This file is indexed.

/usr/include/casacore/lattices/LEL/LatticeExprNode.h is in casacore-dev 2.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
//# LatticeExprNode.h:  LatticeExprNode.h
//# Copyright (C) 1997,1998,1999,2000,2001,2002,2003
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: aips2-request@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#
//# $Id$

#ifndef LATTICES_LATTICEEXPRNODE_H
#define LATTICES_LATTICEEXPRNODE_H


//# Includes
#include <casacore/casa/aips.h>
#include <casacore/lattices/LEL/LELInterface.h>
#include <casacore/lattices/LEL/LELAttribute.h>
#include <casacore/lattices/LEL/LELBinaryEnums.h>
#include <casacore/lattices/LEL/LELUnaryEnums.h>
#include <casacore/lattices/LEL/LELFunctionEnums.h>
#include <casacore/casa/Arrays/IPosition.h>
#include <casacore/casa/Utilities/CountedPtr.h>
#include <casacore/casa/Utilities/DataType.h>

namespace casacore { //# NAMESPACE CASACORE - BEGIN

//# Forward Declarations
template <class T> class LatticeExpr;
template <class T> class Lattice;
template <class T> class MaskedLattice;
template <class T> class Array;
template <class T> class Block;
class LCRegion;
class Slicer;
class LattRegionHolder;
class LatticeExprNode;

// Global functions operating on a LatticeExprNode.
// <group name=GlobalLatticeExprNode>
  // Unary functions.
  // <group>
   LatticeExprNode operator+ (const LatticeExprNode& expr);
   LatticeExprNode operator- (const LatticeExprNode& expr);
   LatticeExprNode operator! (const LatticeExprNode& expr);
  // </group>

  // Numerical binary operators
  // <group>
   LatticeExprNode operator+ (const LatticeExprNode& left,
			      const LatticeExprNode& right);
   LatticeExprNode operator- (const LatticeExprNode& left,
			      const LatticeExprNode& right);
   LatticeExprNode operator* (const LatticeExprNode& left,
			      const LatticeExprNode& right);
   LatticeExprNode operator/ (const LatticeExprNode& left,
			      const LatticeExprNode& right);
   LatticeExprNode operator% (const LatticeExprNode& left,
			      const LatticeExprNode& right);
   LatticeExprNode operator^ (const LatticeExprNode& left,
			      const LatticeExprNode& right);
  // </group>

  // Relational binary operators
  // <group>
   LatticeExprNode operator== (const LatticeExprNode& left,
			       const LatticeExprNode& right);
   LatticeExprNode operator>  (const LatticeExprNode& left,
			       const LatticeExprNode& right);
   LatticeExprNode operator>= (const LatticeExprNode& left,
			       const LatticeExprNode& right);
   LatticeExprNode operator<  (const LatticeExprNode& left,
			       const LatticeExprNode& right);
   LatticeExprNode operator<= (const LatticeExprNode& left,
			       const LatticeExprNode& right);
   LatticeExprNode operator!= (const LatticeExprNode& left,
			       const LatticeExprNode& right);
  // </group>

  // Logical binary operators
  // <group>
   LatticeExprNode operator&& (const LatticeExprNode& left,
			       const LatticeExprNode& right);
   LatticeExprNode operator|| (const LatticeExprNode& left,
			       const LatticeExprNode& right);
  // </group>

  // Numerical 1-argument functions
  // <group>
   LatticeExprNode sin  (const LatticeExprNode& expr);
   LatticeExprNode sinh (const LatticeExprNode& expr);
   LatticeExprNode asin (const LatticeExprNode& expr);
   LatticeExprNode cos  (const LatticeExprNode& expr);
   LatticeExprNode cosh (const LatticeExprNode& expr);
   LatticeExprNode acos (const LatticeExprNode& expr);
   LatticeExprNode tan  (const LatticeExprNode& expr);
   LatticeExprNode tanh (const LatticeExprNode& expr);
   LatticeExprNode atan (const LatticeExprNode& expr);
   LatticeExprNode exp  (const LatticeExprNode& expr);
   LatticeExprNode log  (const LatticeExprNode& expr);
   LatticeExprNode log10(const LatticeExprNode& expr);
   LatticeExprNode sqrt (const LatticeExprNode& expr);
   LatticeExprNode sign (const LatticeExprNode& expr);
   LatticeExprNode round(const LatticeExprNode& expr);
   LatticeExprNode ceil (const LatticeExprNode& expr);
   LatticeExprNode floor(const LatticeExprNode& expr);
   LatticeExprNode conj (const LatticeExprNode& expr);
  // </group>

  // Numerical 2-argument functions
  // <group>
   LatticeExprNode atan2 (const LatticeExprNode& left,
			  const LatticeExprNode& right);
   LatticeExprNode pow  (const LatticeExprNode& left,
			 const LatticeExprNode& right);
   LatticeExprNode fmod (const LatticeExprNode& left,
			 const LatticeExprNode& right);
   LatticeExprNode min  (const LatticeExprNode& left,
			 const LatticeExprNode& right);
   LatticeExprNode max  (const LatticeExprNode& left,
			 const LatticeExprNode& right);
  // </group>

  // Form a complex number from two real numbers.
   LatticeExprNode formComplex (const LatticeExprNode& left,
				const LatticeExprNode& right);

  // Numerical 1-argument functions which result in a real number
  // regardless of input expression type
  // <group>
   LatticeExprNode abs  (const LatticeExprNode& expr);
   LatticeExprNode arg  (const LatticeExprNode& expr);
   LatticeExprNode real (const LatticeExprNode& expr);
   LatticeExprNode imag (const LatticeExprNode& expr);
  // </group>

  // 1-argument functions operating on a numeric expression resulting 
  // in a scalar
  // <group>
   LatticeExprNode min      (const LatticeExprNode& expr);
   LatticeExprNode max      (const LatticeExprNode& expr);
   LatticeExprNode sum      (const LatticeExprNode& expr);
   LatticeExprNode median   (const LatticeExprNode& expr);
   LatticeExprNode mean     (const LatticeExprNode& expr);
   LatticeExprNode variance (const LatticeExprNode& expr);
   LatticeExprNode stddev   (const LatticeExprNode& expr);
   LatticeExprNode avdev    (const LatticeExprNode& expr);
  // </group>

  // Determine the value of the element at the part <src>fraction</src>
  // from the beginning of the given lattice.
  // Thus <src>fraction=0.5</src> is equal to the median.
   LatticeExprNode fractile (const LatticeExprNode& expr,
			     const LatticeExprNode& fraction);

  // Determine the value range of the elements at the part <src>fraction1</src>
  // and fraction2 from the beginning of the given lattice. Both fractions
  // must be >=0 and <=1 and fraction1 must be <= fraction2.
  // By default <src>fraction2</src> is equal to <src>1-fraction1</src>.
  // Thus <src>fraction=0.25</src> gives the quartile range of the lattice.
  // <group>
   LatticeExprNode fractileRange (const LatticeExprNode& expr,
				  const LatticeExprNode& fraction1,
				  const LatticeExprNode& fraction2);
   LatticeExprNode fractileRange (const LatticeExprNode& expr,
				  const LatticeExprNode& fraction);
  // </group>

  // 1-argument function to get the number of elements in a lattice.
  // If the lattice is masked, only the True elements are counted.
  // Results in a scalar Double.
   LatticeExprNode nelements (const LatticeExprNode& expr);

  // 1-argument function to get the dimensionality of a lattice.
  // 0 is returned if it is a scalar.
  // Results in a scalar Float.
   LatticeExprNode ndim (const LatticeExprNode& expr);

  // 2-argument function to get the length of an axis.
  // Results in a scalar Float.
  // The 2nd expression (giving the axis number) has to be a real scalar.
  // <note role=caution>
  // Axes start counting at 0.
  // If the axis is a number < 0, an exception is thrown.
  // If the axis is a number exceeding the dimensionality, 1 is returned.
  // </note>
   LatticeExprNode length (const LatticeExprNode& expr,
			   const LatticeExprNode& axis);

  // 2-argument function telling per pixel if its index on the given axis
  // is contained in the 2nd argument. The 2nd argument should be a boolean
  // vector where True means that the index is contained.
  // For indices >= vector_length, the 2nd argument defaults to False.
  // Results in a Bool array.
  // <note role=caution>
  // Axes start counting at 0.
  // If the axis is a number < 0 or >= ndim, an exception is thrown.
  // </note>
   LatticeExprNode indexin (const LatticeExprNode& axis,
			    const LatticeExprNode& indexFlags);

  // 2-argument function rebinning Lattice by given factors. The 2nd argument
  // should be a vector (preferably Float - really Int but Int not well
  // supported in LEL yet).  Results in a T array.
   LatticeExprNode rebin (const LatticeExprNode& expr,
			  const LatticeExprNode& bin);

// Test if a value is a NaN.
   LatticeExprNode isNaN (const LatticeExprNode& expr);

  // Functions operating on a logical expression resulting in a scalar;
  // Functions "any" (are any pixels "True") and "all" (are all pixels
  // "True") result in a Bool; functions "ntrue" and "nfalse" result 
  // in a Double.
  // <group>
   LatticeExprNode any   (const LatticeExprNode& expr);
   LatticeExprNode all   (const LatticeExprNode& expr);
   LatticeExprNode ntrue (const LatticeExprNode& expr);
   LatticeExprNode nfalse(const LatticeExprNode& expr);
  // </group>

  // This function returns the mask of the given expression.
  // If it has no mask, the result is an array with all True values.
   LatticeExprNode mask (const LatticeExprNode& expr);

  // This function returns the value of the expression without a mask.
   LatticeExprNode value (const LatticeExprNode& expr);

  // This function finds <src>sqrt(left^2+right^2)</src>.  This
  // could be used to find the (biased) polarized intensity if
  // left and right are images of Stokes Q and U.
   LatticeExprNode amp (const LatticeExprNode& left,
			const LatticeExprNode& right);

  // This function finds <src>180/pi*atan2(left,right)/2</src>.  This could be 
  // used to find the position of linear polarization if left 
  // and right are images of Stokes U and Q, respectively.
   LatticeExprNode pa (const LatticeExprNode& left,
		       const LatticeExprNode& right);

  // This function finds the spectral index
  // <src>alpha = log(s1/s2) / log(f1/f2)</src>.
   LatticeExprNode spectralindex (const LatticeExprNode& left,
				  const LatticeExprNode& right);

  // Function resembling the ternary <src>?:</src> construct in C++.
  // The argument "condition" has to be a Bool scalar or lattice.
  // If an element in "condition" is True, the corresponding element from
  // "arg1" is taken, otherwise it is taken from "arg2".
   LatticeExprNode iif (const LatticeExprNode& condition,
			const LatticeExprNode& arg1,
			const LatticeExprNode& arg2);

  // This function replaces every masked-off element in the first argument
  // with the corresponding element from the second argument.
  // The first argument has to be a lattice (expression), the second can
  // be a scalar or lattice. The mask of the first argument is not changed.
  // If the first argument does not have a mask, this function does nothing.
   LatticeExprNode replace (const LatticeExprNode& arg1,
			    const LatticeExprNode& arg2);

  // Functions to convert to the given data type.  These are mostly 
  // meaningful for down-conversions (e.g. double to float),
  // since up-conversions are automatically done to get matching data types
  // when needed.  Note that some conversions are not supported, such
  // as Complex to Double or Float.
  // <br>The conversion to Bool is useful to convert a region to a
  // boolean lattice, which is only possible if the region is given
  // in world coordinates. Otherwise an exception is thrown.
  // <group>
   LatticeExprNode toFloat   (const LatticeExprNode& expr);
   LatticeExprNode toDouble  (const LatticeExprNode& expr);
   LatticeExprNode toComplex (const LatticeExprNode& expr);
   LatticeExprNode toDComplex(const LatticeExprNode& expr);
   LatticeExprNode toBool    (const LatticeExprNode& expr);
   LatticeExprNode convertType (const LatticeExprNode& expr, const Float*);
   LatticeExprNode convertType (const LatticeExprNode& expr, const Double*);
   LatticeExprNode convertType (const LatticeExprNode& expr, const Complex*);
   LatticeExprNode convertType (const LatticeExprNode& expr, const DComplex*);
   LatticeExprNode convertType (const LatticeExprNode& expr, const Bool*);
  // </group>
// </group>



// <summary>
// Bridging class to allow C++ expressions involving lattices
// </summary>
//
// <use visibility=export>
//
// <reviewed reviewer="" date="yyyy/mm/dd" tests="" demos="">
// </reviewed>
//
// <prerequisite>
//   <li> <linkto class="Lattice"> Lattice</linkto>
//   <li> <linkto class="LatticeExpr"> LatticeExpr</linkto>
//   <li> <linkto class="LELInterface"> LELInterface</linkto>
// </prerequisite>
//
// <etymology>
// The name is derived from the fact that this class provides
// an expression interface to the user which s/he may use to
// write C++ expressions involving Lattices.  This class actually
// constructs the nodes of the expression tree, hence its name.
// It is used by the envelope class LatticeExpr and provides a 
// bridge to the letter classes derived from LELInterface.
// </etymology>
//
// <synopsis>
//    This class is part of the interface which allows the C++ programmer
//    to enter mathematical expressions involving Lattices. It is
//    is part of a Letter/envelope scheme.  It's actually a bridge
//    between the envelope class (LatticeExpr) and the letter classes
//    (derived from LELInterface) and it exists largely to handle
//    type conversions.  In a single type environment, the envelope
//    class could have directly called the letter classes.
//
//    The envelope and bridge provide the interface which the programmer
//    sees.  The letter classes do the real work and are hidden from
//    the programmer.
//
//    All the expression manipulation functionality that the user has 
//    access to is viewable in this class; it is here that the operators,
//    functions and constructors are defined.  These allow the programmer
//    to write mathematical expressions which involve Lattices.  The
//    letter classes take care of the optimal traversal of the Lattice
//    and the memory mangement thereof.  Thus the Lattices are iterated
//    through and the expressions evaluated for each chunk (usually 
//    a tile shape) of the iteration.
//
//    A description of the implementation details of these classes can
//    be found in
//    <a href="../notes/216.html">Note 216</a>
//
//    The available functionality is defined by the global friend functions
//    and operators, plus the public constructors.  The other public members
//    functions are generally not of interest to the user of this class.
//
//    Generally, if one writes an expression such as <src>a.copyData(sin(b))</src>,
//    the expression is automatically converted first to a LatticeExprNode and
//    then to a LatticeExpr (which is a Lattice) before evaluation occurs.
//    However, it may occur that you wish to build an expression from
//    subexpressions.  To do this, you must explcitly create objects of 
//    class LatticeExprNode.  You cannot manipulate subexpressions of type
//    LatticeExpr<T>.  See below for an example.
// </synopsis> 
//
// <example>
// <srcblock>
//  ArrayLattice<Float>   f1(IPosition (2,nx,ny));
//  ArrayLattice<Float>   f2(IPosition (2,nx,ny));
//  f2.set(2.0);
//  f1.copyData(2*f2+f2);
// </srcblock>
//  In this example, the values of the pixels in Lattice f1 are set
//  to the values resulting from the expression "2*f2 + f2"
//  I.e. the expression is evaluated for each pixel in the Lattices
//
//  Note that :
//
//  1) the Lattice::copyData function is expecting a Lattice argument.  
//  2) LatticeExpr inherits from Lattice and therefore a LatticeExpr
//     object is a valid argument object type
//  3) The expression in the copyData call is automatically converted to 
//     a LatticeExprNode by the constructors and operators in LatticeExprNode
//  4) The LatticeExprNode object so created is automatically converted
//     to a LatticeExpr by casting functions in LatticeExprNode.
//
// </example>
//
// <example>
// <srcblock>
//  ArrayLattice<Float>   f1(IPosition (2,nx,ny));
//  ArrayLattice<Float>   f2(IPosition (2,nx,ny));
//  ArrayLattice<Double>  d(IPosition (2,nx,ny));
//  ArrayLattice<Complex> c(IPosition (2,nx,ny));
//  ArrayLattice<Bool>    b(IPosition (2,nx,ny));
//
//  f2.set(1.0); d.set(2.0); c.set(Complex(2.0,3.0)); b.set(True);
//  f1.copyData( (3.5*f2) + (cos(d)) - (10/min(d,f2)*(-abs(c))*ntrue(b)) - (C::pi) );
// </srcblock>
//  
//  In this rather silly example, we fill Lattice "f1" with the result of the
//  expression.  The expression shows the use of constants, unary operations, 
//  binary operations, 1D and 2D functions.  It also shows how mixed types can 
//  be handled.  The output Lattice is a Float, whereas  mixed into the 
//  expression are subexpressions involving Float, Double, Complex and Bool
//  Lattices.
//
// </example>
//
// <example>
// <srcblock>
//  ArrayLattice<Float>   f1(IPosition (2,nx,ny));
//  ArrayLattice<Float>   f2(IPosition (2,nx,ny));
//  f2.set(2.0);
//  LatticeExprNode exp1(sin(f2));
//  LatticeExprNode exp2(pow(f2,2.0));
//  f1.copyData(exp1+exp2);
// </srcblock>
//  In this example, the expression is "sin(f2) + pow(f2,2.0)",
//  but we have put it together from two subexpressions contained
//  in LatticeExprNode objects exp1 and exp2.  Again the LatticeExprNode
//  object formed from summing exp1 and exp2 is automatically converted
//  to a LatticeExpr for consumption by copyData
//
// </example>
//
// <motivation>
//  The Lattice expression classes enable the C++ programmer much simpler 
//  handling of mathematical expressions involving lattices.  In addition, 
//  these classes provide the infrastructure on top of which we can build 
//  an image calculator for Glish users
// </motivation>
//
// <todo asof="1997/01/15">
//   <li> masks
//   <li> regions
// </todo>


class LatticeExprNode
{
// All global functions need to be declared as friends.
// <group>
   friend LatticeExprNode operator+ (const LatticeExprNode& expr);
   friend LatticeExprNode operator- (const LatticeExprNode& expr);
   friend LatticeExprNode operator! (const LatticeExprNode& expr);
   friend LatticeExprNode operator+ (const LatticeExprNode& left,
				     const LatticeExprNode& right);
   friend LatticeExprNode operator- (const LatticeExprNode& left,
				     const LatticeExprNode& right);
   friend LatticeExprNode operator* (const LatticeExprNode& left,
                                     const LatticeExprNode& right);
   friend LatticeExprNode operator/ (const LatticeExprNode& left,
                                     const LatticeExprNode& right);
   friend LatticeExprNode operator% (const LatticeExprNode& left,
                                     const LatticeExprNode& right);
   friend LatticeExprNode operator^ (const LatticeExprNode& left,
                                     const LatticeExprNode& right);
   friend LatticeExprNode operator== (const LatticeExprNode& left,
				      const LatticeExprNode& right);
   friend LatticeExprNode operator>  (const LatticeExprNode& left,
				      const LatticeExprNode& right);
   friend LatticeExprNode operator>= (const LatticeExprNode& left,
				      const LatticeExprNode& right);
   friend LatticeExprNode operator<  (const LatticeExprNode& left,
				      const LatticeExprNode& right);
   friend LatticeExprNode operator<= (const LatticeExprNode& left,
				      const LatticeExprNode& right);
   friend LatticeExprNode operator!= (const LatticeExprNode& left,
				      const LatticeExprNode& right);
   friend LatticeExprNode operator&& (const LatticeExprNode& left,
				      const LatticeExprNode& right);
   friend LatticeExprNode operator|| (const LatticeExprNode& left,
				      const LatticeExprNode& right);
   friend LatticeExprNode sin  (const LatticeExprNode& expr);
   friend LatticeExprNode sinh (const LatticeExprNode& expr);
   friend LatticeExprNode asin (const LatticeExprNode& expr);
   friend LatticeExprNode cos  (const LatticeExprNode& expr);
   friend LatticeExprNode cosh (const LatticeExprNode& expr);
   friend LatticeExprNode acos (const LatticeExprNode& expr);
   friend LatticeExprNode tan  (const LatticeExprNode& expr);
   friend LatticeExprNode tanh (const LatticeExprNode& expr);
   friend LatticeExprNode atan (const LatticeExprNode& expr);
   friend LatticeExprNode exp  (const LatticeExprNode& expr);
   friend LatticeExprNode log  (const LatticeExprNode& expr);
   friend LatticeExprNode log10(const LatticeExprNode& expr);
   friend LatticeExprNode sqrt (const LatticeExprNode& expr);
   friend LatticeExprNode sign (const LatticeExprNode& expr);
   friend LatticeExprNode round(const LatticeExprNode& expr);
   friend LatticeExprNode ceil (const LatticeExprNode& expr);
   friend LatticeExprNode floor(const LatticeExprNode& expr);
   friend LatticeExprNode conj (const LatticeExprNode& expr);
   friend LatticeExprNode atan2 (const LatticeExprNode& left,
				 const LatticeExprNode& right);
   friend LatticeExprNode pow  (const LatticeExprNode& left,
				const LatticeExprNode& right);
   friend LatticeExprNode fmod (const LatticeExprNode& left,
                                const LatticeExprNode& right);
   friend LatticeExprNode min  (const LatticeExprNode& left,
				const LatticeExprNode& right);
   friend LatticeExprNode max  (const LatticeExprNode& left,
				const LatticeExprNode& right);
   friend LatticeExprNode formComplex (const LatticeExprNode& left,
				       const LatticeExprNode& right);
   friend LatticeExprNode abs  (const LatticeExprNode& expr);
   friend LatticeExprNode arg  (const LatticeExprNode& expr);
   friend LatticeExprNode real (const LatticeExprNode& expr);
   friend LatticeExprNode imag (const LatticeExprNode& expr);
   friend LatticeExprNode min      (const LatticeExprNode& expr);
   friend LatticeExprNode max      (const LatticeExprNode& expr);
   friend LatticeExprNode sum      (const LatticeExprNode& expr);
   friend LatticeExprNode median   (const LatticeExprNode& expr);
   friend LatticeExprNode mean     (const LatticeExprNode& expr);
   friend LatticeExprNode variance (const LatticeExprNode& expr);
   friend LatticeExprNode stddev   (const LatticeExprNode& expr);
   friend LatticeExprNode avdev    (const LatticeExprNode& expr);
   friend LatticeExprNode fractile (const LatticeExprNode& expr,
				    const LatticeExprNode& fraction);
   friend LatticeExprNode fractileRange (const LatticeExprNode& expr,
					 const LatticeExprNode& fraction1,
					 const LatticeExprNode& fraction2);
   friend LatticeExprNode fractileRange (const LatticeExprNode& expr,
					 const LatticeExprNode& fraction);
   friend LatticeExprNode nelements (const LatticeExprNode& expr);
   friend LatticeExprNode ndim (const LatticeExprNode& expr);
   friend LatticeExprNode length (const LatticeExprNode& expr,
				  const LatticeExprNode& axis);
   friend LatticeExprNode indexin (const LatticeExprNode& axis,
				   const LatticeExprNode& indexFlags);
   friend LatticeExprNode rebin (const LatticeExprNode& expr,
                                 const LatticeExprNode& bin);
   friend LatticeExprNode isNaN (const LatticeExprNode& expr);
   friend LatticeExprNode any   (const LatticeExprNode& expr);
   friend LatticeExprNode all   (const LatticeExprNode& expr);
   friend LatticeExprNode ntrue (const LatticeExprNode& expr);
   friend LatticeExprNode nfalse(const LatticeExprNode& expr);
   friend LatticeExprNode mask (const LatticeExprNode& expr);
   friend LatticeExprNode value (const LatticeExprNode& expr);
   friend LatticeExprNode amp (const LatticeExprNode& left,
                               const LatticeExprNode& right);
   friend LatticeExprNode pa (const LatticeExprNode& left,
                              const LatticeExprNode& right);
   friend LatticeExprNode spectralindex (const LatticeExprNode& left,
					 const LatticeExprNode& right);
   friend LatticeExprNode iif (const LatticeExprNode& condition,
			       const LatticeExprNode& arg1,
			       const LatticeExprNode& arg2);
   friend LatticeExprNode replace (const LatticeExprNode& arg1,
			           const LatticeExprNode& arg2);
   friend LatticeExprNode toFloat   (const LatticeExprNode& expr);
   friend LatticeExprNode toDouble  (const LatticeExprNode& expr);
   friend LatticeExprNode toComplex (const LatticeExprNode& expr);
   friend LatticeExprNode toDComplex(const LatticeExprNode& expr);
   friend LatticeExprNode toBool    (const LatticeExprNode& expr);
// </group>

public:

// Default constructor
   LatticeExprNode();

// Unary constant expression constructors.
// <group>
   LatticeExprNode (Int64 constant);
   LatticeExprNode (Int constant);
   LatticeExprNode (uInt constant);
   LatticeExprNode (Long constant);
   LatticeExprNode (Float constant);
   LatticeExprNode (Double constant);
   LatticeExprNode (const Complex& constant);
   LatticeExprNode (const DComplex& constant);
   LatticeExprNode (Bool constant);
// </group>

// Constructor from an IPosition (containing indices or axes).
   LatticeExprNode (const IPosition&);

// Lattice expression (gets Lattice pixels) constructors.
// <group>
   LatticeExprNode (const Lattice<Float>& lattice);
   LatticeExprNode (const Lattice<Double>& lattice);
   LatticeExprNode (const Lattice<Complex>& lattice);
   LatticeExprNode (const Lattice<DComplex>& lattice);
   LatticeExprNode (const Lattice<Bool>& lattice);
   LatticeExprNode (const MaskedLattice<Float>& lattice);
   LatticeExprNode (const MaskedLattice<Double>& lattice);
   LatticeExprNode (const MaskedLattice<Complex>& lattice);
   LatticeExprNode (const MaskedLattice<DComplex>& lattice);
   LatticeExprNode (const MaskedLattice<Bool>& lattice);
// </group>

// Create a lattice expression from a region.
// It results in a boolean expression node.
// <group>
   LatticeExprNode (const LCRegion& region);
   LatticeExprNode (const Slicer& slicer);
   LatticeExprNode (const LattRegionHolder& region);
// </group>

// Masking operator using a condition.
// The given boolean expression forms a mask/region for this expression node.
   LatticeExprNode operator[] (const LatticeExprNode& cond) const;

// Copy constructor (reference semantics)
   LatticeExprNode (const LatticeExprNode& other);

// Destructor, does nothing
   virtual ~LatticeExprNode();

// Assignment (reference semantics)
   LatticeExprNode& operator= (const LatticeExprNode& other);

// Get the IPosition.
// It throws an exception if the node does not contain an IPosition.
   const IPosition& getIPosition() const;

// Convert the expression to another data type.
// <group>
   CountedPtr<LELInterface<Float> >    makeFloat() const;
   CountedPtr<LELInterface<Double> >   makeDouble() const;
   CountedPtr<LELInterface<Complex> >  makeComplex() const;
   CountedPtr<LELInterface<DComplex> > makeDComplex() const;
   CountedPtr<LELInterface<Bool> >     makeBool() const;
// </group>

// Evaluate the expression.
// One can be sure that the result is not a reference to another array.
// This function should be used by LatticeExpr and other users.
// <group>
   void eval (LELArray<Float>& result, const Slicer& section) const;
   void eval (LELArray<Double>& result, const Slicer& section) const;
   void eval (LELArray<Complex>& result, const Slicer& section) const;
   void eval (LELArray<DComplex>& result, const Slicer& section) const;
   void eval (LELArray<Bool>& result, const Slicer& section) const;
// </group>

// Evaluate the expression.
// The result can be a reference to some internal array (in particular
// to an array in an ArrayLattice object used as a lattice).
// This function is meant for internal use by the LEL classes and
// should not be used externally.
// <group>
   void evalRef (LELArrayRef<Float>& result, const Slicer& section) const
    { pExprFloat_p->evalRef (result, section); }
   void evalRef (LELArrayRef<Double>& result, const Slicer& section) const
    { pExprDouble_p->evalRef (result, section); }
   void evalRef (LELArrayRef<Complex>& result, const Slicer& section) const
    { pExprComplex_p->evalRef (result, section); }
   void evalRef (LELArrayRef<DComplex>& result, const Slicer& section) const
    { pExprDComplex_p->evalRef (result, section); }
   void evalRef (LELArrayRef<Bool>& result, const Slicer& section) const
    { pExprBool_p->evalRef (result, section); }
// </group>

// Evaluate the expression (in case it is a scalar).  The "eval"
// and "get*" functions do the same thing, they just have
// a slightly different interface.
// <group>
   void eval (Float& result) const;
   void eval (Double& result) const;
   void eval (Complex& result) const;
   void eval (DComplex& result) const;
   void eval (Bool& result) const;
   Float getFloat() const;
   Double getDouble() const;
   Complex getComplex() const;
   DComplex getDComplex() const;
   Bool getBool() const;
// </group>

// Evaluate the expression (in case it is a constant array).
// <group>
   Array<Float> getArrayFloat() const;
   Array<Double> getArrayDouble() const;
   Array<Complex> getArrayComplex() const;
   Array<DComplex> getArrayDComplex() const;
   Array<Bool> getArrayBool() const;
// </group>

// Get the data type of the expression.
   DataType dataType() const
      {return dtype_p;}

// Is the expression node a region?
   Bool isRegion() const
      {return pAttr_p->isRegion();}

// Is the result of "eval" a scalar?
   Bool isScalar() const
      {return pAttr_p->isScalar();}

// Is the result of "eval" masked?
   Bool isMasked() const
      {return pAttr_p->isMasked();}

// Holds the node an invalid scalar?
   Bool isInvalidScalar() const
    {
      if (!donePrepare_p) doPrepare();
      return isInvalid_p;
    }

// Return the shape of the Lattice including all degenerate axes
// (ie. axes with a length of one)
   const IPosition& shape() const
      {return pAttr_p->shape();}

// Get the attribute object of the expression.
   const LELAttribute& getAttribute() const
      {return *pAttr_p;}

// Replace a scalar subexpression by its result.
   Bool replaceScalarExpr();
  
// Make the object from a Counted<LELInterface> pointer.
// Ideally this function is private, but alas it is needed in LELFunction1D,
// operator==, and more (too many to make them friend).
// <group>
   LatticeExprNode(const CountedPtr<LELInterface<Float> >& expr);
   LatticeExprNode(const CountedPtr<LELInterface<Double> >& expr);
   LatticeExprNode(const CountedPtr<LELInterface<Complex> >& expr);
   LatticeExprNode(const CountedPtr<LELInterface<DComplex> >& expr);
   LatticeExprNode(const CountedPtr<LELInterface<Bool> >& expr);
// </group>

// Determine the resulting data type from the given data types.
// An exception is thrown if they are incompatible.
   static DataType resultDataType (DataType left, DataType right);

// Check the arguments of a function and return the resulting attribute object.
// The matchAxes argument tells if the axes have to match exactly or
// whether it is possible that one expression is a subset of another
// (i.e. that axes may be missing).
// <br>The expectArray argument tells if the result should be an array
// which is the case if one of the arguments is an array.
   static LELAttribute checkArg (const Block<LatticeExprNode>& arg,
				 const Block<Int>& argType,
				 Bool expectArray,
				 Bool matchAxes = True);

  // Handle locking of the LatticeExpr which is delegated to all of its parts.
  // <group>
  Bool lock (FileLocker::LockType, uInt nattempts);
  void unlock();
  Bool hasLock (FileLocker::LockType) const;
  void resync();
  // </group>


private:
// Make the object from a LELInterface* pointer.
// <group>
   LatticeExprNode(LELInterface<Float>* expr);
   LatticeExprNode(LELInterface<Double>* expr);
   LatticeExprNode(LELInterface<Complex>* expr);
   LatticeExprNode(LELInterface<DComplex>* expr);
   LatticeExprNode(LELInterface<Bool>* expr);
// </group>

// Test if both operands represent a region.
// An exception is thrown if only one of them is a region.
   static Bool areRegions (const LatticeExprNode& left,
			   const LatticeExprNode& right);

// Create a new node for a numerical unary operation.
// The result has the same data type as the input.
   static LatticeExprNode newNumUnary (LELUnaryEnums::Operation oper,
				       const LatticeExprNode& expr);

// Create a new node for a numerical function with 1 argument.
// The result has the same data type as the input.
   static LatticeExprNode newNumFunc1D (LELFunctionEnums::Function func,
					const LatticeExprNode& expr);

// Create a new node for a real numerical function with 1 argument.
// The result has the same data type as the input.
   static LatticeExprNode newRealFunc1D (LELFunctionEnums::Function func,
					 const LatticeExprNode& expr);

// Create a new node for a complex numerical function with 1 argument.
// The result has the same data type as the input.
   static LatticeExprNode newComplexFunc1D (LELFunctionEnums::Function func,
                                            const LatticeExprNode& expr);

// Create a new node for a numerical function with 1 argument that 
// returns a real number
   static LatticeExprNode newNumReal1D (LELFunctionEnums::Function func,
					const LatticeExprNode& expr);

// Create a new node for a numerical function with 2 arguments.
// The result has the same data type as the combined input type.
   static LatticeExprNode newNumFunc2D (LELFunctionEnums::Function func,
					const LatticeExprNode& left,
					const LatticeExprNode& right);

// Create a new node for a numerical binary operator.
// The result has the same data type as the combined input type.
   static LatticeExprNode newNumBinary (LELBinaryEnums::Operation oper,
					const LatticeExprNode& left,
					const LatticeExprNode& right);

// Create a new node for a logical binary operator.
// The result has the same data type as the combined input type.
   static LatticeExprNode newLogBinary (LELBinaryEnums::Operation oper,
					const LatticeExprNode& left,
					const LatticeExprNode& right);

// Create a new node for a comparison binary operator.
// The result has the same data type as the combined input type.
   static LatticeExprNode newBinaryCmp (LELBinaryEnums::Operation oper,
					const LatticeExprNode& left,
					const LatticeExprNode& right);

// Make (if needed and if possible) the expression nodes such that
// the dimensionalities are equal. This is only possible if both
// nodes have a coordinate system.
// It is done by creating an ExtendLattice object for the node
// with the lower dimensionality.
   static Int makeEqualDim (LatticeExprNode& expr0,
			    LatticeExprNode& expr1);

// Do the preparation for the evaluation.
   void doPrepare() const;

   
// Member variables.  

   Bool                donePrepare_p;
   DataType            dtype_p;
   Bool                isInvalid_p;
   IPosition           iposition_p;
   const LELAttribute* pAttr_p;
   CountedPtr<LELInterface<Float> >    pExprFloat_p;
   CountedPtr<LELInterface<Double> >   pExprDouble_p;
   CountedPtr<LELInterface<Complex> >  pExprComplex_p;
   CountedPtr<LELInterface<DComplex> > pExprDComplex_p;
   CountedPtr<LELInterface<Bool> >     pExprBool_p;
};



inline LatticeExprNode operator% (const LatticeExprNode& left,
				  const LatticeExprNode& right)
  { return fmod (left, right); }
inline LatticeExprNode operator^ (const LatticeExprNode& left,
				  const LatticeExprNode& right)
  { return pow (left, right); }

inline LatticeExprNode convertType(const LatticeExprNode& expr, const Float*)
  { return toFloat (expr); }
inline LatticeExprNode convertType(const LatticeExprNode& expr, const Double*)
  { return toDouble (expr); }
inline LatticeExprNode convertType(const LatticeExprNode& expr, const Complex*)
  { return toComplex (expr); }
inline LatticeExprNode convertType(const LatticeExprNode& expr, const DComplex*)
  { return toDComplex (expr); }
inline LatticeExprNode convertType(const LatticeExprNode& expr, const Bool*)
  { return toBool (expr); }

} //# NAMESPACE CASACORE - END

#endif