This file is indexed.

/usr/include/casacore/lattices/LatticeMath/LatticeConvolver.tcc is in casacore-dev 2.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
// -*- C++ -*-
//# Copyright (C) 1997,1998,1999,2000,2001,2003
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: aips2-request@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#
//# $Id$

#ifndef LATTICES_LATTICECONVOLVER_TCC
#define LATTICES_LATTICECONVOLVER_TCC

#include <casacore/lattices/LatticeMath/LatticeConvolver.h>
#include <casacore/lattices/LatticeMath/LatticeFFT.h>
#include <casacore/lattices/Lattices/LatticeIterator.h>
#include <casacore/lattices/Lattices/LatticeStepper.h>
#include <casacore/lattices/Lattices/SubLattice.h>
#include <casacore/lattices/Lattices/TileStepper.h>
#include <casacore/casa/Arrays/ArrayMath.h>
#include <casacore/casa/Arrays/Slicer.h>
#include <casacore/casa/Utilities/Assert.h>
#include <casacore/casa/OS/HostInfo.h>
#include <casacore/casa/iostream.h>

namespace casacore { //# NAMESPACE CASACORE - BEGIN

const Int maxLatSize = HostInfo::memoryTotal()/1024/8;

template<class T> LatticeConvolver<T>::
LatticeConvolver()
  :itsPsfShape(IPosition(1,1)),
   itsModelShape(itsPsfShape),
   itsType(ConvEnums::CIRCULAR),
   itsFFTShape(IPosition(1,1)),
   itsXfr(0),
   itsPsf(0),
   itsCachedPsf(False)
{
  itsXfr->set(typename NumericTraits<T>::ConjugateType(1));
  doFast_p=False;
} 

template<class T> LatticeConvolver<T>::
LatticeConvolver(const Lattice<T> & psf, Bool doFast)
  :itsPsfShape(psf.shape()),
   itsModelShape(itsPsfShape),
   itsType(ConvEnums::CIRCULAR),
   itsFFTShape(psf.ndim(), 0),
   itsXfr(0),
   itsPsf(0),
   itsCachedPsf(False)
{
  DebugAssert(itsPsfShape.product() != 0, AipsError);
  doFast_p=doFast;
  makeXfr(psf);
} 

template<class T> LatticeConvolver<T>::
LatticeConvolver(const Lattice<T> & psf, const IPosition & modelShape, 
		 Bool doFast) 
  :itsPsfShape(psf.shape()),
   itsModelShape(modelShape),
   itsType(ConvEnums::LINEAR),
   itsFFTShape(psf.ndim(), 0),
   itsXfr(0),
   itsPsf(0),
   itsCachedPsf(False)
{
  // Check that everything is the same dimension and that none of the
  // dimensions is zero length.
  DebugAssert(itsPsfShape.nelements() == itsModelShape.nelements(),AipsError);
  DebugAssert(itsPsfShape.product() != 0, AipsError);
  DebugAssert(itsModelShape.product() != 0, AipsError);
  // looks OK so make the transfer function
  doFast_p=doFast;
  makeXfr(psf);
}

template<class T> LatticeConvolver<T>::
LatticeConvolver(const Lattice<T> & psf, const IPosition & modelShape,
		 ConvEnums::ConvType type, Bool doFast) 
  :itsPsfShape(psf.shape()),
   itsModelShape(modelShape),
   itsType(type),
   itsFFTShape(psf.ndim(), 0),
   itsXfr(0),
   itsPsf(0),
   itsCachedPsf(False)
{
  // Check that everything is the same dimension and that none of the
  // dimensions is zero length.
  DebugAssert(itsPsfShape.nelements() == itsModelShape.nelements(),AipsError);
  DebugAssert(itsPsfShape.product() != 0, AipsError);
  DebugAssert(itsModelShape.product() != 0, AipsError);
  // looks OK so make the psf
  doFast_p=doFast;
  makeXfr(psf);
}

template<class T> LatticeConvolver<T>::
LatticeConvolver(const LatticeConvolver<T> & other)
  :itsPsfShape(other.itsPsfShape),
   itsModelShape(other.itsModelShape),
   itsType(other.itsType),
   itsFFTShape(other.itsFFTShape),
   itsXfr(other.itsXfr),
   itsPsf(other.itsPsf),
   itsCachedPsf(other.itsCachedPsf)
{
}

template<class T> LatticeConvolver<T> & LatticeConvolver<T>::
operator=(const LatticeConvolver<T> & other) {
  if (this != &other) {
    itsModelShape = other.itsModelShape;
    itsPsfShape = other.itsPsfShape;
    itsType = other.itsType;
    itsFFTShape = other.itsFFTShape;
    itsXfr = other.itsXfr;
    itsPsf = other.itsPsf;
    itsCachedPsf = other.itsCachedPsf;
    doFast_p=other.doFast_p;
  }
  return *this;
}

template<class T> LatticeConvolver<T>::
~LatticeConvolver()
{
  if(itsPsf) delete itsPsf; itsPsf=0;
  if(itsXfr) delete itsXfr; itsXfr=0;
}

template<class T> void LatticeConvolver<T>::
getPsf(Lattice<T> & psf) const {
  DebugAssert(psf.ndim() == itsPsfShape.nelements(), AipsError);
  DebugAssert(psf.shape() == itsPsfShape, AipsError);
  if (itsCachedPsf) { // used the cached Psf if possible
    itsPsf->copyDataTo(psf);
  } else { // reconstruct the psf from the transfer function
    makePsf(psf);
  }
}

template<class T> void LatticeConvolver<T>::
linear(Lattice<T> & result, const Lattice<T> & model) {
  resize(model.shape(), ConvEnums::LINEAR);
  convolve(result, model);
}

template<class T> void LatticeConvolver<T>::
linear(Lattice<T> & modelAndResult){
  linear(modelAndResult, modelAndResult);
}

template<class T> void LatticeConvolver<T>::
circular(Lattice<T> & result, const Lattice<T> & model) {
  resize(model.shape(), ConvEnums::CIRCULAR);
  convolve(result, model);
}

template<class T> void LatticeConvolver<T>::
circular(Lattice<T> & modelAndResult){
  circular(modelAndResult, modelAndResult);
}

template<class T> void LatticeConvolver<T>::
convolve(Lattice<T> & result, const Lattice<T> & model) const {
  //  cerr << "convolve: " << model.shape() << " " << itsXfr->shape() << endl;
  const uInt ndim = itsFFTShape.nelements();
  DebugAssert(result.ndim() == ndim, AipsError);
  DebugAssert(model.ndim() == ndim, AipsError);
  const IPosition modelShape = model.shape();
  DebugAssert(result.shape() == modelShape, AipsError);
  DebugAssert(modelShape == itsModelShape, AipsError);
  // Create a lattice that will hold the transform. Do this before creating the
  // paddedModel TempLattice so that it is more likely to be memory based.
  IPosition XFRShape(itsFFTShape);
  XFRShape(0) = (XFRShape(0)+2)/2;
  TempLattice<typename NumericTraits<T>::ConjugateType> fftModel(XFRShape,
								 maxLatSize);
  // Copy the model into a larger Lattice that has the appropriate padding.
  // (if necessary)
  Bool doPadding = False;
  const Lattice<T>* modelPtr = 0;
  Lattice<T>* resultPtr = 0;
  if (!(itsFFTShape <= modelShape)) {
    doPadding = True;
    resultPtr = new TempLattice<T>(itsFFTShape, maxLatSize);
    modelPtr = resultPtr;
  } 

  IPosition sliceShape(ndim,1);
  for (uInt n = 0; n < ndim; n++) {
    if (itsFFTShape(n) > 1) {
      sliceShape(n) = modelShape(n);
    }
  }
  LatticeStepper ls(modelShape, sliceShape);
  for (ls.reset(); !ls.atEnd(); ls++) {
    const Slicer sl(ls.position(), sliceShape);
    const SubLattice<Float> modelSlice(model, sl);
    SubLattice<Float> resultSlice(result, sl, True);
    if (doPadding) {
      pad(*resultPtr, modelSlice);
    } else {
      modelPtr = &modelSlice;
      resultPtr = &resultSlice;
    }
    // Do the forward transform

    LatticeFFT::rcfft(fftModel, *modelPtr, True, doFast_p);
    { // Multiply the transformed model with the transfer function
      IPosition tileShape(itsXfr->niceCursorShape());
      const IPosition otherTileShape(fftModel.niceCursorShape());
      for (uInt i = 0; i < ndim; i++) {
	if (tileShape(i) > otherTileShape(i)) tileShape(i) = otherTileShape(i);
      }
      TileStepper tiledNav(XFRShape, tileShape);
      RO_LatticeIterator<typename NumericTraits<T>::ConjugateType> 
	xfrIter(*itsXfr, tiledNav);
      LatticeIterator<typename NumericTraits<T>::ConjugateType> 
	fftModelIter(fftModel, tiledNav);
      for (xfrIter.reset(), fftModelIter.reset(); !fftModelIter.atEnd();
	   xfrIter++, fftModelIter++) {
	fftModelIter.rwCursor() *= xfrIter.cursor();
      }
    }
    // Do the inverse transform
    // We have done a fft with no shift to the psf and the incoming 
    // image to be convolved now we fft back and shift for the final
    // image.
    LatticeFFT::crfft(*resultPtr, fftModel, True, doFast_p);
    if (doPadding) { // Unpad the result
      unpad(resultSlice, *resultPtr);
    }

//     {
//       int kkk=0;

//       for (int i=0;i<resultSlice.shape()(0);i++)
// 	for (int j=0;j<resultSlice.shape()(1);j++)
// 	  if (resultSlice(IPosition(4,i,j,0,0)) != 0)
// 	    {kkk=1;break;}

//       if (kkk==1)
// 	{
// 	  for (int i=0;i<resultSlice.shape()(0);i++)
// 	    {
// 	      for (int j=0;j<resultSlice.shape()(1);j++)
// 		cout << "Res: " 
// 		     << resultSlice(IPosition(4,i,j,0,0)) << " "
// 		     << endl;
// 	      cout << endl;
// 	    }
// 	  exit(0);
// 	}
//     }

  }
  if (doPadding) { // cleanup the TempLattice used for padding.
    delete resultPtr;
    modelPtr = resultPtr = 0;
  }
  //  cerr << "convolve" << endl;
}

template<class T> void LatticeConvolver<T>::
convolve(Lattice<T> & modelAndResult) const {
  convolve(modelAndResult, modelAndResult);
}

template<class T> void LatticeConvolver<T>::
resize(const IPosition & modelShape, ConvEnums::ConvType type) {
  DebugAssert(itsXfr->ndim() == modelShape.nelements(), AipsError);
  itsType = type;
  itsModelShape = modelShape;
  {
    const IPosition newFFTShape = 
      calcFFTShape(itsPsfShape, modelShape, itsType);
    if (newFFTShape == itsFFTShape) return;
  }
  // need to know the psf.
  if (itsCachedPsf == False) { // calculate the psf from the transfer function
    TempLattice<T> psf(itsPsfShape, maxLatSize);
    makePsf(psf);
    makeXfr(psf);
  }
  else {
    makeXfr(*itsPsf);
  }
}

template<class T> IPosition LatticeConvolver<T>::
shape() const {
  return itsModelShape;
}

template<class T> IPosition LatticeConvolver<T>::
psfShape() const {
  return itsPsfShape;
}

template<class T> IPosition LatticeConvolver<T>::
fftShape() const {
  return itsFFTShape;
}

template<class T> ConvEnums::ConvType LatticeConvolver<T>::
type() const {
  return itsType;
}

// copy the centre portion of the input Lattice to the padded Lattice. No
// assumptions are made about the padded Lattice except that it is the right
// shape (including the correct number of dimensions). 
template<class T> void LatticeConvolver<T>::
pad(Lattice<T> & paddedLat, const Lattice<T> & inLat) {
  paddedLat.set(T(0));
  const uInt ndim = inLat.ndim();
  const IPosition inLatShape = inLat.shape();
  const IPosition FFTShape = paddedLat.shape();
  IPosition inBlc(ndim, 0);
  IPosition patchShape(inLatShape);
  for (uInt k = 0; k < ndim; k++) {
    if (FFTShape(k) < inLatShape(k)) {
      inBlc(k) = inLatShape(k)/2 - FFTShape(k)/2;
      patchShape(k) = FFTShape(k);
    }
  }
  const Slicer inLatSlice(inBlc, patchShape);
  const SubLattice<T> inLatPatch(inLat, inLatSlice); 
  const IPosition outBlc = FFTShape/2 - patchShape/2;
  const Slicer paddedSlice(outBlc, patchShape);
  SubLattice<T> paddedPatch(paddedLat, paddedSlice, True); 
  paddedPatch.copyData(inLatPatch);
}

template<class T> void LatticeConvolver<T>::
unpad(Lattice<T> & result, const Lattice<T> & paddedResult) {
  const IPosition resultShape = result.shape();
  const IPosition inBlc = paddedResult.shape()/2 - resultShape/2;
  const Slicer paddedSlice(inBlc, resultShape);
  const SubLattice<T> resultPatch(paddedResult, paddedSlice); 
  result.copyData(resultPatch);
}

// Requires that the itsType, itsPsfShape and itsModelShape data members are
// initialised correctly and will initialise the itsFFTShape, itsXfr, itsPsf &
// itsCachedPsf data members.
template<class T> void LatticeConvolver<T>::
makeXfr(const Lattice<T> & psf) {
  //  cerr << "makeXfr" << endl;
  DebugAssert(itsPsfShape == psf.shape(), AipsError);
  itsFFTShape = calcFFTShape(itsPsfShape, itsModelShape, itsType);

//   for (int i=0;i<psf.shape()(0);i++)
//     {
//       for (int j=0;j<psf.shape()(1);j++)
// 	cout << "PSF: " 
// 	     << psf(IPosition(4,i,j,0,0)) << " "
// 						//	     << abs(itsXfr(IPosition(4,i,j,0,0))) << " "
// 						//	     << arg(itsXfr(IPosition(4,i,j,0,0))) << " "
// 	     << endl;
//       cout << endl;
//     }


  { // calculate the transfer function
    IPosition XFRShape = itsFFTShape;
    XFRShape(0) = (XFRShape(0)+2)/2;
    //    XFRShape(1) = (XFRShape(1)/2+1)*2;
    if(itsXfr) delete itsXfr; itsXfr=0;
    itsXfr = new TempLattice<typename NumericTraits<T>::ConjugateType>(XFRShape, 
								   maxLatSize);
    if (itsFFTShape == itsPsfShape) { // no need to pad the psf
      LatticeFFT::rcfft(*itsXfr, psf, True, doFast_p); 
    } else { // need to pad the psf 
      TempLattice<T> paddedPsf(itsFFTShape, maxLatSize);
      pad(paddedPsf, psf);
      LatticeFFT::rcfft(*itsXfr, paddedPsf, True, doFast_p); 
    }
  }
  // Only cache the psf if it cannot be reconstructed from the transfer
  // function.
  if (itsFFTShape < itsPsfShape) {
    if(itsPsf) delete itsPsf; itsPsf=0;
    itsPsf = new TempLattice<T>(itsPsfShape, 1); // Prefer to put this on disk
    itsPsf->copyData(psf);
    itsCachedPsf = True;
  } else {
    if(itsPsf) delete itsPsf; itsPsf=0;
    itsPsf = new TempLattice<T>();
    itsCachedPsf = False;
  }
  //  cerr << "makeXfr" << endl;
}

// Construct a psf from the transfer function (itsXFR).
template<class T> void LatticeConvolver<T>::
makePsf(Lattice<T> & psf) const {
  DebugAssert(itsPsfShape == psf.shape(), AipsError);
  if (itsFFTShape == itsPsfShape) { // If the Transfer function has not been
                                    // padded so no unpadding is necessary 
    LatticeFFT::crfft(psf, *itsXfr, True, doFast_p);
  } else { // need to unpad the transfer function
    TempLattice<T> paddedPsf(itsFFTShape, maxLatSize);
    LatticeFFT::crfft(paddedPsf, *itsXfr, True, doFast_p);
    unpad(psf, paddedPsf);
  }
}

// Calculate the minimum FFTShape necessary to do a convolution of the
// specified type with the supplied mode and psf shapes. Will try and avoid odd
// length FFT's.
template<class T> IPosition LatticeConvolver<T>::
calcFFTShape(const IPosition & psfShape, const IPosition & modelShape,
	     ConvEnums::ConvType type) {
  if (type == ConvEnums::CIRCULAR) {
    // All the books (eg Bracewell) only define circular convolution for two
    // Arrays that are the same length. So I always pad the smaller one to make
    // it the same size as the bigger one.
    return max(psfShape, modelShape);
  }

  // When doing linear convolution the formulae is more complicated.  In
  // general the shape is given by modelShape + psfShape - 1. But if we are
  // only to return an Array of size modelShape you can do smaller
  // transforms. I deduced the following formulae empirically. If the length on
  // any axis is one for either the model or the psf you do not need to do an
  // FFT along this axis. All you need to do is iterate through it hence the
  // FFTShape on this axis is set to one. The iteration is done in the convolve
  // function.
  IPosition FFTShape = modelShape + psfShape/2;
  const uInt ndim = FFTShape.nelements();
  for (uInt i = 0; i < ndim; i++) {
    if (psfShape(i) == 1 || modelShape(i) == 1) {
      FFTShape(i) = 1; 
    } else if (FFTShape(i) < psfShape(i)) {
      FFTShape(i) = 2 * modelShape(i);
      //      FFTShape(i) = 2 * modelShape(i) - 1;
    }
  }
  return FFTShape;
}

template<class T> void LatticeConvolver<T>::
setFastConvolve(){
  doFast_p=True;
}

// Local Variables: 
// compile-command: "cd test; gmake OPTLIB=1 inst tLatticeConvolver"
// End: 

} //# NAMESPACE CASACORE - END


#endif