This file is indexed.

/usr/include/casacore/lattices/LatticeMath/LatticeHistograms.tcc is in casacore-dev 2.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
//# LatticeHistograms.cc: generate histograms from a Lattice
//# Copyright (C) 1996,1997,1998,1999,2000,2001,2002,2003
//# Associated Universities, Inc. Washington DC, USA.
//#
//# This library is free software; you can redistribute it and/or modify it
//# under the terms of the GNU Library General Public License as published by
//# the Free Software Foundation; either version 2 of the License, or (at your
//# option) any later version.
//#
//# This library is distributed in the hope that it will be useful, but WITHOUT
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
//# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
//# License for more details.
//#
//# You should have received a copy of the GNU Library General Public License
//# along with this library; if not, write to the Free Software Foundation,
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
//#
//# Correspondence concerning AIPS++ should be addressed as follows:
//#        Internet email: aips2-request@nrao.edu.
//#        Postal address: AIPS++ Project Office
//#                        National Radio Astronomy Observatory
//#                        520 Edgemont Road
//#                        Charlottesville, VA 22903-2475 USA
//#
//# $Id: LatticeHistograms.tcc 21563 2015-02-16 07:05:15Z gervandiepen $

#ifndef LATTICES_LATTICEHISTOGRAMS_TCC
#define LATTICES_LATTICEHISTOGRAMS_TCC

#include <casacore/lattices/LatticeMath/LatticeHistograms.h>
#include <casacore/lattices/LatticeMath/LatticeHistSpecialize.h>
#include <casacore/lattices/LatticeMath/LatticeHistProgress.h>
#include <casacore/lattices/LatticeMath/LattStatsSpecialize.h>

#include <casacore/casa/aips.h>
#include <casacore/casa/Arrays/Array.h>
#include <casacore/casa/Arrays/ArrayMath.h>
#include <casacore/casa/Arrays/ArrayLogical.h>
#include <casacore/casa/Arrays/VectorIter.h>
#include <casacore/lattices/Lattices/MaskedLattice.h>
#include <casacore/lattices/LatticeMath/LatticeApply.h>
#include <casacore/lattices/Lattices/LatticeIterator.h>
#include <casacore/lattices/Lattices/LatticeStepper.h>
#include <casacore/lattices/LRegions/LatticeRegion.h>
#include <casacore/lattices/Lattices/TempLattice.h>
#include <casacore/lattices/Lattices/SubLattice.h>
#include <casacore/lattices/LatticeMath/LatticeStatsBase.h>
#include <casacore/casa/Logging/LogIO.h>
#include <casacore/casa/BasicMath/Math.h>
#include <casacore/casa/Quanta/QMath.h>
#include <casacore/tables/Tables/Table.h>
#include <casacore/casa/OS/HostInfo.h>
#include <casacore/casa/System/PGPlotter.h>
#include <casacore/casa/Utilities/Assert.h>
#include <casacore/casa/Utilities/DataType.h>
#include <casacore/casa/Utilities/ValType.h>
#include <casacore/casa/BasicSL/String.h>

#include <casacore/casa/iomanip.h>
#include <casacore/casa/stdlib.h>
#include <casacore/casa/sstream.h>





namespace casacore { //# NAMESPACE CASACORE - BEGIN

// Public functions

template <class T>
LatticeHistograms<T>::LatticeHistograms (const MaskedLattice<T>& lattice, 
                                         LogIO &os, Bool showProgress,
                                         Bool forceDisk)
: os_p(os),
  goodParameterStatus_p(True),
  error_p(""),
  pInLattice_p(0),
  pStoreLattice_p(0),
  pStats_p(0),
  binAll_p(True),
  needStorageLattice_p(True),
  doCumu_p(False),
  doGauss_p(False),
  doList_p(False),
  doLog_p(False),
  haveLogger_p(True),
  showProgress_p(showProgress),
  forceDisk_p(forceDisk),
  nBins_p(25)
//
// Constructor. 
//
{
   nxy_p.resize(0); 
   range_p.resize(0);
   blcParent_p.resize(0);

   if (setNewLattice(lattice)) {

// Cursor axes defaults to all
   
      Vector<Int> cursorAxes;
      goodParameterStatus_p = setAxes(cursorAxes);
   } else {
      os_p << error_p << LogIO::EXCEPTION;
   }
}


template <class T>
LatticeHistograms<T>::LatticeHistograms (const MaskedLattice<T>& lattice, 
                                         Bool showProgress,
                                         Bool forceDisk)
: 
  goodParameterStatus_p(True),
  error_p(""),
  pInLattice_p(0),
  pStoreLattice_p(0),
  pStats_p(0),
  binAll_p(True),
  needStorageLattice_p(True),
  doCumu_p(False),
  doGauss_p(False),
  doList_p(False),
  doLog_p(False),
  haveLogger_p(False),
  showProgress_p(showProgress),
  forceDisk_p(forceDisk),
  nBins_p(25)
//
// Constructor. 
//
{
   nxy_p.resize(0); 
   range_p.resize(0);
   blcParent_p.resize(0);

   if (setNewLattice(lattice)) {

// Cursor axes defaults to all
   
      Vector<Int> cursorAxes;
      goodParameterStatus_p = setAxes(cursorAxes);
   } else {
      os_p << error_p << LogIO::EXCEPTION;
   }
}

 
template <class T>
LatticeHistograms<T>::LatticeHistograms(const LatticeHistograms<T> &other)
 : pInLattice_p(0),
   pStoreLattice_p(0),
   pStats_p(0)
//
// Copy constructor.  Storage lattice not copied.
//
{ 
   operator=(other);
}      


template <class T>
LatticeHistograms<T> &LatticeHistograms<T>::operator=(const LatticeHistograms<T> &other)
//
// Assignment operator.   Storage lattices not copied.
//
{
   if (this != &other) {
      
// Deal with pointer
      
      if (pInLattice_p!=0) delete pInLattice_p;
      pInLattice_p = other.pInLattice_p->cloneML();
      
// Delete storage and statistics objects.

      if (pStoreLattice_p != 0) {
         delete pStoreLattice_p;
         pStoreLattice_p = 0;
      }
//
      if (pStats_p != 0) {
         delete pStats_p;
         pStats_p = 0;
      }
      needStorageLattice_p = True;

// Do the rest
  
      os_p = other.os_p;
      binAll_p = other.binAll_p;
      goodParameterStatus_p = other.goodParameterStatus_p;
      doCumu_p = other.doCumu_p;
      doGauss_p = other.doGauss_p;
      doList_p = other.doList_p;
      doLog_p = other.doLog_p;
      haveLogger_p = other.haveLogger_p;
      showProgress_p = other.showProgress_p;
      nBins_p = other.nBins_p;
      cursorAxes_p = other.cursorAxes_p;
      displayAxes_p = other.displayAxes_p;
      plotter_p = other.plotter_p;
      nxy_p = other.nxy_p;
      range_p = other.range_p;
      blcParent_p = other.blcParent_p;
      forceDisk_p = other.forceDisk_p;
      error_p = other.error_p;
   }
   return *this;
}

 

template <class T>
LatticeHistograms<T>::~LatticeHistograms()
//
// Destructor.  
//
{
   delete pInLattice_p;
   pInLattice_p = 0;
   if (pStoreLattice_p != 0) {
      delete pStoreLattice_p;
      pStoreLattice_p = 0;
   }
   if (pStats_p != 0) {
      delete pStats_p;
      pStats_p = 0;
   }
}


template <class T>
Bool LatticeHistograms<T>::setAxes (const Vector<Int>& axes)
//
// This function sets the cursor axes and the display axes
//
{
   if (!goodParameterStatus_p) {
      return False;
   }

// Save current cursor axes

   Vector<Int> saveAxes(cursorAxes_p.copy());

// Set cursor arrays (can't assign to potentially zero length array)

   cursorAxes_p.resize(0);   
   cursorAxes_p = axes;

   if (cursorAxes_p.nelements() == 0) {
   
// User didn't give any axes.  Set them to all.
 
      cursorAxes_p.resize(pInLattice_p->ndim());
      for (uInt i=0; i<pInLattice_p->ndim(); i++) cursorAxes_p(i) = i;
   } else {
      for (uInt i=0; i<cursorAxes_p.nelements(); i++) {
         if (cursorAxes_p(i) < 0 || cursorAxes_p(i) > Int(pInLattice_p->ndim()-1)) {
            error_p = "Invalid cursor axes";
            return False;
         }
      }
   }

// Set the display axes 

   displayAxes_p.resize(0);
   displayAxes_p = IPosition::otherAxes(pInLattice_p->ndim(),
                                        cursorAxes_p).asVector();

// Signal that we have changed the axes and need new accumulation lattices
   
   if (saveAxes.nelements() != cursorAxes_p.nelements() ||
       !allEQ(saveAxes, cursorAxes_p)) needStorageLattice_p = True;

   return True;
}


template <class T>
Bool LatticeHistograms<T>::setNBins (const uInt& nBins)
//
// Set the number of bins
//
{
   if (!goodParameterStatus_p) {
      return False;
   }

// Save number of bins

   const uInt saveNBins = nBins_p;

   if (nBins < 1) {
      error_p = "Invalid number of bins";
      goodParameterStatus_p = False;
      return False;
   } else {
      nBins_p = nBins;
   }

// Signal that we need a new accumulation lattice

   if (saveNBins != nBins_p) needStorageLattice_p = True;

   return True;
}


template <class T>
Bool LatticeHistograms<T>::setIncludeRange(const Vector<T>& include)
//
// Assign the desired inclusion range
//
{
   if (!goodParameterStatus_p) {
      return False;
   }

// Save current ranges   
          
   Vector<T> saveRange(range_p.copy());
   

// CHeck    

   Bool noInclude;
   ostringstream os;
   if (!setInclude(range_p, noInclude, include, os)) {
      error_p = "Invalid pixel inclusion range";
      goodParameterStatus_p = False;
      return False;
   }
   binAll_p = noInclude;


// Signal that we need new accumulation lattices

   if (saveRange.nelements() != range_p.nelements() ||
       !allEQ(saveRange, range_p)) needStorageLattice_p = True;

   return True;
}



template <class T>
Bool LatticeHistograms<T>::setGaussian (const Bool& doGauss)
//
// Specify whether there should be a Gaussian overlay or not
//
{
   if (!goodParameterStatus_p) {
      return False;
   }

   doGauss_p = doGauss;

   return True;
}


template <class T>
Bool LatticeHistograms<T>::setForm (const Bool& doLog, const Bool& doCumu)
//
// Specify whether the form of the histogram should be linear/log
// or cumulative or not.
// 
{
   if (!goodParameterStatus_p) {
      return False;
    }

    doLog_p = doLog;
    doCumu_p = doCumu;

    return True;
}


template <class T>
Bool LatticeHistograms<T>::setStatsList (const Bool& doList)
//
// See if user wants to list statistics as well 
//
{
   if (!goodParameterStatus_p) {
      return False;
   }

   doList_p = doList;

   return True;
} 


template <class T>
Bool LatticeHistograms<T>::setPlotting(PGPlotter& plotter,
                                     const Vector<Int>& nxy)
//
// Assign the desired PGPLOT device name and number
// of subplots
//
{     
   if (!goodParameterStatus_p) {
      return False;
   }


// Is new plotter attached ?
 
   if (!plotter.isAttached()) {
      error_p = "Input plotter is not attached";
      goodParameterStatus_p = False;  
      return False;
   }


// Don't reattach to the same plotter.  The assignment will
// close the previous device
   
   if (plotter_p.isAttached()) {
      if (plotter_p.qid() != plotter.qid()) plotter_p = plotter;
   } else {
      plotter_p = plotter;
   }
  

// Plotting device and subplots.  nxy_p is set to [1,1] if zero length
 
   nxy_p.resize(0);
   nxy_p = nxy;
   ostringstream os;
   if (!LatticeStatsBase::setNxy(nxy_p, os)) {
      error_p = "Invalid number of subplots";
      goodParameterStatus_p = False;
      return False;
   }

   return True;
}


template <class T>
Bool LatticeHistograms<T>::setNewLattice(const MaskedLattice<T>& lattice)
//    
// Assign pointer to lattice
//
{ 
   if (!goodParameterStatus_p) {
      return False;
   }

   T* dummy = 0;
   DataType latticeType = whatType(dummy);
   if (latticeType !=TpFloat && latticeType != TpComplex) {
      ostringstream oss;
      oss << "Lattices of type " << latticeType << " are not currently supported" << endl;
      error_p = String(oss);
      goodParameterStatus_p = False;
      pInLattice_p = 0;
      return False;
   }

// Clone pointer
      
   if (pInLattice_p!=0) delete pInLattice_p;
   pInLattice_p = lattice.cloneML();


// This is the location of the input SubLattice in
// the parent Lattice
      
   blcParent_p = pInLattice_p->region().slicer().start();


// Signal that we have changed the lattice and need a new accumulation
// lattice

   needStorageLattice_p = True;

   return True;
}


template <class T>
void LatticeHistograms<T>::closePlotting()
{  
   if (plotter_p.isAttached()) plotter_p.detach();
}
 

template <class T>
Bool LatticeHistograms<T>::display()
// 
// This function displays (plotting and listing) the requested
// histograms as a function of the display axes
//
{
   if (!goodParameterStatus_p) {
      return False;
   }


// Generate storage lattices if required

   if (needStorageLattice_p) {
      if (!generateStorageLattice()) return False;
   }


// Display histograms
                 
   displayHistograms ();

   return True;
}

template <class T>
Bool LatticeHistograms<T>::getHistograms(
        Array<T>& values, Array<T>& counts
) {
    Array<Vector<T> > stats;
    return getHistograms(values, counts, stats);
}

template <class T>
Bool LatticeHistograms<T>::getHistograms(
        Array<T>& values, Array<T>& counts, Array<Vector<T> >& stats
) {
    if (!goodParameterStatus_p) {
        return False;
    }
    // Generate storage lattices if required
    if (needStorageLattice_p) {
        if (!generateStorageLattice()) return False;
    }

    // Set up iterator to work through histogram storage lattice line by line
    // Use the LatticeStepper (default) which will guarantee the access pattern.
    // There will be no overhang (as tile shape for first axis is length of axis)
    IPosition cursorShape(pStoreLattice_p->ndim(),1);
    cursorShape(0) = pStoreLattice_p->shape()(0);
    IPosition vectorAxis(1,0);

    // Make the stepper explicitly so we can specify the cursorAxes
    // and then vectorCursor will cope with an axis of length 1
    // (it is possible the user could ask for a histogram with one bin !)
    LatticeStepper histStepper(
            pStoreLattice_p->shape(), cursorShape,
            vectorAxis, IPosition::makeAxisPath(pStoreLattice_p->ndim())
    );
    RO_LatticeIterator<T> histIterator(*pStoreLattice_p, histStepper);
    // Resize output arrays and setup vector iterators
    IPosition shape = pStoreLattice_p->shape();
    counts.resize(shape);
    values.resize(shape);
    static const IPosition removeAxis(1, 0);
    stats.resize(
            shape.size() == 1 ? IPosition(1,1) : shape.removeAxes(removeAxis)
    );
    VectorIterator<T> valuesIterator(values);
    VectorIterator<T> countsIterator(counts);
    Vector<T> stat;
    T linearSum, linearYMax;
    // Iterate through histogram storage lattice
    for (
            histIterator.reset(),valuesIterator.origin(),countsIterator.origin();
            ! histIterator.atEnd();
            histIterator++,valuesIterator.next(),countsIterator.next()
    ) {
        // Find statistics from the data that made this histogram
        IPosition pos = histIterator.position();
        getStatistics (stat, pos);
        stats(pos.size() == 1 ? IPosition(1, 0) : pos.removeAxes(removeAxis)).assign(stat);
        // Extract the histogram in the appropriate form
        extractOneHistogram(
                linearSum, linearYMax, valuesIterator.vector(),
                countsIterator.vector(), stat,
                histIterator.vectorCursor()
        );
    }
    return True;
}

template <class T>
Bool LatticeHistograms<T>::getHistogram (Vector<T>& values,
                                        Vector<T>& counts,
                                        const IPosition& pos,
                                        const Bool posInLattice)
//
// Retrieve histogram values and counts from specified
// location into vectors
//
// Inputs:
//   posInLattice   If true the location is given as lattice coordinates
//                The non-display axis values will be ignored.
//                Otherwise the position should be for the
//                display axes only.
//
{
   if (!goodParameterStatus_p) {
      return False;
   }

// Make sure we have a correctly size position
      
   if (posInLattice) {
      if (pos.nelements() != pInLattice_p->ndim()) {
         error_p = "Incorrectly sized position given";
         values.resize(0);
         counts.resize(0);
         return False;
      }
   } else {
      if (pos.nelements() != displayAxes_p.nelements()) {
         error_p = "Incorrectly sized position given";
         values.resize(0);
         counts.resize(0);
         return False;
      }
   }

  
// Generate storage lattices if required
   
   if (needStorageLattice_p) {
      if (!generateStorageLattice()) return False;      
   }


// Set position for getting slice from storage lattice
         
   const uInt nDim = displayAxes_p.nelements();
   IPosition histPos(nDim+1,0);
   if (posInLattice) {
         
// Discard non display axes
          
      for (uInt i=0; i<nDim; i++) {
         histPos(i+1) = pos(displayAxes_p(i));
      }
   } else {
 
// Use position as is
 
      for (uInt i=0; i<nDim; i++) {
         histPos(i+1) = pos(i);
      }
   }

            
// Get histogram slice of integer counts (i.e. linear,
// not cumulative or logarithmic etc)
 
   IPosition sliceShape(nDim+1,1);
   sliceShape(0) = nBins_p;
   Array<T> intCounts;
   pStoreLattice_p->getSlice(intCounts, histPos, sliceShape,
                           IPosition(nDim+1,1), False);

// Copy integer counts to a Vector

   Vector<T> intCountsV(nBins_p);
   histPos = 0;
   for (uInt i=0; i<nBins_p; i++) {
      histPos(0) = i;
      intCountsV(i) = intCounts(histPos);
   }


// Get statistics slice.  

   Vector<AccumType> statsA;
   Vector<T> statsT;
   pStats_p->getStats(statsA, pos, posInLattice);
   statsT.resize(statsA.nelements());
   convertArray (statsT, statsA);

// Convert to desired form and make values vector too

   counts.resize(nBins_p);
   values.resize(nBins_p);
   T linearSum, linearYMax;
   extractOneHistogram (linearSum, linearYMax, values,
                        counts, statsT, intCountsV);

   return True;

}




// Private functions

template <class T>
Bool LatticeHistograms<T>::displayHistograms ()
//
// Display the histograms as a function of the display axes
//
{

// Set up for plotting

   if (plotter_p.isAttached()) {
      plotter_p.subp(nxy_p(0), nxy_p(1));
      plotter_p.ask(True);
      plotter_p.sch(1.2);
      plotter_p.svp(0.1,0.9,0.1,0.9);
   } else {
      error_p = "Plotter is not attached";
      return False;
   }
      
      
// Set up iterator to work through histogram storage lattice line by line.
// We don't use the TiledLineStepper to guarentee the access pattern is 
// row based rather than tile based.  There will be no overhang because
// the tile shape for the histogram axis is the size of the histogram

   IPosition cursorShape(pStoreLattice_p->ndim(),1);
   cursorShape(0) = pStoreLattice_p->shape()(0);

   IPosition vectorAxis(1); 
   vectorAxis(0) = 0;


// Make the stepper explicitly so we can specify the cursorAxes
// and then vectorCursor will cope with an axis of length 1
// (it is possible the user could ask for a histogram with one bin !)

   LatticeStepper histStepper(pStoreLattice_p->shape(), cursorShape,
                              vectorAxis, IPosition::makeAxisPath(pStoreLattice_p->ndim()));
   RO_LatticeIterator<T> histIterator(*pStoreLattice_p, histStepper);

// Histogram vectors and other bits and pieces
      
   Vector<T> counts(pStoreLattice_p->shape()(0));
   Vector<T> values(pStoreLattice_p->shape()(0));
   Vector<T> stats;
   T linearSum, linearYMax;
   IPosition latticePos(pInLattice_p->ndim(),0);
  
// Iterate through histogram storage lattice

   for (histIterator.reset(); !histIterator.atEnd(); histIterator++) {
   
// Find statistics from the data that made this histogram 

      getStatistics (stats, histIterator.position());

// Extract histogram in the form requested for plotting

      extractOneHistogram (linearSum, linearYMax, values, counts, stats,
                           histIterator.vectorCursor());

// Display the histogram

      if (!displayOneHistogram (linearSum, linearYMax, 
                                histIterator.position(), 
                                stats, values, counts, 
                                plotter_p)) return False;
   }
   return True;
}
 
 
template <class T>
Bool LatticeHistograms<T>::displayOneHistogram (const T& linearSum,
                                                const T& linearYMax,
                                                const IPosition& histPos,
                                                const Vector<T>& stats,
                                                const Vector<T>& values,
                                                const Vector<T>& counts,
                                                PGPlotter& plotter)

//
// Display the histogram and optionally the equivalent Gaussian
//
//  Inputs
//    histPos    location in histogram storage lattice of start of 
//               this histogram. Remember that the first axis
//               of the storage lattice has the counts.
//
{

// Are we going to see the Gaussian ?
 
   Bool doGauss2 = False;
   if (doGauss_p && stats(LatticeStatsBase::SIGMA)>0) doGauss2 = True;
 
// Set binwidth

   const T binWidth = LatticeHistSpecialize::setBinWidth(stats(LatticeStatsBase::MIN),
                                                         stats(LatticeStatsBase::MAX),
                                                         nBins_p);
// Do plots

   LatticeHistSpecialize::plot(plotter, doGauss_p, doCumu_p, doLog_p,
                               linearSum, linearYMax, binWidth, values, 
                               counts, stats, 0, 1, True);

// Write values of the display axes on the plot
 
   T* dummy = 0;
   DataType type = whatType(dummy);
   Float nchar = 0.5;
   if (type==TpComplex) nchar = 1.5;
   String coords = writeCoordinates(histPos);
   if (!writeDispAxesValues (coords, plotter, nchar)) return False;

   if (haveLogger_p && doList_p) {

// List pixel coordinates of display axes for this histogram

 
// Write statistics to a LogIO object

      os_p << coords << endl;
      listStatistics(os_p, stats, binWidth);

   }
   return True;
}

 

template <class T>
void LatticeHistograms<T>::extractOneHistogram (T& linearSum,
                                                T& linearYMax,
                                                Vector<T>& values, 
                                                Vector<T>& counts,
                                                const Vector<T>& stats, 
                                                const Vector<T>& intCounts)

//
// Extract this histogram, convert to the appropriate form
// and return the values and counts
//
{

// FIsh out min and max

   Vector<T> range(2);
   range(0) = stats(LatticeStatsBase::MIN);
   range(1) = stats(LatticeStatsBase::MAX);

// Set bin width  
      
   const uInt nBins = nBins_p;
   const T binWidth = LatticeHistSpecialize::setBinWidth(range(0), range(1), nBins);

// Copy histogram counts into output T array and generate
// values (abcissa) array
 
   T xx = range(0) + binWidth/2.0;
   linearYMax = -1.0;
   linearSum = 0.0;
   for (uInt i=0; i<intCounts.nelements(); i++) {
      values(i) = xx;
      counts(i) = intCounts(i);
      xx += binWidth;
      linearYMax = LattStatsSpecialize::max(linearYMax,counts(i));
      linearSum += counts(i);
   }
   linearSum = LatticeHistSpecialize::mul(linearSum, binWidth);

// Make histogram cumulative if desired
      
   if (doCumu_p) LatticeHistSpecialize::makeCumulative (counts, linearYMax, nBins, 1.0);
          

// Make histogram logarithmic if desired
         
   if (doLog_p) LatticeHistSpecialize::makeLogarithmic (counts, linearYMax, nBins);
}




template <class T>
Bool LatticeHistograms<T>::generateStorageLattice()
//
// Generate the histogram, and statistics storage lattices.
//
{
// Set the display axes vector if needed

   if (displayAxes_p.nelements()==0) {
      displayAxes_p.resize(0);
      displayAxes_p = IPosition::otherAxes(pInLattice_p->ndim(),
                                           cursorAxes_p).asVector();
   }

// Make the statistics object 

   if (!makeStatistics()) return False;


// Fill the histogram storage lattice

   makeHistograms();

   needStorageLattice_p = False;     
   return True;
}


template <class T> 
void LatticeHistograms<T>::getStatistics (Vector<T> &stats, 
                                          const IPosition& histPos) const
//
// Extract statistics slice for the given position in the
// histogram storage lattice.  
//
// Input:
//   histPos  The location in the histogram storage lattice
// Outputs
//  stats     The statistics for this chunk.  
{

// Discard the histogram axis location

   uInt n = displayAxes_p.nelements();
   IPosition pos;
   if (n > 0) {
      pos.resize(n);
      for (uInt i=0; i<n; i++) {
         pos(i) = histPos(i+1);
      }
   }

// Get the statistics
   
   Vector<AccumType> statsA;
   pStats_p->getStats(statsA, pos, False);
   stats.resize(statsA.nelements());
   convertArray (stats, statsA);
}

template <class T>
void LatticeHistograms<T>::listStatistics(LogIO& os,
                                          const Vector<T>& stats,
                                          T binWidth)
{

// Have to convert LogIO object to ostream before can apply 
// the manipulators

      const Int oPrec = 6;
      setStream(os.output(), oPrec);
      ostringstream os0, os1, os2, os3, os4, os5, os6, os7;
      setStream(os0, oPrec); setStream(os1, oPrec); setStream(os2, oPrec);
      setStream(os3, oPrec); setStream(os4, oPrec); setStream(os5, oPrec);
      setStream(os6, oPrec); setStream(os7, oPrec);
//
      T* dummy = 0;
      DataType type = whatType(dummy);
      Int oWidth;
      if (type==TpFloat) {  
         oWidth = 15;               //
      } else if (type==TpComplex) {
         oWidth = 33;               // (x, y)
      }
//
      os << "No. binned = ";
      os.output() << setw(oWidth) << Int64(std::real(stats(LatticeStatsBase::NPTS))+0.1) << endl;

      os << "Sum        = ";
      os0 << stats(LatticeStatsBase::SUM);
      os.output() << setw(oWidth) << String(os0) <<   "       Mean     = ";
      os1 << stats(LatticeStatsBase::MEAN);
      os.output() << setw(oWidth) << String(os1) << endl;
//
      os << "Variance   = ";
      os2 << stats(LatticeStatsBase::VARIANCE);
      os.output() << setw(oWidth) << String(os2);
//
      if (stats(LatticeStatsBase::VARIANCE)> 0.0) {
         os << "       Sigma    = ";
         os3 << stats(LatticeStatsBase::SIGMA);
         os.output() << setw(oWidth) << String(os3) << endl;
      } else {
         os << endl;
      }
      os << "Rms        = ";
      os4 << stats(LatticeStatsBase::RMS);
      os.output() << setw(oWidth) << String(os4) << endl;
 
      os << endl;  
      os << "Bin width  = ";
      os5 << binWidth;
      os.output() << setw(oWidth) << String(os5) << endl;
      os << "Min binned = ";
      os6 << stats(LatticeStatsBase::MIN);
      os.output() << setw(oWidth) << String(os6) << "       Max binned = ";
      os7 << stats(LatticeStatsBase::MAX);
      os.output() << setw(oWidth) << String(os7) << endl << endl << endl;
      os.post();
}


template <class T>
IPosition LatticeHistograms<T>::locHistInLattice(const IPosition& storagePosition,
                                                 Bool relativeToParent) const
//
// Given a location in the histogram storage lattice, convert those locations on
// the non-histogram axis (the histogram axis is the first one) to locations
// in the original parent lattice.  Optionally account for the location of the 
// subLattice in the parent lattice
//
{
   IPosition pos(storagePosition);
   for (uInt j=1; j<pos.nelements(); j++) {
     if (relativeToParent) {
        pos(j) = storagePosition(j) + blcParent_p(displayAxes_p(j-1));
     } else {
        pos(j) = storagePosition(j);
     }
   }
   return pos;  
}


template <class T>
Bool LatticeHistograms<T>::makeStatistics()
{

// Create LatticeStatistics object.  Show progress meter.

   if (pStats_p != 0) delete pStats_p;
   pStats_p = new LatticeStatistics<T>(*pInLattice_p, os_p, showProgress_p, forceDisk_p);

// Set state.  Make sure that the min/max is set to the
// user's include range if there is one.  LatticeHistograms
// only allows an inclusion range, and range_p is already
// filled with it.

   Vector<T> exclude;
   if (!pStats_p->setInExCludeRange(range_p, exclude, True)) return False;
   if (!pStats_p->setAxes(cursorAxes_p)) return False;

// We get an arbitary statistics slice here so as to
// activate the statistics object and make it a bit
// more obvious to the user the order in which things are done.

   Vector<AccumType> stats;
   IPosition pos(displayAxes_p.nelements(),0);
   if (!pStats_p->getStats(stats, pos, False)) return False;

   return True;
}



template <class T>
void LatticeHistograms<T>::makeHistograms()
{
   if (haveLogger_p) {
      os_p << LogIO::DEBUG1 << "Creating new histogram storage lattice" << LogIO::POST;
   }

// Set storage lattice shape.  The first axis is the histogram axis 
 
   IPosition storeLatticeShape;
   LatticeStatsBase::setStorageImageShape(storeLatticeShape, False, Int(nBins_p),
                                          displayAxes_p, pInLattice_p->shape());

// Set the storage lattice tile shape to the tile shape of the
// axes of the parent lattice from which it is created.
// For the histogram axis, set the tile shape to the number of bins
// (which probably won't be too big, but could be !)

    IPosition tileShape(storeLatticeShape.nelements(),1);
    for (uInt i=1; i<tileShape.nelements(); i++) {
       tileShape(i) = pInLattice_p->niceCursorShape()(displayAxes_p(i-1));
    }
    tileShape(0) = storeLatticeShape(0);


// Delete old histogram storage lattice
 
   if (pStoreLattice_p != 0) delete pStoreLattice_p;

// Create storage lattice

   uInt memory = HostInfo::memoryTotal()/1024;
   Double useMemory = Double(memory)/10.0;
   if (forceDisk_p) useMemory = 0.0;
   pStoreLattice_p = new TempLattice<T>(TiledShape(storeLatticeShape,
                                      tileShape), useMemory);

// Create collapser for LatticeApply

   HistTiledCollapser<T> collapser(pStats_p, nBins_p);
   LatticeHistProgress* pProgressMeter = 0;
   if (showProgress_p) pProgressMeter = new LatticeHistProgress();

// This is the first output axis (there is only one in IH) getting
// collapsed values
 
   Int newOutAxis = 0;

// Iterate through lattice and create histograms
// Output has to be a MaskedLattice, so make a writable SubLattice.

   SubLattice<T> outLatt (*pStoreLattice_p, True);
   LatticeApply<T,T>::tiledApply(outLatt, *pInLattice_p, 
                                 collapser, IPosition(cursorAxes_p),
                                 newOutAxis, pProgressMeter);
   if (pProgressMeter != 0) {
      delete pProgressMeter;
      pProgressMeter = 0;
   }
}


                



template <class T>
Bool LatticeHistograms<T>::setInclude(Vector<T>& range,
                                    Bool& noInclude,
                                    const Vector<T>& include,
                                    ostream& os)
//
// Take the user's data inclusion range
//
// Inputs:
//   include   Include range given by user. Zero length indicates
//             no include range
//   os        Output stream for reporting
// Outputs:
//   noInclude If True user did not give an include range
//   range     A pixel value selection range.  Will be resized to
//             zero length if both noInclude and noExclude are True
//   Bool      True if successfull, will fail if user tries to give too
//             many values for includeB or excludeB, or tries to give
//             values for both
{
   noInclude = True;
   range.resize(0);
   if (include.nelements() == 0) {
     ;
   } else if (include.nelements() == 1) {
      range.resize(2);
      range(0) = -abs(include(0));
      range(1) =  abs(include(0));
      noInclude = False;
   } else if (include.nelements() == 2) {
      range.resize(2);
      range(0) = min(include(0),include(1));
      range(1) = max(include(0),include(1));
      noInclude = False;
   } else {
      os << endl << "Too many elements for argument include" << endl;
      return False;
   }
   return True;
}

template <class T>
String LatticeHistograms<T>::writeCoordinates(const IPosition& histPos) const
//
// Write pixel coordinates relative to parent lattice
//
{
   ostringstream oss;
   const Int nDisplayAxes = displayAxes_p.nelements();
   if (nDisplayAxes > 0) {   
      for (Int j=0; j<nDisplayAxes; j++) {
         oss << "Axis " << displayAxes_p(j) + 1 << "=" 
             << locHistInLattice(histPos,True)(j+1)+1;
         if (j < nDisplayAxes-1) oss << ", ";
      }
   }
   return String(oss);
}


template <class T>
Bool LatticeHistograms<T>::writeDispAxesValues (const String& coords,
                                                PGPlotter& plotter,
                                                Float nchar) const
{
   
// Fill the string stream with the name and value of each display axis
  
   const Int nDisplayAxes = displayAxes_p.nelements();
   if (nDisplayAxes > 0) {

// Write on plot
 
      Vector<Float> box(8);
      box = plotter.qtxt (0.0, 0.0, 0.0, 0.0, "X");
      Float dx = box(3) - box(0);

      const char* tLabel = coords.chars();
      box = plotter.qtxt (0.0, 0.0, 0.0, 0.0, tLabel);
      Float dy = box(5) - box(4);
                     
      Vector<Float> win = plotter.qwin();
      Float mx = win(0) + dx; 
      Float my = win(3) + nchar*dy;
//      
      Int tbg = plotter.qtbg();
      plotter.stbg(0);
      plotter.ptxt (mx, my, 0.0, 0.0, tLabel);
      plotter.stbg(tbg);
   }

   return True;
}


template <class T>
void LatticeHistograms<T>::setStream (ostream& os, Int oPrec)
{
    os.fill(' ');
    os.precision(oPrec);
    os.setf(ios::scientific, ios::floatfield);
    os.setf(ios::left, ios::adjustfield);
}
   


// HistTiledCollapser
   
 
template <class T>
HistTiledCollapser<T>::HistTiledCollapser(LatticeStatistics<T>* pStats, uInt nBins)
: pStats_p(pStats),
  nBins_p(nBins)
{;}
   
template <class T>
HistTiledCollapser<T>::~HistTiledCollapser<T>() {}

template <class T>
void HistTiledCollapser<T>::init (uInt nOutPixelsPerCollapse)
{
    AlwaysAssert (nOutPixelsPerCollapse == nBins_p, AipsError);
}   
   
template <class T>
void HistTiledCollapser<T>::initAccumulator (uInt64 n1, uInt64 n3)
//
// pHist_p contains the histograms for each chunk
// It is T not uInt so we can handle Complex types
{
   pHist_p = new Block<T>(nBins_p*n1*n3);
   pHist_p->set(0);
//          
   n1_p = n1;
   n3_p = n3;
}


template <class T>
void HistTiledCollapser<T>::process (
	uInt index1, uInt index3, const T* pInData,
	const Bool* pInMask, uInt dataIncr, uInt maskIncr,
	uInt nrval, const IPosition& startPos, const IPosition&
) {
//
// Process the data in the current chunk.   Everything in this
// chunk belongs in one output location in the accumulation
// lattices

// Fish out the min and max for this chunk of the data 
// from the statistics object

   typedef typename NumericTraits<T>::PrecisionType AccumType; 
   Vector<AccumType> stats;
   pStats_p->getStats(stats, startPos, True);
   ThrowIf(
		   stats.empty(),
		   "Failed to compute statistics, if you set a range you have likely excluded all valid pixels"
   );

// Assignment from AccumType to T ok (e.g. Double to FLoat)
   Vector<T> clip(2);
   clip(0) = stats(LatticeStatsBase::MIN);
   clip(1) = stats(LatticeStatsBase::MAX);
// Set histogram bin width
   
   const T binWidth = LatticeHistSpecialize::setBinWidth(clip(0), clip(1), nBins_p);

// Fill histograms.  

   uInt offset = (nBins_p*index1) + (nBins_p*n1_p*index3);
   LatticeHistSpecialize::process(
		   pInData, pInMask, pHist_p, clip,
		   binWidth, offset, nrval,
		   nBins_p, dataIncr, maskIncr
   );
}



template <class T>
void HistTiledCollapser<T>::endAccumulator(Array<T>& result,
                                           Array<Bool>& resultMask,
                                           const IPosition& shape)
{


// Reshape arrays.  The mask is always true.  Any locations
// in the storage lattice for which there were no valid points
// will have the NPTS field set to zero.  That is what
// we use to effectively mask it.  
          
    resultMask.resize(shape);
    resultMask.set(True);
    result.resize(shape);
//
    Bool deleteRes;
    T* res = result.getStorage (deleteRes);
    T* resptr = res;
    const T* histPtr = pHist_p->storage();

// The histogram storage lattice has the logical shape
// [nBins, n1, n3].  

    for (uInt k=0; k<nBins_p*n1_p*n3_p; k++) {
       *resptr++ = *histPtr++;
    }
    
    result.putStorage (res, deleteRes);
    delete pHist_p;
}      

} //# NAMESPACE CASACORE - END


#endif