li> some calculation on units has to be performed
//		(e.g. how many hp.s per eV)
// </ol>
//
// For these cases a Unit can be defined as either a String or a Unit. If
// specified as a Unit an automatic check (with exception if illegal) of
// the format of the unit string is performed
// <srcblock>
// Unit a="km/Ms"; String b="Mm/Gs"; //produce 'identical' units a and b
// Unit a("KpH");      		// will produce exception
// String a("KpH");		// will be accepted till some other action
//				// done on a
// // The following will define a unit named 'tag' with a value identical
// // to 5 mJy. After this definition tag can be used as any other unit,
// // e.g. Unit("Gtag/pc") will be a valid unit string.
// UnitMap::putUser("tag",UnitVal(5.,"mJy"),"my own unit name for 5 mJy");
// // The following will calculate how many hp.s per eV
// Double hpeV = (UnitVal("hp.s")/UnitVal("eV")).getFac();
// // maybe after checking for identical dimensions
// if ( UnitVal("hp.s") != UnitVal("eV")) { cout << "unexpected" << endl; }
// </srcblock>
// <note role=tip>
// UnitVal has the following special constants to easily check unit
// dimensions (note that they can be combined to e.g. generate velocity
// as 'UnitVal::LENGTH/UnitVal::TIME')
// <ul>
//  <li> UnitVal::NODIM
//  <li> UnitVal::LENGTH
//  <li> UnitVal::MASS
//  <li> UnitVal::TIME
//  <li> UnitVal::TEMPERATURE
//  <li> UnitVal::ANGLE
//  <li> UnitVal::SOLIDANGLE
//  <li> UnitVal::MOLAR
//  <li> UnitVal::CURRENT
//  <li> UnitVal::INTENSITY
// </ul>
// </note>
//
// See the <linkto class="UnitVal">UnitVal</linkto>
// for details of calculating with units. 
// See the <linkto class="UnitMap">UnitMap</linkto>
// for the details of defining/viewing named units.
// 
//
//  <anchor name="Quantum"><h3> Quantums and Quantities </h3></anchor>
// A Quantum is a  value with a unit. Quantums are templated on their value
// type (e.g. <src>Float</src>, <src>Vector<Double></src>). <em>Quantity</em>
// is a typedef
// for the (probably most common) <src>Quantum<Double></src>.
// The basic specification of a Quantum is:
// <srcblock>
// Quantum<Type> ( Type value, Unit unit);	// or: String unit or: "unit"
// Quantity( Double value, Unit unit);		// or: String unit or: "unit"
// </srcblock>
//
// E.g.
// <ul>
//   <li> <src>Quantity(5.,"m");</src>
//   <li> <src>Quantum<Double> (5.,"m");   // identical to previous</src>
//   <li> <src>Vector<Int> a(3); a(3) = 5; Quantum<Vector<Int> >(a,"Jy");</src>
// </ul>
//
// The following list of constructors is available.
// <note role=tip>
// In the following 'Unit' can be replaced by 'String' (or "string" everywhere.
// The only difference being a check for a legitimate unit string being 
// executed if Unit specified (with exception if error), and a much faster
// execution of the Unit is used repeatedly.
// <src>Quantum<Type></src> can, if Type equals Double, be replaced with 
// <src>Quantity</src>
// </note>
// <ul>
//   <li> <src>Quantum<Type>()			value 0 generated</src>
//   <li> <src>Quantum<Type>( Quantum<Type>)	copy constructor</src>
//   <li> <src>Quantum<Type>( Type factor)	value factor generated</src>
//   <li> <src>Quantum<Type>( Type factor, Unit unit) specified quantity</src>
//   <li> <src>Quantum<Type>( Type factor, Quantum<any> quant) specified
//						 factor,
//						the unit from the quant</src>
// </ul>
//
// The following operators and functions are defined on Quantums. They are,
// of course, only available if the template Type supports them (e.g. / will
// not be defined for a <src>Quantum<String></src> (whatever that may mean)).
// <ul>
//   <li> <src>=	assignment of identical <type></src>
//   <li> <src>* *=	multiply two Quantums of same <type></src>
//   <li> <src>/ /=	divide two Quantums of same <type></src>
//   <li> <src>+ +=	add two Quantums of same <type> and same unit dimensions</src>
//			(else exception)
//   <li> <src>- -=	subtract two Quantums of same <type> and same unit dimensions</src>
//   			(else exception)
//   <li> 	-	negate Quantum
//   <li> <src>== !=	compare unit dimensions and value of same <type></src>.
//			They will be unequal if the unit dimensions do not 
//			match or the values (converted to common 
//			base units) are unequal
//   <li> <src>< >	compare unit dimensions of same <type></src>.
//			 Exception if no match,
//	 		else compare the values
//   <li> <src><= >=</src>	ibid
//   <li> pow(Quantum, Int) raise to an (integer) power
//   <li> abs(Quant)	take absolute value
//   <li> ceil, floor(Quant)
//   <li> sin, cos, tan(Quant) correct units used
//   <li> asin, acos, atan(Quant), atan2(Q,Q) correct units used
//   <li> near, nearAbs
// </ul>
// 
//
// Quanta can be converted to other units by the following set of member
// functions:
// <ul>
//   <li> convert()		will convert the quantum to canonical units.
//				E.g. given myval=Quantity(5.,"Jy"),
//				myval.convert() will make myval have the value
//				Quantity(5.e-26,"kg.s-2")
//   <li> get()			will return the quantum converted to 
//				canonical units
//   <li> convert(Unit unit) will convert the quantum to the
//				specified unit with any remaining dimensions
//				expressed in canonical units. E.g given
//				myval as above, myval.convert("W/cm") will
//				make myval Quantity(5.e-28,"W/cm.m-1.s")
//   <li> get(Unit unit) 	will return the quantum converted to unit
//   <li> <src>convert(Quantum<any> quant)</src> will convert the quantum
//				to the units of the specified quant with the
//				same conversion rules as the previous one
//   <li> <src>get(Quantum<any> quant) will return the converted quantum</src>
// </ul>
// Quanta can be checked for having the correct unit dimensions (e.g. before
// addition or comparing) by the following two member functions, which will
// return a Bool value or raise an exception:
// <ul>
//   <li> <src>Bool isConform(Unit)</src>
//   <li> <src>Bool isConform(Quantum<any>)</src>
//   <li> <src>Bool check(UnitVal)</src>
//   <li> <src> void assure(UnitVal)</src>
// </ul>
//
// The value and units of a quantum can be set or retrieved separately by the
// following member functions:
// <ul>
//   <li> <src>Type getValue()</src>	return the value (as Type) of the quantum
//   <li> <src>Type getValue(Unit)</src>	return the value in specified units
//   <li> <src>Type getBaseValue()</src>	return the value in canonical units
//   <li> <src>String getUnit()</src>	return the units of the quantum
//   <li> <src>void setValue(Type val)</src> replace the value of the quantum with val,
//				leaving the units the same
//   <li> <src>void scale(Type)</src> 	scale the value (leaving units same) by
//				multiplying with the specified value
//   <li> <src>void setUnit(Unit)</src> replace the units of the quantum, leaving
//				the value the same.
//   <li> <src>void setUnit(Quantum<any>)</src> ibid
// </ul>
//
// The output operator ('<<') will produce the value of the quantum and its
// units. Given <src>Quantity myval(5.,"mJy");</src>,
//	<src>cout << myval;</src> will produce:
//	"5.0 mJy"; while <src>cout << myval.get("yW/m2")</src> will produce:
//	".00005 yW/m2.s"
// 
//
//  <h3> QC class of constant quantities </h3>
// In parallel with the 'C' class of undimensioned constants, the QC class
// contains dimensioned constants.
// On 960509 the following were defined:
// <ul>
//   <li>  <src>Quantum<Double> c;	// vel of light</src>
//   <li>  <src>Quantum<Double> G;	// Gravitational constant</src>
//   <li>  <src>Quantum<Double> h;	// Planck</src>
//   <li>  <src>Quantum<Double> HI;	// Frequency HI line</src>
//   <li>  <src>Quantum<Double> R;	// Gas constant</src>
//   <li>  <src>Quantum<Double> NA;	// Avogadro</src>
//   <li>  <src>Quantum<Double> e;	// electron charge</src>
//   <li>  <src>Quantum<Double> mp;	// proton mass</src>
//   <li>  <src>Quantum<Double> mp_me;	// mp/me</src>
//   <li>  <src>Quantum<Double> mu0;	// permeability vacuum</src>
//   <li>  <src>Quantum<Double> epsilon0; // permittivity vacuum</src>
//   <li>  <src>Quantum<Double> k;	// Boltzmann</src>
//   <li>  <src>Quantum<Double> F;	// Faraday</src>
//   <li>  <src>Quantum<Double> me;	// mass electron</src>
//   <li>  <src>Quantum<Double> re;	// radius electron</src>
//   <li>  <src>Quantum<Double> a0;	// Bohr's radius</src>
//   <li>  <src>Quantum<Double> R0;	// Solar radius</src>
//   <li>  <src>Quantum<Double> k2;	// IAU Gaussian grav. const **2</src>
// </ul>
// 
// <p>
//  <anchor name="MeasValue"><h3> Values for Measures </h3></anchor>
// The MeasValue class derivatives are all named <em>MVmeasure</em>, e.g.
// <em>MVFrequency</em>, and represent the internal representation of the
// specific measure class. There main use is for the Measures module,
// but they can be used alone, e.g. for the conversion to formatted times,
// or the conversion of frequencies from say wavelength to frequency.
// They all have at least the following constructors:
// <srcblock>
//	MV()
//	MV(MV)
//	MV(Double)
//	MV(Vector<Double>)
//	MV(Quantity)
//	MV(Vector<Quantity>)
//	MV(Quantum<Vector<Double> >)
// </srcblock>
// But most have also constructors like:
// <srcblock>
//	MV(Double, Double)
//	MV(Quantity, Quantity)
// </srcblock>
// The actual interpretation is class dependent: see the individual MV classes
// like <linkto class=MVEpoch>MVEpoch</linkto>,
// <linkto class=MVDirection>MVDirection</linkto>,
// <linkto class=MVPosition>MVPosition</linkto>,
// <linkto class=MVFrequency>MVFrequency</linkto>,
// <linkto class=MVDouble>MVDouble</linkto>,
// <linkto class=MVRadialVelocity>MVRadialVelocity</linkto>.
// <linkto class=MVBaseline>MVBaseline</linkto>,
// <linkto class=MVuvw>MVuvw</linkto>,
// <linkto class=MVEarthMagnetic>MVEarthMagnetic</linkto>,
// A few examples:
// <srcblock>
//   MVEpoch(12345, 0.1e-20) will create one epoch (MJD12345.0), but preserving
//			   the precision of all information
//   MVDirection(Quantity(20,"deg"), Quantity(-10,"'")) will create a direction
//			   with an RA of 20 degree, and a DEC of -10 arcmin
//   MVFrequency(Quantity(5,"keV")) will create a frequency corresponding to
//			   the specified energy.
// </srcblock>
// All MVs have the <src>+=, -=, ==, !=, << </src>operators, and <src>near()</src>,
// <src>nearAbs()</src>, <src>print()</src> and <src>adjust()</src>
// and <src>readjust()</src> (which in general
// normalise to a value of 1 (e.g. MVDirection), or recalculates high
// precision values (e.g. MVEpoch) functions.<br>
// Information can be viewed with many <em>get</em> functions. In most cases
// getValue() will return the internal value as either Double or 
// Vector<Double>; get() will return the same, or converted values (e.g.
// a vector of length, angle, angle for MVPosition; while special
// one like getAngle() or getAngle(unit), getTime() etc will return Quantums
// (with optional conversion to specified units).<br>
// In general the Measure classes can be used without worrying about the
// MeasValues, since most Measure constructors have enough flexibility (and
// their own get()'s) to be able to use them independently).<br>
// Special cases are <linkto class=MVAngle>MVAngle</linkto> and 
// <linkto class=MVTime>MVTime</linkto>, which can do special formatting for
// time and angles (in earlier documentation they were called HMS etc.).
// <p>

// </synopsis> 
//
// <motivation>
// The Quanta model originated to handle physical quantities independent of their
// units.
// Units were introduced in the described way to be able to handle any
// possible physical unit.
// </motivation>
//
// <todo asof="1998/07/22">
//   <li> inlining
//   <li> look at the problem of rad*rad (which is, in general, not sr)
// </todo>
//
// <example>
//  <h3> Known units on 960509 </h3>
// <srcblock>
// // UnitMap::list() will produce the following list:
//List all defined symbols
//
//Prefix table (20):
//    E         (exa)                        1e+18
//    G         (giga)                       1000000000
//    M         (mega)                       1000000
//    P         (peta)                       1e+15
//    T         (tera)                       1e+12
//    Y         (yotta)                      1e+24
//    Z         (zetta)                      1e+21
//    a         (atto)                       1e-18
//    c         (centi)                      0.01
//    d         (deci)                       0.1
//    da        (deka)                       10
//    f         (femto)                      1e-15
//    h         (hecto)                      100
//    k         (kilo)                       1000
//    m         (milli)                      0.001
//    n         (nano)                       1e-09
//    p         (pico)                       1e-12
//    u         (micro)                      1e-06
//    y         (yocto)                      1e-24
//    z         (zepto)                      1e-21
//Defining unit table (10):
//    A         (ampere)                     1 A
//    K         (kelvin)                     1 K
//    _         (undimensioned)              1 _
//    cd        (candela)                    1 cd
//    kg        (kilogram)                   1 kg
//    m         (metre)                      1 m
//    mol       (mole)                       1 mol
//    rad       (radian)                     1 rad
//    s         (second)                     1 s
//    sr        (steradian)                  1 sr
//SI unit table (50):
//    $         (currency)                   1 _
//    %         (percent)                    0.01
//    %%        (permille)                   0.001
//    A         (ampere)                     1 A
//    AE        (astronomical unit)          149597870659 m
//    AU        (astronomical unit)          149597870659 m
//    Bq        (becquerel)                  1 s-1
//    C         (coulomb)                    1 s.A
//    F         (farad)                      1 m-2.kg-1.s4.A2
//    Gy        (gray)                       1 m2.s-2
//    H         (henry)                      1 m2.kg.s-2.A-2
//    Hz        (hertz)                      1 s-1
//    J         (joule)                      1 m2.kg.s-2
//    Jy        (jansky)                     1e-26 kg.s-2
//    K         (kelvin)                     1 K
//    L         (litre)                      0.001 m3
//    M0        (solar mass)                 1.98891944407e+30 kg
//    N         (newton)                     1 m.kg.s-2
//    Ohm       (ohm)                        1 m2.kg.s-3.A-2
//    Pa        (pascal)                     1 m-1.kg.s-2
//    S         (siemens)                    1 m-2.kg-1.s3.A2
//    S0        (solar mass)                 1.98891944407e+30 kg
//    Sv        (sievert)                    1 m2.s-2
//    T         (tesla)                      1 kg.s-2.A-1
//    UA        (astronomical unit)          149597870659 m
//    V         (volt)                       1 m2.kg.s-3.A-1
//    W         (watt)                       1 m2.kg.s-3
//    Wb        (weber)                      1 m2.kg.s-2.A-1
//    _         (undimensioned)              1 _
//    a         (year)                       31557600 s
//    arcmin    (arcmin)                     0.000290888208666 rad
//    arcsec    (arcsec)                     4.8481368111e-06 rad
//    as        (arcsec)                     4.8481368111e-06 rad
//    cd        (candela)                    1 cd
//    cy        (century)                    3155760000 s
//    d         (day)                        86400 s
//    deg       (degree)                     0.0174532925199 rad
//    g         (gram)                       0.001 kg
//    h         (hour)                       3600 s
//    l         (litre)                      0.001 m3
//    lm        (lumen)                      1 cd.sr
//    lx        (lux)                        1 m-2.cd.sr
//    m         (metre)                      1 m
//    min       (minute)                     60 s
//    mol       (mole)                       1 mol
//    pc        (parsec)                     3.08567758065e+16 m
//    rad       (radian)                     1 rad
//    s         (second)                     1 s
//    sr        (steradian)                  1 sr
//    t         (tonne)                      1000 kg
//Customary unit table (74):
//    "         (arcsec)                     4.8481368111e-06 rad
//    "_2       (square arcsec)              2.35044305391e-11 sr
//    '         (arcmin)                     0.000290888208666 rad
//    ''        (arcsec)                     4.8481368111e-06 rad
//    ''_2      (square arcsec)              2.35044305391e-11 sr
//    '_2       (square arcmin)              8.46159499408e-08 sr
//    :         (hour)                       3600 s
//    ::        (minute)                     60 s
//    :::       (second)                     1 s
//    Ah        (ampere hour)                3600 s.A
//    Angstrom  (angstrom)                   1e-10 m
//    Btu       (British thermal unit (Int)) 1055.056 m2.kg.s-2
//    CM        (metric carat)               0.0002 kg
//    Cal       (large calorie (Int))        4186.8 m2.kg.s-2
//    FU        (flux unit)                  1e-26 kg.s-2
//    G         (gauss)                      0.0001 kg.s-2.A-1
//    Gal       (gal)                        0.01 m.s-2
//    Gb        (gilbert)                    0.795774715459 A
//    Mx        (maxwell)                    1e-08 m2.kg.s-2.A-1
//    Oe        (oersted)                    79.5774715459 m-1.A
//    R         (mile)                       0.000258 kg-1.s.A
//    St        (stokes)                     0.0001 m2.s-1
//    Torr      (torr)                       133.322368421 m-1.kg.s-2
//    USfl_oz   (fluid ounce (US))           2.95735295625e-05 m3
//    USgal     (gallon (US))                0.003785411784 m3
//    WU        (WSRT flux unit)             5e-29 kg.s-2
//    abA       (abampere)                   10 A
//    abC       (abcoulomb)                  10 s.A
//    abF       (abfarad)                    1000000000 m-2.kg-1.s4.A2
//    abH       (abhenry)                    1e-09 m2.kg.s-2.A-2
//    abOhm     (abohm)                      1e-09 m2.kg.s-3.A-2
//    abV       (abvolt)                     1e-08 m2.kg.s-3.A-1
//    ac        (acre)                       4046.8564224 m2
//    arcmin_2  (square arcmin)              8.46159499408e-08 sr
//    arcsec_2  (square arcsec)              2.35044305391e-11 sr
//    ata       (technical atmosphere)       98066.5 m-1.kg.s-2
//    atm       (standard atmosphere)        101325 m-1.kg.s-2
//    bar       (bar)                        100000 m-1.kg.s-2
//    beam      (undefined beam area)        1 _
//    cal       (calorie (Int))              4.1868 m2.kg.s-2
//    cwt       (hundredweight)              50.80234544 kg
//    deg_2     (square degree)              0.000304617419787 sr
//    dyn       (dyne)                       1e-05 m.kg.s-2
//    eV        (electron volt)              1.60217733e-19 m2.kg.s-2
//    erg       (erg)                        1e-07 m2.kg.s-2
//    fl_oz     (fluid ounce (Imp))          2.84130488996e-05 m3
//    ft        (foot)                       0.3048 m
//    fu        (flux unit)                  1e-26 kg.s-2
//    fur       (furlong)                    201.168 m
//    gal       (gallon (Imp))               0.00454608782394 m3
//    ha        (hectare)                    10000 m2
//    hp        (horsepower)                 745.7 m2.kg.s-3
//    in        (inch)                       0.0254 m
//    kn        (knot (Imp))                 0.514773333333 m.s-1
//    lb        (pound (avoirdupois))        0.45359237 kg
//    ly        (light year)                 9.46073047e+15 m
//    mHg       (metre of mercury)           133322.387415 m-1.kg.s-2
//    mile      (mile)                       1609.344 m
//    n_mile    (nautical mile (Imp))        1853.184 m
//    oz        (ounce (avoirdupois))        0.028349523125 kg
//    pixel     (pixel)                      1 _
//    sb        (stilb)                      10000 m-2.cd
//    sq_arcmin (square arcmin)              8.46159499408e-08 sr
//    sq_arcsec (square arcsec)              2.35044305391e-11 sr
//    sq_deg    (square degree)              0.000304617419787 sr
//    statA     (statampere)                 3.33564095198e-10 A
//    statC     (statcoulomb)                3.33564095198e-10 s.A
//    statF     (statfarad)                  1.11188031733e-12 m-2.kg-1.s4.A2
//    statH     (stathenry)                  899377374000 m2.kg.s-2.A-2
//    statOhm   (statohm)                    899377374000 m2.kg.s-3.A-2
//    statV     (statvolt)                   299.792458 m2.kg.s-3.A-1
//    debye     (electric dipole moment)     10-18 statC.cm
//    u         (atomic mass unit)           1.661e-27 kg
//    yd        (yard)                       0.9144 m
//    yr        (year)                       31557600 s
// </srcblock>
//
// </example>
// </module>

//# Dummy class definition for extractor
//# class Quanta {};


} //# NAMESPACE CASACORE - END

#endif