This file is indexed.

/usr/include/casacore/lattices/LEL/LELFunction.h is in casacore-dev 2.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
//# LELFunction.h:  LELFunction.h
//# Copyright (C) 1997,1998,1999,2000,2001
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: aips2-request@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#
//# $Id$

#ifndef LATTICES_LELFUNCTION_H
#define LATTICES_LELFUNCTION_H


//# Includes
#include <casacore/casa/aips.h>
#include <casacore/lattices/LEL/LELInterface.h>
#include <casacore/lattices/LEL/LatticeExprNode.h>
#include <casacore/lattices/LEL/LELFunctionEnums.h>
#include <casacore/casa/Containers/Block.h>

namespace casacore { //# NAMESPACE CASACORE - BEGIN

//# Forward Declarations


// <summary>
// This LEL class handles numerical (real and complex) 1-argument functions
// </summary>
//
// <use visibility=local>
//
// <reviewed reviewer="" date="yyyy/mm/dd" tests="" demos="">
// </reviewed>
//
// <prerequisite>
//   <li> <linkto class="Lattice"> Lattice</linkto>
//   <li> <linkto class="LatticeExpr"> LatticeExpr</linkto>
//   <li> <linkto class="LatticeExprNode"> LatticeExprNode</linkto>
//   <li> <linkto class="LELInterface"> LELInterface</linkto>
//   <li> <linkto class="LELFunctionEnums"> LELFunctionEnums</linkto>
// </prerequisite>
//
// <etymology>
//  This derived LEL letter class handles numerical (real and complex) 
//  1-argument functions
// </etymology>
//
// <synopsis>
// This LEL letter class is derived from LELInterface.  It is used to construct 
// LEL objects that apply numerical 1-argument functions to Lattice 
// expressions. They operate on numerical (Float,Double,Complex,DComplex) 
// Lattice expressions and return the same type. The available C++ functions are 
// <src>sin,sinh,cos,cosh,exp,log,log10,sqrt,min,max,mean,sum</src> with 
// equivalents in the enum of SIN,SINH,COS,COSH,EXP,LOG,LOG10,SQRT,MIN1D,MAX1D,
// MEAN1D, and SUM.
//
// A description of the implementation details of the LEL classes can
// be found in
// <a href="../notes/216.html">Note 216</a>
// </synopsis> 
//
// <example>
// Examples are not very useful as the user would never use 
// these classes directly.  Look in LatticeExprNode.cc to see 
// how it invokes these classes.  Examples of how the user
// would indirectly use this class (through the envelope) are:
// <srcblock>
// IPosition shape(2,5,10);
// ArrayLattice<Complex> x(shape); x.set(1.0);
// ArrayLattice<Complex> y(shape); 
// y.copyData(sin(x));                 // y = sin(x)
// y.copyData(min(x));                 // y = min(x)
// </srcblock>
// Note that the min function returns a scalar, and the output
// Lattice is filled with that one value.
// </example>
//
// <motivation>
// Numerical functions are a basic mathematical expression. 
// </motivation>
//
// <todo asof="1998/01/21">
// </todo>


template <class T> class LELFunction1D : public LELInterface<T>
{
  //# Make members of parent class known.
protected:
  using LELInterface<T>::setAttr;

public: 
// Constructor takes operation and expression to be operated upon
   LELFunction1D(const LELFunctionEnums::Function function,
		 const CountedPtr<LELInterface<T> >& expr);

// Destructor 
  ~LELFunction1D();

// Recursively evaluate the expression 
   virtual void eval (LELArray<T>& result,
                      const Slicer& section) const;

// Recursively evaluate the scalar expression.
   virtual LELScalar<T> getScalar() const;

// Do further preparations (e.g. optimization) on the expression.
   virtual Bool prepareScalarExpr();

// Get class name
   virtual String className() const;

  // Handle locking/syncing of a lattice in a lattice expression.
  // <group>
  virtual Bool lock (FileLocker::LockType, uInt nattempts);
  virtual void unlock();
  virtual Bool hasLock (FileLocker::LockType) const;
  virtual void resync();
  // </group>

private:
   LELFunctionEnums::Function   function_p;
   CountedPtr<LELInterface<T> > pExpr_p;
};




// <summary>
// This LEL class handles numerical (real only) 1-argument functions
// </summary>
//
// <use visibility=local>
//
// <reviewed reviewer="" date="yyyy/mm/dd" tests="" demos="">
// </reviewed>
//
// <prerequisite>
//   <li> <linkto class="Lattice"> Lattice</linkto>
//   <li> <linkto class="LatticeExpr"> LatticeExpr</linkto>
//   <li> <linkto class="LatticeExprNode"> LatticeExprNode</linkto>
//   <li> <linkto class="LELInterface"> LELInterface</linkto>
//   <li> <linkto class="LELFunctionEnums"> LELFunctionEnums</linkto>
// </prerequisite>
//
// <etymology>
//  This derived LEL letter class handles numerical (real only) 
//  1-argument functions
// </etymology>
//
// <synopsis>
// This LEL letter class is derived from LELInterface.  It is used to construct 
// LEL objects that apply numerical (real only)  1-argument functions to 
// Lattice expressions. They operate on Float and Double numerical Lattice 
// expressions and return the same type. The available C++ functions are 
// <src>asin,acos,tan,tanh,ceil,floor</src> with 
// equivalents in the enum of ASIN, ACOS, TAN, TANH, CEIL, and FLOOR.
//
// A description of the implementation details of the LEL classes can
// be found in
// <a href="../notes/216.html">Note 216</a>
// </synopsis> 
//
// <example>
// Examples are not very useful as the user would never use 
// these classes directly.  Look in LatticeExprNode.cc to see 
// how it invokes these classes.  Examples of how the user
// would indirectly use this class (through the envelope) are:
// <srcblock>
// IPosition shape(2,5,10);
// ArrayLattice<Float> x(shape); x.set(0.05);
// ArrayLattice<Float> y(shape); 
// y.copyData(asin(x));                 // y = asin(x)
// y.copyData(tan(x));                  // y = tan(x)
// </srcblock>
// Note that the min function returns a scalar, and the output
// Lattice is filled with that one value.
// </example>
//
// <motivation>
// Numerical functions are a basic mathematical expression. 
// </motivation>
//
// <todo asof="1998/01/21">
// </todo>


template <class T> class LELFunctionReal1D : public LELInterface<T>
{
  //# Make members of parent class known.
protected:
  using LELInterface<T>::setAttr;

public: 
// Constructor takes operation and expression to be operated upon
   LELFunctionReal1D(const LELFunctionEnums::Function function,
		     const CountedPtr<LELInterface<T> >& expr);

// Destructor 
  ~LELFunctionReal1D();

// Recursively evaluate the expression 
   virtual void eval (LELArray<T>& result,
                      const Slicer& section) const;

// Recursively evaluate the scalar expression 
   virtual LELScalar<T> getScalar() const;

// Do further preparations (e.g. optimization) on the expression.
   virtual Bool prepareScalarExpr();

// Get class name
   virtual String className() const;

// Handle locking/syncing of a lattice in a lattice expression.
   // <group>
   virtual Bool lock (FileLocker::LockType, uInt nattempts);
   virtual void unlock();
   virtual Bool hasLock (FileLocker::LockType) const;
   virtual void resync();
   // </group>


private:
   LELFunctionEnums::Function function_p;
   CountedPtr<LELInterface<T> > pExpr_p;
};




// <summary>
// This LEL class handles functions with a variable number of arguments.
// </summary>
//
// <use visibility=local>
//
// <reviewed reviewer="" date="yyyy/mm/dd" tests="" demos="">
// </reviewed>
//
// <prerequisite>
//   <li> <linkto class="Lattice"> Lattice</linkto>
//   <li> <linkto class="LatticeExpr"> LatticeExpr</linkto>
//   <li> <linkto class="LatticeExprNode"> LatticeExprNode</linkto>
//   <li> <linkto class="LELInterface"> LELInterface</linkto>
//   <li> <linkto class="LELFunctionEnums"> LELFunctionEnums</linkto>
// </prerequisite>
//
// <etymology>
//  This derived LEL letter class handles numerical functions (arbitrary
//  number of arguments) which return any data type
// </etymology>
//
// <synopsis>
// This templated LEL letter class is derived from LELInterface.
// It is used to construct LEL objects that apply functions of
// arbitrary number of arguments to Lattice expressions.
// They operate lattices with any type and return the same type.
// The available C++ function is 
// <src>iif</src> with equivalents in the enum of IIF.
//
// A description of the implementation details of the LEL classes can
// be found in
// <a href="../notes/216.html">Note 216</a>
// </synopsis> 
//
// <example>
// Examples are not very useful as the user would never use 
// these classes directly.  Look in LatticeExprNode.cc to see 
// how it invokes these classes.  Examples of how the user
// would indirectly use this class (through the envelope) are:
// <srcblock>
// IPosition shape(2,5,10);
// ArrayLattice<Complex> w(shape); w.set(Complex(2.0,3.0));
// ArrayLattice<Float> x(shape); x.set(0.05);
// ArrayLattice<Float> y(shape); y.set(2.0);
// ArrayLattice<Float> z(shape); y.set(2.0);
//
// z.copyData(iif(x==0, y, x));
//
// </srcblock>
// Copy x to z, but where x==0, take the correpsonding element from y.
// </example>b
//
// <motivation>
// An "if-then-else" like construction is very useful.
// </motivation>
//
// <todo asof="1998/01/21">
// </todo>


template<class T> class LELFunctionND : public LELInterface<T>
{
  //# Make members of parent class known.
protected:
  using LELInterface<T>::setAttr;

public: 
// Constructor takes operation and expressions to be operated upon
   LELFunctionND(const LELFunctionEnums::Function function,
		 const Block<LatticeExprNode>& expr);

// Destructor 
  ~LELFunctionND();

// Recursively evaluate the expression 
   virtual void eval (LELArray<T>& result,
                      const Slicer& section) const;

// Recursively evaluate the scalar expression 
   virtual LELScalar<T> getScalar() const;

// Do further preparations (e.g. optimization) on the expression.
   virtual Bool prepareScalarExpr();

// Get class name
   virtual String className() const;

  // Handle locking/syncing of a lattice in a lattice expression.
  // <group>
  virtual Bool lock (FileLocker::LockType, uInt nattempts);
  virtual void unlock();
  virtual Bool hasLock (FileLocker::LockType) const;
  virtual void resync();
  // </group>

private:
   LELFunctionEnums::Function function_p;
   Block<LatticeExprNode> arg_p;
};




// <summary>
// This LEL class handles numerical functions whose return type is a Float
// </summary>
//
// <use visibility=local>
//
// <reviewed reviewer="" date="yyyy/mm/dd" tests="" demos="">
// </reviewed>
//
// <prerequisite>
//   <li> <linkto class="Lattice"> Lattice</linkto>
//   <li> <linkto class="LatticeExpr"> LatticeExpr</linkto>
//   <li> <linkto class="LatticeExprNode"> LatticeExprNode</linkto>
//   <li> <linkto class="LELInterface"> LELInterface</linkto>
//   <li> <linkto class="LELFunctionEnums"> LELFunctionEnums</linkto>
// </prerequisite>
//
// <etymology>
//  This derived LEL letter class handles numerical functions (arbitrary
//  number of arguments) which return a Float
// </etymology>
//
// <synopsis>
// This LEL letter class is derived from LELInterface.  It is used to construct 
// LEL objects that apply numerical functions of arbitrary number of
// arguments (but only 1 or 2 arguments currently implemented) to Lattice 
// expressions. They operate on Float or Complex Lattices 
// and return a Float. The available C++ functions are 
// <src>min,max,pow,atan2,fmod,abs,arg,real,imag</src> with 
// equivalents in the enum of MIN,MAX,POW,ATAN2,FMOD,ABS,ARG,REAL, and IMAG.
//
// A description of the implementation details of the LEL classes can
// be found in
// <a href="../notes/216.html">Note 216</a>
// </synopsis> 
//
// <example>
// Examples are not very useful as the user would never use 
// these classes directly.  Look in LatticeExprNode.cc to see 
// how it invokes these classes.  Examples of how the user
// would indirectly use this class (through the envelope) are:
// <srcblock>
// IPosition shape(2,5,10);
// ArrayLattice<Complex> w(shape); w.set(Complex(2.0,3.0));
// ArrayLattice<Float> x(shape); x.set(0.05);
// ArrayLattice<Float> y(shape); y.set(2.0);
// ArrayLattice<Float> z(shape); y.set(2.0);
//
// z.copyData(min(x,y));                // z = min(x,y)
// z.copyData(imag(w));                 // z = imag(w)
//
// </srcblock>
// Note that this min function takes two arguments and returns
// the minimum of the two, pixel by pixel (i.e. it does not
// return one scalar from the whole Lattice)
// </example>b
//
// <motivation>
// Numerical functions are a basic mathematical expression. 
// </motivation>
//
// <todo asof="1998/01/21">
// </todo>


class LELFunctionFloat : public LELInterface<Float>
{
public: 
   
// Constructor takes operation and left and right expressions
// to be operated upon
   LELFunctionFloat(const LELFunctionEnums::Function function,
		    const Block<LatticeExprNode>& expr);

// Destructor 
  ~LELFunctionFloat();

// Recursively evaluate the expression 
   virtual void eval (LELArray<Float>& result,
                      const Slicer& section) const;

// Recursively evaluate the scalar expression 
   virtual LELScalar<Float> getScalar() const;

// Do further preparations (e.g. optimization) on the expression.
   virtual Bool prepareScalarExpr();

// Get class name
   virtual String className() const;

  // Handle locking/syncing of a lattice in a lattice expression.
  // <group>
  virtual Bool lock (FileLocker::LockType, uInt nattempts);
  virtual void unlock();
  virtual Bool hasLock (FileLocker::LockType) const;
  virtual void resync();
  // </group>

private:
   LELFunctionEnums::Function function_p;
   Block<LatticeExprNode> arg_p;
};



// <summary>
// This LEL class handles numerical functions whose return type is a Double
// </summary>
//
// <use visibility=local>
//
// <reviewed reviewer="" date="yyyy/mm/dd" tests="" demos="">
// </reviewed>
//
// <prerequisite>
//   <li> <linkto class="Lattice"> Lattice</linkto>
//   <li> <linkto class="LatticeExpr"> LatticeExpr</linkto>
//   <li> <linkto class="LatticeExprNode"> LatticeExprNode</linkto>
//   <li> <linkto class="LELInterface"> LELInterface</linkto>
//   <li> <linkto class="LELFunctionEnums"> LELFunctionEnums</linkto>
// </prerequisite>
//
// <etymology>
//  This derived LEL letter class handles numerical functions (arbitrary
//  number of arguments) which return a Double
// </etymology>
//
// <synopsis>
// This LEL letter class is derived from LELInterface.  It is used to construct 
// LEL objects that apply numerical functions of arbitrary number of
// arguments (but only 1 or 2 arguments currently implemented) to Lattice 
// expressions. They operate on Double or DComplex Lattices 
// and return a Double. The available C++ functions are 
// <src>min,max,pow,atan2,fmod,abs,arg,real,imag</src> with 
// equivalents in the enum of MIN,MAX,POW,ATAN2,FMOD,ABS,ARG,REAL, and IMAG.
//
// There are also two other functions for which the input Lattice expression
// type must be a Bool.  These are <src>ntrue,nfalse</src> with 
// equivalents in the enum of NTRUE and NFALSE.
//
// There is a further function for which the input Lattice expression
// type can be anything.  This is <src>nelements</src> with 
// equivalent in the enum of NELEM.
//
// A description of the implementation details of the LEL classes can
// be found in
// <a href="../notes/216.html">Note 216</a>
// </synopsis> 
//
// <example>
// Examples are not very useful as the user would never use 
// these classes directly.  Look in LatticeExprNode.cc to see 
// how it invokes these classes.  Examples of how the user
// would indirectly use this class (through the envelope) are:
// <srcblock>
// IPosition shape(2,5,10);
// ArrayLattice<Bool> v(shape); v.set(True);
// ArrayLattice<DComplex> w(shape); w.set(DComplex(2.0,3.0));
// ArrayLattice<Double> x(shape); x.set(0.05);
// ArrayLattice<Double> y(shape); y.set(2.0);
// ArrayLattice<Double> z(shape); y.set(2.0);
//
// z.copyData(min(x,y));                // z = min(x,y)
// z.copyData(imag(w));                 // z = imag(w)
// z.copyData(nelements(v));            // z = nelements(v)
// z.copyData(ntrue(v));                // z = ntrue(v)
// </srcblock>
// </example>
//
// <motivation>
// Numerical functions are a basic mathematical expression.
// </motivation>
//
// <todo asof="1998/01/21">
// </todo>


class LELFunctionDouble : public LELInterface<Double>
{
public: 
   
// Constructor takes operation and left and right expressions
// to be operated upon
   LELFunctionDouble(const LELFunctionEnums::Function function,
		     const Block<LatticeExprNode>& expr);

// Destructor 
  ~LELFunctionDouble();

// Recursively evaluate the expression 
   virtual void eval (LELArray<Double>& result,
                      const Slicer& section) const;

// Recursively evaluate the scalar expression 
   virtual LELScalar<Double> getScalar() const;

// Do further preparations (e.g. optimization) on the expression.
   virtual Bool prepareScalarExpr();

// Get class name
   virtual String className() const;

  // Handle locking/syncing of a lattice in a lattice expression.
  // <group>
  virtual Bool lock (FileLocker::LockType, uInt nattempts);
  virtual void unlock();
  virtual Bool hasLock (FileLocker::LockType) const;
  virtual void resync();
  // </group>

private:
   // Count number of masked elements in a LatticeExprNode.
   // <group>
   uInt nMaskedElements (const LatticeExprNode&) const;
   uInt nMaskedOn (const Array<Bool>& mask) const;
   // </group>

   LELFunctionEnums::Function function_p;
   Block<LatticeExprNode> arg_p;
};



// <summary>
// This LEL class handles complex numerical functions
// </summary>
//
// <use visibility=local>
//
// <reviewed reviewer="" date="yyyy/mm/dd" tests="" demos="">
// </reviewed>
//
// <prerequisite>
//   <li> <linkto class="Lattice"> Lattice</linkto>
//   <li> <linkto class="LatticeExpr"> LatticeExpr</linkto>
//   <li> <linkto class="LatticeExprNode"> LatticeExprNode</linkto>
//   <li> <linkto class="LELInterface"> LELInterface</linkto>
//   <li> <linkto class="LELFunctionEnums"> LELFunctionEnums</linkto>
// </prerequisite>
//
// <etymology>
//  This derived LEL letter class handles complex numerical functions (arbitrary
//  number of arguments) 
// </etymology>
//
// <synopsis>
// This LEL letter class is derived from LELInterface.  It is used to construct 
// LEL objects that apply complex numerical functions of arbitrary number of
// arguments (but only 1 or 2 arguments currently implemented) to Lattice 
// expressions. They operate on Complex Lattice expressions only
// and return a Complex. The available C++ functions are 
// <src>pow,conj</src> with equivalents in the enum of POW and CONJ.
//
// A description of the implementation details of the LEL classes can
// be found in
// <a href="../notes/216.html">Note 216</a>
// </synopsis> 
//
// <example>
// Examples are not very useful as the user would never use 
// these classes directly.  Look in LatticeExprNode.cc to see 
// how it invokes these classes.  Examples of how the user
// would indirectly use this class (through the envelope) are:
// <srcblock>
// IPosition shape(2,5,10);
// ArrayLattice<Complex> x(shape); x.set(Complex(2.0,3.0));
// ArrayLattice<Complex> y(shape); 
// y.copyData(conj(x));                // y = conj(x)
// </srcblock>
// </example>
//
// <motivation>
// Numerical functions are a basic mathematical expression. 
// </motivation>
//
// <todo asof="1998/01/21">
// </todo>


class LELFunctionComplex : public LELInterface<Complex>
{
public: 
   
// Constructor takes operation and left and right expressions
// to be operated upon
   LELFunctionComplex(const LELFunctionEnums::Function function,
		      const Block<LatticeExprNode>& expr);

// Destructor 
  ~LELFunctionComplex();

// Recursively evaluate the expression 
   virtual void eval (LELArray<Complex>& result,
                      const Slicer& section) const;

// Recursively evaluate the scalar expression 
   virtual LELScalar<Complex> getScalar() const;

// Do further preparations (e.g. optimization) on the expression.
   virtual Bool prepareScalarExpr();

// Get class name
   virtual String className() const;

  // Handle locking/syncing of a lattice in a lattice expression.
  // <group>
  virtual Bool lock (FileLocker::LockType, uInt nattempts);
  virtual void unlock();
  virtual Bool hasLock (FileLocker::LockType) const;
  virtual void resync();
  // </group>

private:
   LELFunctionEnums::Function function_p;
   Block<LatticeExprNode> arg_p;
};





// <summary>
// This LEL class handles double complex numerical functions
// </summary>
//
// <use visibility=local>
//
// <reviewed reviewer="" date="yyyy/mm/dd" tests="" demos="">
// </reviewed>
//
// <prerequisite>
//   <li> <linkto class="Lattice"> Lattice</linkto>
//   <li> <linkto class="LatticeExpr"> LatticeExpr</linkto>
//   <li> <linkto class="LatticeExprNode"> LatticeExprNode</linkto>
//   <li> <linkto class="LELInterface"> LELInterface</linkto>
//   <li> <linkto class="LELFunctionEnums"> LELFunctionEnums</linkto>
// </prerequisite>
//
// <etymology>
//  This derived LEL letter class handles double complex numerical functions (arbitrary
//  number of arguments) 
// </etymology>
//
// <synopsis>
// This LEL letter class is derived from LELInterface.  It is used to construct 
// LEL objects that apply double complex numerical functions of arbitrary number of
// arguments (but only 1 or 2 arguments currently implemented) to Lattice 
// expressions. They operate on DComplex Lattice expressions only
// and return a DComplex. The available C++ functions are 
// <src>pow,conj</src> with equivalents in the enum of POW and CONJ.
//
// A description of the implementation details of the LEL classes can
// be found in
// <a href="../notes/216.html">Note 216</a>
// </synopsis> 
//
// <example>
// Examples are not very useful as the user would never use 
// these classes directly.  Look in LatticeExprNode.cc to see 
// how it invokes these classes.  Examples of how the user
// would indirectly use this class (through the envelope) are:
// <srcblock>
// IPosition shape(2,5,10);
// ArrayLattice<DComplex> x(shape); x.set(DComplex(2.0,3.0));
// ArrayLattice<DComplex> y(shape); 
// y.copyData(conj(x));                // y = conj(x)
// </srcblock>
// </example>
//
// <motivation>
// Numerical functions are a basic mathematical expression. 
// </motivation>
//
// <todo asof="1998/01/21">
// </todo>

class LELFunctionDComplex : public LELInterface<DComplex>
{
public: 
   
// Constructor takes operation and left and right expressions
// to be operated upon
   LELFunctionDComplex(const LELFunctionEnums::Function function,
		       const Block<LatticeExprNode>& expr);

// Destructor 
  ~LELFunctionDComplex();

// Recursively evaluate the expression 
   virtual void eval (LELArray<DComplex>& result,
                      const Slicer& section) const;

// Recursively evaluate the scalar expression 
   virtual LELScalar<DComplex> getScalar() const;

// Do further preparations (e.g. optimization) on the expression.
   virtual Bool prepareScalarExpr();

// Get class name
   virtual String className() const;

  // Handle locking/syncing of a lattice in a lattice expression.
  // <group>
  virtual Bool lock (FileLocker::LockType, uInt nattempts);
  virtual void unlock();
  virtual Bool hasLock (FileLocker::LockType) const;
  virtual void resync();
  // </group>

private:
   LELFunctionEnums::Function function_p;
   Block<LatticeExprNode> arg_p;
};


// <summary>
// This LEL class handles logical functions
// </summary>
//
// <use visibility=local>
//
// <reviewed reviewer="" date="yyyy/mm/dd" tests="" demos="">
// </reviewed>
//
// <prerequisite>
//   <li> <linkto class="Lattice"> Lattice</linkto>
//   <li> <linkto class="LatticeExpr"> LatticeExpr</linkto>
//   <li> <linkto class="LatticeExprNode"> LatticeExprNode</linkto>
//   <li> <linkto class="LELInterface"> LELInterface</linkto>
//   <li> <linkto class="LELFunctionEnums"> LELFunctionEnums</linkto>
// </prerequisite>
//
// <etymology>
//  This derived LEL letter class handles logical functions (arbitrary
//  number of arguments) 
// </etymology>
//
// <synopsis>
// This LEL letter class is derived from LELInterface.  It is used to construct 
// LEL objects that apply logical functions of arbitrary number of
// arguments (but only 1 or 2 arguments currently implemented) to Lattice 
// expressions. They operate on Bool Lattice expressions only
// and return a Bool. The available C++ functions are 
// <src>all,any</src> with equivalents in the enum of ALL and ANY.
//
// A description of the implementation details of the LEL classes can
// be found in
// <a href="../notes/216.html">Note 216</a>
// </synopsis> 
//
// <example>
// Examples are not very useful as the user would never use 
// these classes directly.  Look in LatticeExprNode.cc to see 
// how it invokes these classes.  Examples of how the user
// would indirectly use this class (through the envelope) are:
// <srcblock>
// IPosition shape(2,5,10);
// ArrayLattice<Bool> x(shape); x.set(True);
// ArrayLattice<Bool> y(shape); 
// y.copyData(any(x));                // y = any(x)
// </srcblock>
// The result of the any function (were any of the values True) is 
// a Bool scalar. So the output Lattice is filled with that one value.
// </example>
//
// <motivation>
// Logical functions are a basic mathematical expression. 
// </motivation>
//
// <todo asof="1998/01/21">
// </todo>

class LELFunctionBool : public LELInterface<Bool>
{
public: 
   
// Constructor takes operation and left and right expressions
// to be operated upon
   LELFunctionBool(const LELFunctionEnums::Function function,
		   const Block<LatticeExprNode>& expr);

// Destructor 
  ~LELFunctionBool();

// Recursively evaluate the expression 
   virtual void eval (LELArray<Bool>& result,
                      const Slicer& section) const;

// Recursively evaluate the scalar expression 
   virtual LELScalar<Bool> getScalar() const;

// Do further preparations (e.g. optimization) on the expression.
   virtual Bool prepareScalarExpr();

// Get class name
   virtual String className() const;

  // Handle locking/syncing of a lattice in a lattice expression.
  // <group>
  virtual Bool lock (FileLocker::LockType, uInt nattempts);
  virtual void unlock();
  virtual Bool hasLock (FileLocker::LockType) const;
  virtual void resync();
  // </group>

private:
   LELFunctionEnums::Function function_p;
   Block<LatticeExprNode> arg_p;
};




} //# NAMESPACE CASACORE - END

#ifndef CASACORE_NO_AUTO_TEMPLATES
#include <casacore/lattices/LEL/LELFunction.tcc>
#endif //# CASACORE_NO_AUTO_TEMPLATES
#endif